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Czechoslovak Mathematical Journal, 42 (117) 1992, Praha 

ON THE STABILITY OF SOLUTIONS OF LINEAR DIFFERENTIAL 

SYSTEMS WITH SLOWLY VARYING COEFFICIENTS 

CHARLES S. KAHANE, Nashville 

(Received June 17, 1991) 

INTRODUCTION 

Consider the solutions y(t) of the system of equations 

(1.1) t/(t) = A(t)y(t) 

where A(t) is an n x n matrix for each fixed t ^ 0. It is well known that we cannot 
assure the stability of solutions of (1.1) by merely supposing A(t) to be a stability 

matrix for each fixed t. (See, for examples, [5, p. 310] or [6, p. 494]). 

However, if we assume this to be the case in conjunction with a condition that in 
some sense asserts that the coefficient matrix A(t) varies slowly, then it is possible 
to obtain stability results for solutions of (1.1). For example, if we suppose that the 
matrices A(t) vary slowly in the sense that either 

(1.2) sup ||J4'(*)|| is sufficiently small; 
0^t<oo 

00 

(1.3) or J\\A'(t)\\dt < oo, 
0 

then theorems of this type have been obtained by Hale and Stokes [4] under (1.2) 
and by Cesari [2] under (1.3). 

The methods used to obtain these results involved careful estimation procedures 
based on suitably interpreting (1.1) as a preturbation of a constant coefficient situa
tion. It is the purpose of this paper to study this question from a different perspec
tive; namely by constructing an appropriate Liapounof like function. In fact, if A is 
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a constant stability matrix, it is known that the quadratic form (Pt/, y), where P is 

the unique solution of the matrix equation 

(1.4) PA + A*P = - 7 , 

serves as a Lyapunoff function for the equation -£ = Ay. This suggest that in 
the variable coefficient matrix case, the function (P(02/(0> 2/(0)> where P(0 is the 
solution of (1.4) corresponding to A = A(t), might serve in a similar capacity for the 
system (1.1). And we will show that under suitable circumstances it does so serve. 
Namely, assuming that for each t^ 0, A(t) belongs to the class of stability matrices 
whose eigenvalues have real parts -$ —8 < 0, with ^4(0 continuously differentiable 
and uniformly bounded by M for t ^ 0, then for (P(t)y(t),y(t)) we will obtain the 
estimate 

(1.5) (P(t)y(t),y(t)) ^ e-fi-S'o* H*'<')IW(P(0)y(0),»(0)) 

for t ^ 0, where a, /? and K are constants depending on 6 and M. 

From (1.5) it will be easy to derive the stability results described above that follow 

form conditions (1.2) and (1.3) together with a further stability result which follows 

from the condition 

lim±/VoOI,ds = 0 
t - 0 0 t Jo 

that generalizes (1.3). 
The plan of the paper is as follows. In Section 2 we will derive various properties 

of the matrix solution P of equation (1.4) needed in the sequel. Then in Section 3 

we will obtain the estimate (1.5) as well as all the stability results that ensue form it. 

2. T H E MATRIX EQUATION PA + A*P = - I 

In this section we gather together the basic facts that we will need concerning 
the solution P of the matrix equation PA = A*P = —I. For this purpose it will be 
convenient for us to first study the solution Y of the somewhat more general equation 

(2.1) YA + BY = C 

where A} B and C are given n x n matrices. 
We begin by describing a technique for solving (2.1) when A and B are stability 

matrices, that is, matrices whose eigenvalues all have negative real parts. We denote 
the set of all stability matrices by S. Of particular interest to us will be the compact 
subset of S denoted by A(6, M) consisting of those matrices A 
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(i) whose eigenvalues all have negative real parts ^ — 6 with 6 > 0; and 
(ii) which are bounded by M: \\A\\ ^ M. 

(Here, by the matrix norm in (ii) we mean the one induced by using the Euclidean 
norm \x\ = [x\ + . . . + x\] a for vectors in x = (x\y..., xn) in Rn.) The method 
for solving (2.1) as well as the method for studying the solutions of this equation as 
functions of its coefficients and right side depends on the following estimate for the 
exponential matrix eiA when A € A(6y M). 

