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I N T R O D U C T I O N 

Several authors (e.g. N. Aronszajn in [2], M. Hukuhara in [7], M. A. KrasnoseFskij 
and A. I. Perov in [8], G. Stampacchia in [14], F. E. Browder and G. P. Gupta in 
[4], G. Vidossich in [19], S. Szufla in [15]—[18], R. R. Achmerov, M. I. Kamenskij, 
A. S. Potapov in [1], M. A. KrasnoseFskij, P. P. Zabrejko in [9] and B. N. Sadovskij 
in [13]) have investigated the compactness as well as the connectedness of the set 
of all fixed points of a compact operator or an operator of a more general type 
mostly in a Banach space. Only few of them have been interested in this problem 
in a more general space (P. Morales in [12], 5. Belohorec in [3], Z. Kubacek in [10] 
and K. Czarnowski, T. Pruszko in [5]). Here the results from a Banach space will 
be extended to a Frechet space. Our considerations will be based on the following 
results which are given as Lemmas. 

L e m m a 1 ([10], p. 422). Let X be a Hasdorff topological vector space, M a 

non-empty closed subset of X, F: M —> X a compact mapping, and let B denote 

the neighborhood base of the point 0 consisting of balanced sets. Let the following 

conditions be satisfied: 

(i) for each set U £ B there exists a compact mapping Fy: M —-> X such that 

F(x) - Fu(x) G U for each x G M; 

(ii) for each U G B and for each x G U the equation 

y - Fu(y) = x 
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has a unique solution y G M. 

Then the set S of fixed points of the mapping F is nonempty, compact and con
nected. 

Lemma 2 ([6], pp. 89-90, [20], pp. 55-56). Let (X, | | | | ) be a real Banach space, Ct 
a non-empty open and bounded subset of X, F: £2 —• X a compact mapping which 
satisfies the strengthened Leray - Schauder condition: 

there exists an XQ G A such that 

F(x) — XQ 7-- X(x — XQ) for each x G d£l and each X ̂  1. 

Further, let there exist a sequence of compact mappings Fp: Q —• X, p = 1, 2, . . . 
with the properties 

a) 6P = sup{||Fp(x) - F(x)||: x G fi} — 0 for p -> oo; 
b) tiie equation (in y) 

y - Fp(y) = F(x) - Fp(x) 

has at most one solution in fi for each x G ft. 
Then the set S of fixed points of the mapping F is non-empty, compact and 

connected. 

The next Lemma is a consequence of the theorem in [11], p. 111. 

Lemma 3. Let (X, d) be a metric space and {Sm : m = 1, 2 , . . .} a sequence of 
non-empty compact and connected sets such that 

Sm+i C Sm for m = 1,2,.. . . 

oo 

TAeii f] Sm is a non-empty compact and connected set. 
m = l 

We shall use the following notation. 
Let —oo < 6 < oo and let n > 0, k ^ 0 be integers, h = (6, oo), | • | a norm in Rn. 

Let 

X = Ck(Ih, Rn), pm(x) = max{|.r(0| + . . . + \*(k)(t)\ .b^t^b + m} 

for each x G X and each m = 1,2,.... The space (K, {pm}) is a real Frechet space 
and the convergence in this space means the uniform convergence of the functions 
and their first k derivatives on each interval (6, 6 + m), m = 1, 2 , . . . . 

Further, let 

Xm = Ck((b, b + m) , Rn) for each m = 1, 2 , . . . . 
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Then pm is a norm in Xm and (K m ,p m ) is a real Banach space. 

Let h > 0 and V G C*((-A, 0), Rn). Let y?, y?p G C(I6, (0, oo)),'p = 1 , 2 , . . . where 

the sequence {(pp) is nonincreasing in h and lim ^>p(£) = 0 for each t G I&. 
p—^oo 

Denote 

M = {xeX: \x(t) - V(0)| + . . . + |*W(t) - V(fc)(0)| ^ V-(<) 

for each t € 76 and *('">(&) = VO)(0), j = 0 , 1 , . . . , Jb}, 

Mm = {x G X m : |x(<) - V(0)| + . . . + |*(fc)(0 - V>(fc)(0)| < <p(t), 

te(b,b + m) andx(J')(6) = V(i>(0),j = 0,l, . . . , ifc}, m = l , 2 , . . . . 

M(M m ) is a closed, convex and bounded set in X (in Xm, m = 1, 2, . . . ) . Clearly, 

if i 6 M or i £ Mm+P, then x L t . 6 Mm for each m = 1, 2, . . . , p = 1, 2 

Here and in the sequel / I . .. denotes the restriction of the function / to the interval 

(a, b). 

MAIN RESULTS 

The approximation Lemma which follows represents the main tool in obtaining 

the new results. 

L e m m a 4. Let the spaces X, Xm, m = 1, 2, . . . , the functions \p, <p and the sets 

M, Mm, m = 1, 2, . . . be as above. Let there exist mappings T: M —• X, Tm : 

Mm —* Xm, m = 1, 2, . . . with the properties 

(1) x|(6,6 + m) = y | ( 6 , 6 + m ) => T(x ) | (6 ,6+m) = T(y)\ (6,6+ m) for each 
x,y e M, m = 1, 2, 

(2) T m ( x | ( 6 , 6 + m ) ) = T(x)|(6,6 + m) for each x G M, M = 1, 2, . . .; 

(3) x | ( 6 , 6 + m ) = t/|(6,6 + m) => T m + P (x) | (6 ,6+m) = Tm+P(t/)| (6,6+ m) for 

each x,y G Mm+ p , m = 1, 2, . . . , p = 1, 2, .. .; 

(4) T m ( x | ( 6 , 6 + m ) ) = T m + p ( x ) | ( 6 , 6 + m ) for each x G M m + p , m = 1, 2, . . . , 

p = l , 2, . . . . 
Further, let the set Sm of all fixed points of the operator Tm be nonempty, compact 

and connected in the space Xm. Then the set S of all fixed points of the operator T 
is nonempty, compact and connected in the space X. 

P r o o f . Let mo ^ 1 be a fixed integer. Let 

Sm = {z|(6,6 + rn0) : x G Sm} for all m^m0. 
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Fix an arbitrary m ^ m0. Clearly Sm ^ 0. Since the mapping from Xm to Xmo 

which to each function x G Xm assigns the restriction x\ (6,6+ m0) is continuous, 

Sm is compact and connected. Since m ^ m0 is arbitrary, by Lemma 3 we get that 

oo 

(6) pmo= n 5m5-0, 
mzzmo 

and it is a compact and connected set. 

Denote by S the set of all fixed points of the operator T. If x G 5, then in view 

of (6) 

ym = x\ (6,6 + m) G Sm for each m^m0 

and hence 

y = ym|(6,6 + m 0 ) = x | ( 6 ,6+m 0 ) 6 Pmo-

Conversely, let y G Pm0- Then for each m ^ m0 there is a ym G 5 m such that 

ym | (6, 6 + m0) = y. We shall show that there is an x G S such that y = x| (6,6 + m0) . 

Consider the sequence {ym}m=m0+i • As by (4) the sequence {ym | (6,6 + m0 + 1)} C 

5 'm o + 1 and the last set is compact, there exists a subsequence {ymi} of the sequence 

{ym} and a point y\ G SmQ_rl such that the sequence {ym\ | (6,6 + m0 + 1)} converges 

uniformly to J/J on (6,6+ mo + 1), j = 0, . . . , k. By mathematical induction we 

get a sequence of sequences 

{ym^, {ym3}, . . . , {ymr}> . . . 

such that 

(i) the sequence {ym i} is a subsequence of the sequence {ym}; 

(ii) {ym r + 1} is a subsequence of the sequence {ymr} for r = 1, 2, . . .; 

(iii) the sequence {ymr | (6 + mo + r)} converges uniformly on (6, 6 + mo + r) for 

j = 0, . . . , k and {y m r | (6,6 + m0 + r)} C SmQ+r. 

Then the diagonal sequence {ymm} possesses the property that { y m i } converges 

uniformly on each interval (6, 6 + mn + r) to x^ for j = 0 , . . . , k where x G X is a 

certain function. As ymm | (6,6 + m0 + m) G 5 ' m o + m , also x| (6 + m0 + m) G S'mo+m 

and by (2), x G 5 . 

Hence S ^ Q\ and Pmo is the set of restrictions to (6,6 + m0) of all functions 

belonging to 5, for each m0 = 1,2, .... Now we prove that 5 is a compact set in X. 