Proposition 2.1. For A E A(6yM) we have the uniform estimate 

(2.2) | | e M | | ^ Je-"< (t > 0) 

where for ft we can choose any positive number in the interval (0, 6), with J then 

depending on /i, 6 and M: J = J(/i, 6y M). 

For the sake of completeness, we will give a proof of this result in the appendix. 

We are now in position to solve (2.1) and we do so in the theorem that follows. 

Theorem 2.2. Let A and B denote fixed stability matrices and C an arbitrary 
matrix, then the integral 

(2.3) Y = - retBCetAdt 
Jo 

exists and represents the unique solution of the matrix equation (2.1): 

YA + BY = C. 

P r o o f . Since a fixed stability matrix belongs to the set A(6yM) for some 

suitable 6 and M, the estimate (2.2) is applicable to A and B\ and hence the integral 

defining Y exists. 

Now to show that Y satisfies (2.1), we differentiate the integrand and use the fact 

that A commutes with etA to obtain 

A ( e t B C e M ) = eiBCAetA + BeiBCeiA = (etBCetA)A + B(etBCetA). 

Integrating from t = 0 to t = oo, we find, in view of etBCetA —• 0 as t —• oo (because 
of (2.2)), that 

-C=(l eiBCeiAdt)A + Bn etBCeiAdt} = (~Y)A +B(-Y)y 
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the desired result. 
Having shown that (2.1) always has a solution for arbitrary right sides C, we can 

then conclude that this solution is unique by reasoning as follows: We re-interpret 
(2.1) as a system of n2 linear equations for the n2 entries t/y* of Y. Since this system 
has a solution for an arbitrary right side, it follows from well-known theorems of 
linear algebra, that this solution must be unique. • 

R e m a r k . This method of solving equations (2.1) is described by Bellman 
[1, p. 175], who is, however, unable to attribute it to an original source. 

Our next result concerns the dependence of the solution of (2.1) on the coefficients 
and right side of this equation. 

T h e o r e m 2.3. Let Y = Y(A,B,C) denote the unique solution of (2.1): 

YA + BY = C 

for given A, B G S and C arbitrary. Then Y depends continuously on A, B and C. 

P r o o f . Replacing A, B and C in (2.1) by A + AA, B + AB and C + AC 

respectively, call the corresponding solution Y + AY\ 

(2.4) (Y + AY)(A + AA) + (B + AB)(Y + AY) = C+AC. 

This solution wil exist by Theorem 2.2, provided that A + AA and B + AB are both 
stability matrices, and this will surely be the case if AA and AB are sufficiently 
small; moreover, it is clear that for a suitably determined 8 and M, A + A A as well 
as B + AB well belong to A(6, M) for AA and AB sufficiently small and we will 
assume this to be the case. Now subtract equation (2.1) satisfied by Y from equation 
(2.4) satisfied by Y + AY. Then, after transposing some terms, we have 

A y (A + AA) + (B + AB)AY = AC - Y(AA) - (AB)Y. 

According to Theorem 2.2, the solution A y of this equation is given by 

/•CO 

A y = / e<(B+AB) [Y(AA) + (AB)Y - A C J e ' ^ + ^ d * . 
Jo 

Since both A + AA and B + AB belong to A(6, M), we may apply (2.2) to estimate 
the integral on the right, thereby obtaining 

/•OO 

IIAYH ^ [(||A,4|| + ||AS||)||y|| + IIACH] / JV^'d.; 
JO 

from which the asserted contunuity of Y follows immediately. • 
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We now turn our attention to the matrix equation 

(2.5) PA + A*P = -I. 

If A is a stability matrix, the same is true for A*] it follows then by Theorem 2.2 

that (2.5) has a unique solution P given by 

(2.6) P = P(A) = (^ eiA*eiAdt 
Jo 

Our next objective will be to show that when A is confined to A(6, M), P(A) has 
the properties described in the two propositions below. 

Proposition 2.4. For P = P(A) with A G A(6, M), the quadratic form (Px,x) 

is positive definite and uniformly bounded: 

(2.7) p(x,x)<^(Px,x)<^a(x,x), 

where a and (3 are positive constants depending only on 6 and M. 

Proposition 2.5. Regarding P = P(A) as a function of the matrix entries cijk 
r A with A G S, the derivatives ^ - exist, 

quently, for A € A(6, M) they are bounded: 

8P 

of A with A G S, the derivatives ^ - exist, depend continuously on A; and conse-

(2.8) ŠL (АеЛ(6,М)), 

with L depending on 6 and M. 

(P(A)x x) 
P r o o f of Proposition 2.4. Clearly, as the upper and lower bounds for — ^— 

(x,x) 
we can take 

ot = sup (P(A)x,x) and f3 = inf (P(A)x,x) 
|.r|=i kl=i 

AeA(6}M) A£A(6,M) 

respectively. Since P(A) depends continuously on A for A G A(6, M) (because of 
Theorem 2.3) and A(6, M) is a compact set, it follows that a and /? are achieved 

maxima and minima respectively, and so are finite. It remains only to show that /? is 
positive, and to do this it is enough to establish that (P(A)x,x) is positive, definite 
for any fixed stability matrix A. 
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To accomplish this we use (2.6) together with the bi-linearity of the inner product 
and the observation that etA is the adjoint of etA to conclude that 

(P(A)x,x)= ( [ (^ eiA*etAdt\x,x\ = f (etA\tAx,x)dt 

/ •OO / » 0 O 

= (etAx,etAx)dt= \etAx\2dt>0 
Jo Jo 

if x / 0 due to the fact that etAx ^ 0 if x -̂  0. The latter following from the 
dy 

uniqueness theorem for solutions of — = Ay. D 
dt 

P r o o f of Prooposition 2.5. Consider the effect on P, the solution of (2.5): 

PA + A*P = -I, 

when A is changed by just changing ajk) the entry in the jth row and Arth column, 
by the amount Aajk without changing any other entry. Let A A denote the resulting 
change in the matrix A, and let AP denote the corresponding change in P induced 

by this change in A\ the matrix P + AP is thus a solution of the equation 

(P + AP)(,4 + AA) + (A + AA)*(P + AP) = -I. 

Subtracting the defining equation (2.5) for P from this equation, transposing the 
term P(AA) + (AA)* P) and then dividing by Aa^, we obtain 

,*^ &P / . A .x / . A ,x* AP „{&*) (AA)* n 

2.9) (A + AA) + (A + AA)*- = -P-—- - - - ^-r—^-P = 
Aajk Aajk Aajk Aajk 

= -PIjk - I*kP 

where Ijk denotes the n x n matrix with entry equal to 1 in the jth row and kth 
column and zero entries everywhere else. 

Now send Aayj. —• 0, then according to Theorem 2.3, ^jr-, as the solution of 
(2.9), will converge to Z, the unique matrix solution of the equation 

(2.10) ZA + A*Z = -PIjk - I*jkP. 

dP 
In other words, the partial derivative exists and is equal to Z. 

dajk 

Next we note that as P = P(A) is already known to depend continuously on A 
(because of Theorem 2.3), the right side of (2.10) depends continuously on A. Thus, 

dP 
by another application of Theorem 2.3, — = Z, as the solution of (2.10), must 

oajk 

also depend continuously on A. Finally, the compactness of A(S, M) then gives us 
the bound (2.8). D 
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3 . T H E BASIC ESTIMATE AND STABILITY RESULTS 

In this section we will derive the estimate (1.5) mentioned in the introduction and 

the stability results which follow from this estimate. 

We will be considering solutions y = y(t) of th initial value problem 

(3.1) ( S T " * ' " <,>0)' 
l y(0) = yo 

in which A(t) will be assumed to be a stability matrix for each t ^ 0. Now let P(t) 

denote the unique solution of the matrix equation 

P(t)A(t) + A*(t)P(t) = -I. 

More precisely, let P = P(A) denote the unique solution of the matrix equation 
PA + A*P = —I shown to exist in Section 2 whenever A is a given stability matrix; 
then when A = A(t), we consider, corresponding to it, P = P(A(t)) and this is what 
we mean by P(t), i.e. P(t) = P(A(t)). 

T h e o r e m 3.1 . Let y = y(t) be a solution of (3.1) in which A(t) has a continuous 

derivative A'(t) for all t ^ 0 with 

(3.2) A(t)eA(6yM) fort^O. 

Let P(t) be as defined above. Then for (P(t)y(t), y(t)) we have the following estimate. 