Let {xp} C S be a sequence of points. Then by the compactness of the sets Pi, 

P2, ... in the spaces X\, K2> • • • respectively we get that there exist sequences 

{*PA}> {*j>,2}, ••• 
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such that 

(i) {-Cp.i} is a subsequence of the sequence {xp}; 

(ii) {xp>r+i} is a subsequence of the sequence {xPt1.} for r = 1, 2, . . . ; 

(iii) the sequence {xp>r} together with its first k derivatives converges uniformly 

on (6,6+ r). 

Then the diagonal sequence {xPtP} converges in the space X to a point x 6 X 

with the property that x\ (6,6 + m) £ Sm and by (2), x £ S. 

Finally, we prove that S is connected. If not, the set S can be decomposed into 

the union 

S = K\ U K2 

where Ki, /<2 are two non-empty, disjoint and compact sets. Let m ^ 1 be a 

natural number. Denote by Ii'im and K2m the sets of restrictions to (6,6+ m) of the 

functions from K\ and K2, respectively. Hence we have 

-°m = -^lm U I-^m-

The compactness of K\, K2 implies that K\m, K2m are nonempty, compact sets in 
X m . If they were disjoint, then Pm would not be connected in Xm. Hence there exist 
two elements xm £ K\, ym £ K2, xm ^ ym such that their restrictions to (6,6 + m) 
coincide. Thus 

(7) xm\ (6,6+ m) = y m | (6,6 + m ) . 

Consider the sequences {x m } , {ym}. As {xm} C K\, {ym} C K2 and Kly K2 

are compact in X, there exist two subsequences { x m i } , {ymi} of the sequences 
{xm}> {ym}, respectively, and there exist two elements x £ K\, y £ K2 such that 
l imxm i = x, lim ymi = y in X. Then with respect to (7) we have x = y. This 
/—>a /—>oo 

contradicts the fact that K\ C\ K2 = 0. Hence S is connected. D 

Now by means of Lemmas 1 and 2 a sufficient condition for the sets Sm in Lemma 
4 to be non-empty, compact and connected can be given. This is the content of the 
next theorem. 

Theorem 1. Suppose that all assumptions of Lemma, 4 are satisfied except the 

assumption on the sets 5 m , m = 1, 2, . . . . Suppose, further, that for each m = 1, 
2 , . . . 

(8) Tm : Mm C Xm —• Xm is a compact mapping, 
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and there exists a sequence {Tmp}™=l of mappings 

Tmn - M„ —> X„ 

with the following properties: For each p = 1, 2, . . . 
(9) Tmp : Mm C Xm —• Xm is a compact mapping; 

(10) |Tm(x)(t) - Tmp(x)(t)\ + ...+ |(Tm(*))W(0 - (Tmp(x))(fc)(<)| ^ <pf(t) for each 

x 6 Mm and each t G {b,b+ m), 
and either 

(11) there exists a function <p+p G C(I&, (0, oo)) such that 

<P+P + <^P ^ P i i 3 A 

and 

|Tmp(x)(<) - v(o)| + . . . + |(rmp(.-))(*)(«) - v(t>(0)| ^ ?,p(.) 

for aii x 6 M m ai-d aii t G (6,6 + m) ; 
(12) the operator Hmp : Mm —* Xm wiiicii is defined by the relation 

Hmp(x) = x- Tmp(x) for all x e Mm 

is injective on Mm, 

or 

(13) there exists an xm G Mm (the interior of Mm) such that 

Tm(x)-xm / X(x-xm) 

for each x G dM and each A ^ 1; 
(14) the equation 

Hmp(y) = x 

has at most one solution in Mm for each x G Xm such that 

\x(t)\ +.... + \x(k\t)\ < y>p(t), b^t^b+m. 

(Here Hmp has the same meaning as in (12)). 
Then the set S of all fixed points of the operator T is non-empty, compact and 

connected in the space X. 

P r o o f . With respect to Lemma 4 it suffices to show that the set Sm of all fixed 

points of the operator Tm is non-empty, compact and connected for each m = 1, 

2, . . . . Hence, let m ^ 1 be an arbitrary but fixed number. Consider the case when 
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the assumptions (11), (12) are satisfied. Then we apply Lemma 1 to the operator 
Tm in the space Xm. In this space we have two systems of balanced neighborhoods 
of 0: 

U (0, i ) = {x e Xm : Pm(x) < i } , j = 1,2,...; 

Up = {x e Xm : \x(t)\ +... + \xW(t)\ ^ <pp(t)% b <£ t^ b + m}, p = 1,2,. . . . 