(3.3) (P(t)MMt))^e~l*~$IiU'™*\P{~)y(0)M0)) fort>0 

where a, (3 and K are constants depending only on S and M. 

P r o o f . Differentiating (P(t)y(t), y(t)) we have 

(3.4) ^ ( P ( 0 y ( 0 , y(0) = (P'y, y) + ( IV, v) + (Py, y') 

where the prime denotes differentiation with respect to t. Because of the equation 

(3.1) satisfied by y, we can transform the last two terms on the right as follows: 

(3.5) (Py', y) + (Py, y') = (PAy, y) + (Py, Ay) = (PAy, y) + (A* Py, y) 

= ([PA + A'P]y, y) = -(y, y) < - I ( P j / , y) 
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where in the steps at the end we have used the defining equation (2.5) for P: PA + 
A*P = - I , together with the upper bound (2.7): (Py,y) ^ P(y,y) for the quadratic 
form (Py,y). 

Next, to estimate (P'y,y), the remaining term on the right of (3.4), we first esti
mate P' by using the chain rule: 

no= £ &M 

----- < (where the a,* denote the entries of A), in conjunction with the bound 
L provided by Proposition 2.5 whenever A £ A(6, M). This leads to | |P '(0II ^ 
A ' | | J4 ' (<) | | with A', like L, depending on 6 and M. An application of Schwartz's 
inequality then yields 

(P'y,y) <J \P'y\ \y\ $ \\P'\\ |y|2 ^ # | | ,4 '(0 | | |y|2 < -\\A'(t)\\(Py,y), 
Of 

in view of the lower bound (2.7): c*|y|2 ^ (Py, y), for (Py, y). Inserting (3.5) and 
(3.6) into (3.4), we arrive at the differential inequality 

^t(P(t)y(t),y(t))ź ^\\A'(t)\\ - I (P(t)y(t),y(t)); 

and solving this differential inequality we obtain the estimate (3.3). • 

Another application of (2.7) then immediately yields. 

Corollary 3.2. Under exactly the same assumptions regarding A(t) as in Theo
rem 3.1, the solutions y(t) of (3.1) satisfy the estimate 

(3.7) |y(<)|2 < ( £ ) e - t t - * / - M'WI-.] | y ( o) |- (t > 0) 

From Corollary 3.2 we can readily obtain the following stability results mentioned 

in the introduction-

T h e o r e m 3.3. Assume that the coefficient matrix A(t) in (3.1) belongs to 

A(6, M) for all t ^ 0 and that it has a continuous derivative A'(t) for t ^ 0. Then the 

solutions y(t) of (3.1) are asymptotically stable provided that A(t) is slowly varying 
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in any of the following senses: 

(3.8) sup ||-4'(s)|| is sufficiently small; 
0^5<OO 

(3.9) / \\A'(s)\\ds < oo; 
Jo 

(3.10) lim j f \\A'{s)\\As = 0. 
t — OO t J0 

P r o o f . Asymptotic stability for solutions y(t) of (3.1) means that y(t) —• 0 as 

t —-• oo; and it is easy to show that this follows from the estimate (3.7) under any of 

the conditions (3.8), (3.9) and (3.10). For example, if (3.8) holds, we have from (3.7) 

(i)--,*-iйч'i ly(01 ^ uje ly(0)l 

where m = sup | |A'(s)| |; and so if m is so small that i — ^p- > 0, y(t) —• 0 as 
0t^5<OO 

t —• oo. Next, suppose that (3.10) holds, then if t is sufficiently large, say t > T, we 

can arrange for 

and because of (3.7) this will imply that 

\y(t)\2$ (!Ly-«t-*u:t*>Mm\* 

from which we conclude that y(t) —• 0 as t —• oo. Finally, since condition (3.9) 

implies condition (3.10), we also get the asymptotic stability under (3.9). • 

R e m a r k 1. Here we want to note that we can reformulate the stability result 

stated above which follows from condition (3.9) in a slightly different way. The 

reformulation is based on the observation that by virtue of (3.9) 

A(oo)= l i m A ( 0 = lim / A'(s)ds + A(0) = f A'(s)ds + A(0) 
t^oo t^ooJO JO 

exists. Because of this it is not necessary to assume explicitly that coefficient matrices 