By the Dini theorem the sequence {<pp} converges uniformly to 0 on (6,6+ m) and 
both systems of neighborhoods determine the same topology in Xm. For each Up 

there exists a compact mapping Tmp : Mm C Xm —• Xm such that, in view of (10), 
Tm(x) - Tmp(x) G Up for each x E Mm. 

As to the assumption (ii) in Lemma 1, by the assumption (12) it suffices to show 
that the equation 

(15) Hmp(y) = x 

has at least one solution in Mm for each x G Up. So let us fix an arbitrary x G Up. 
Since Mm is a closed and convex set in Xm, the operator Tmp + x : Mm C Xm —• Xm 

is compact and moreover 

|rmp(»)(0 - V>(0)| + \x(t)\ + • • • + \(Tmp(y))^(t) - ^fc)(0)| + |*<*>(0I 

^ ^ * P ( 0 + <PP(t) ^ <p(t) for each t G (6,6 + m) , 

which means that Tmp + x: Mm —• Mm , by the Schauder fixed point theorem the 
equation (15) has a solution in Mm and the statement of the theorem follows. 

When the assumptions (13) and (14) are fulfilled, then we use Lemma 2. We 
take (Xm,pm) for the real Banach space, Mm for CI and T m : Mm C Xm —• Xm 

for the compact mapping F . By (13) Tm satisfies the strengthned Leray-Schauder 
condition. When {Tmp}^Ll is a sequence of compact mappings which approximates 
the mapping Tm , then by (10) 

6p = sup{pm(Tmp(x) - Tm(x)): xeMm} 

= ma.x{<pp(t): 6 ^ t ^ 6 + m} —• 0 for p —• oo. 

Let x E Mm- Then again by (10) Tm(x) - Tmp(x) G Up and then (14) implies that 
the assumption b) of Lemma 2 is satisfied, too. By this Lemma the theorem is true. 

D 
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AN APPLICATION 

Theorem 1 will be applied to the initial value problem for a functional differential 
equation. First we consider a similar problem for an ordinary differential equation. 

Let u> G C(h, (0, oo)), let F G C((0, oo) , (0, oo)) be a non-decreasing function and 
let c ^ 0. Then one can find that a necessary and sufficient condition for the problem 

(16) y'{t) = u,{t)F{y + c), y{b) = 0 

to have a unique solution on (6, oo) is that 

r»(8)d8$ r 1=^—,-
Jb Jo F(v + c) 

Further, denote H = C((-A,0) ,Rn) , ||x|| = max{|x(s)|: -h < s ^ 0} for each x G 

H. Then (H, || • ||) is a Banach space. If x: (b — ft, oo) —• Rn is a continuous function, 

then xt G H is defined by xt(s) = x(t + s), — h ^ 5 ^ 0, for each * G 7*. In the 

space X* = C((6 — A, oo), Rn) let the topology be defined by the seminorms qm(x) = 

max{\x(t)\:b-h ^ t <$ 6 + m}, m = 1, 2, . . . , x G X*. Clearly (K*, {gm}m=i) i s a 

Frechet space. 

Theorem 2. Let 4> e H, f e C(h x H,Rn). Lei a; G C(I*, (0,oo)), iet F G 
C((0, oo), (0, oo)) be a nondecreasing function and 

,i7, r ^ ^ r _ * _ _ . . 

Let 

(18) l/CxJKwO-̂ dWI) **«"* Crfe/.xM", 

where 

M" = {x,€H:x€ C{(b -h,oo),Rn), |x(<)- V(0)| < <p{t) for each t € h,xh = V>} 

and <p is the solution of {16) on /» with c = |V*(0)|. 
Then the problem 

(19) x'{t) = f{t,xt), 6 < . < c o 

(20) x h = xi> 
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has a solution satisfying the inequality 

(21) \x(t) - if>(0)\ ^ <p(t) for each t e I*. 

The set of all such solutions is compact and connected in the space X*. 

P r o o f . Consider the Frechet space (^,{p m }m=i) where X = C(I&,Rn), and 

the seminorms pm(x) = max{\x(t)\: b ^ t ^ b + m}, m = 1, 2, ..., x e X. This 

space corresponds to the case k = 0 mentioned above. By virtue of (21) the problem 

(19), (20) is equivalent to the fixed point (f.p. for short) problem for the operator 

T*: M* — X* which is defined by 

{ V>(0) + \t /(«, xs) ds, b ^ t < oo, 

ip(t-b), b-h^t^b 

on the set M* = {x G X* : xb = V> and \x(t) - V>(0)| ^ <p(t) for each t G It}. 