-4(0 £ -4(8, M) for t ^ 0; rather we may assume that A(oo) is a stability matrix 

and this will automatically assure that for t sufficiently large A(0 G -4(8, M) for 

suitable 6 and M. Formulated this way, the resulting stability theorem, under the 

assumption that (3.9) holds and that A(oo) is a stability matrix, is essentially due 

to Cesari [2]. 
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R e m a r k 2. Finally, let us observe that in framing the conditions of Theorem 
3.3, the role played by the inital time t = 0, may in an obvious way, be replaced 
by any later time t = r > 0, with the same conclusions regarding the asymptotic 
stability still obtaining. 

APPENDIX 

Here we will give the 

P r o o f of Proposition 2.L The proof is based on the contour integral represen

tation 

(5.1) e M = ^ r / etz(zl - A)'ldz 
2TU Jp 

where T is any contour in the complex plane that contains all the eigenvalues of A 

in its interior. 

Our choice of T is based on the observation that the eigenvalues A of the matrices 

A with \\A\\ -̂  M are uniformly bounded. This follows either by noting that the 

eigenvalues of a matrix depend continuously on the matrix entries or by making use 

of an explicit bound for the eigenvalues in terms of the matrix entries, such as, for 
n 

example the estimate |A| ^ max ]|P \ajk\ which is a consequence of Gershgorin's 
1^i^n f c = 1 

theorem [3]. Thus, there exists an R = R(M) so that the eigenvalues A of the 
matrices A with \\A\\ ^ M are all contained in the interior of the circle of radius 
R centered at the origin: |A| < R. Consider now the set of matrices A(6, M); if 
6 ^ R(M) this set will be empty. Thus only the situation 6 < R(M) is of interest, 
and in this case it is clear that the eigenvalues of the matrices A £ A(6, M) will all 
lie in the interior of the rectangle bounded on top and bottom by the lines y = ±R 

respectively, on the left by the line x = —R and on the right by the line x = —\i with 
H £ (0,6). For the contour T in the representation (5.1) we take the just described 
rectangle. 

By the standard estimate for complex integrals, we find from (5.1) that 

(5.2) | | e M | | ^ - J -8up |e , * |8up | | (z / -A)- 1 | |L( r ) f 

where L(r ) denotes the length of T. We now note that 

sup | e " | = sup e,** = e- ' , t (t > 0) 
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by virtue of the fact that 3Jz assumes its maximum on the rectangle T along the 
right side x = — /.. Hence (5.2) will immediately yield the desired estimate (2.2): 
| |eM | | ^ Je->"(t > 0) for A € A(6, M) with 

J= sup \\(2I-A)->\\^ 

A£A(6,M) 

provided that we can show that the supremum on the right is finite. And this will 
be done by showing that (zl — A)'1 depends continuously on z and A for z E T 
and A G A(6, M); so that, on account of the comnpactness of T and A(6y M), it will 
follow that the supremum in question is actually an achieved maximum and hence 
finite. 

To establish the continuity of (zl — A)~l we use the well-known Neumann series 
representation for the inverse of an operator which is close to an invertible operator: 

oo 

(5.3) (T +AT)"1 = ^2(-l)k(T~lAT)kT-1. 
k-0 

Here T and AT denote bounded linear operators of a Banach space into itself, with T 
being assumed to have a bounded inverse T _ 1 ; from which it follows that T + A T also 

has a bounded inverse given by the series (5.3) above provided that ||AT|| < — — - . 

(See [7, pp. 164-165].) 
Taking norms in (5.3), after having transposed the first term in the series, we 

obtain 

||T + AT)"1 -T-1!! < £)||T-*||*+1||Ar||- = J p j J 1 1 ^ 1 1 

* = ! 
HT-MI HATH 

for ||AT|| < Applying this with T = zl - A and AT = AzI - A A (under 

the assumption that z, z + Az 6 T and A, A + AA G A(6} M)), we find that 

IQ.+ A,), - [A + M ) - - (,. - M)-[| ^ . ^ i J f f " , 

where c = \\(zl - A)~l\\, provided that |Az| and ||A.A|| are sufficiently small; from 
which the desired continuity follows immediately. • 
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