Let 

V = {xeX:x(b) = t(>(0)}, 

V* = {x e X*: xb = xl>}. 

Define the mapping P : V —• V* by 

6 < t < oo. 
each x eV. { x(t), 6 ^ < < o o , 

K" for 
ф(t-Ь), b-h^t^b, 

Then P is a bijection of V onto V* and since xp —• x in V C X for p —• oo is 

equivalent to P ( x p ) —* P(x) in V* C X* for p —• oo, P is a homeomorphism of V 

onto V*. Clearly the inverse mapping P"1 of P is defined by 

p - 1 ( x ) = ar|(6,oo) for each x eV\ 

Let M = {x G X: \x(t) - ^(0) | ^ <p(t) for each < G I* and x(6) = ^(0)}. Consider 

now the mapping T = P " 1 o f o P | M . Then T: M -> X and 

(22) T(x)(*) = ^>(0) + / /(«, x,) ds, 6 -̂  t < oo, x G M, x6 = ^. 

(In fact, the operator T should be defined by 

T(x)(t) = V(0) + / f(s, (P(x))$) dsy b ^ t < oo, x G M, 
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but it is clear what (22) means. The same notation will be used for the operators 

Tp, Tm and T m p , which will be defined on M in a similar way.) 

Clearly u G M is a f.p. of T iff P(u) G M* is a f.p. of T*, and in view of the 

property of P, the set of all f.p. of T* in M* is non-empty, compact and connected 

in M* iff the set of all f.p. of T in M has the same property. Thus we can apply 

Theorem 1 to the operator T, 

The set M is closed in the Frechet space X. Define operators Tp: M —• X by 

(ф(0), 6 < . ť < _ 6 + ì , 
Tp(x)(t) = { , , . P 

\ф(0) + Ц-1/pf(s,xs)ds, 6 + ì < . ť < oo, x G M, Xf, = il>. 

Then (18) yields 

f // <-(s)F(<p(s) + \i>(0)\) ds, 6 < < < 6 + I, 

\T(x)(t) - Tp(x)(t)\ ^ I Jl_i/p u(s)F(<p(s) + |V>(0)|) ds, 6 + i <. t < oo, 

v x <E M, xj = V>-

Denote by y>p(<) the right-hand side of the last inequality. Hence 

j(s)F(<p(s) + \il>(0)\)ds, 6 < . < 0 + i , 

';_1/pU(s)F(<p(s) + \i>(0)\)ds, 6 + I < . < < o o , p = l , 2 

Clearly {<pp} is a nonincreasing sequence on h and lim <pp(t) = 0 for each t G (6, oo). 
p—*oo 

Further, when we define 

мo-íţ* 
Ui-i/ 

^ P ( 0 = J "' 
0, 6 ^ < ^ 6 + i , 

/;;- 1 / p u;(s)FMs) + |V>(0)|)ds, 6 + 1 ^ . < o o , p = l , 2 , . . . 

then 
\Tp(x)(t) - V(0)| ^ <p.P(t), teh,p=l,2,...,xeM,xb = i> 

and by (16) 

M O + MO = J "(s)F(<p(s) + |V(0)|) ds = <p(t), 

for each t £ / j . 

Further, the operators Tm, Tmp: A/m C Xm —• Xm defined by 

Tm(x)(<) = V(0) + / f(s,xa)ds,b^t^b + m,xh = ip, 

' ~ 1 / p / ( s , x , ) d s , 6+ p -< .<< .6 + m 
for m = 1,2,..., p = 1,2,... 
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are compact. This can be shown in the usual way. 

The last step in checking the assumptions of Theorem 1 consists of proving (12). 

Let the mapping Hmp: Mm —> Xm be defined by 

Hmp(x) = x-Tmp(x) for all x G Mm, xb = V>, m = 1,2 , . . . , p = 1 ,2 , . . . . 

Consider two elements x,y G Mm, x ^ y. Then there exists a t0: b < t0 .$ b + m 

such that x(t0) -̂  y(t0). Two cases may occur: 

a) If t0 G <&, 6 + I ) , then Hmp(x)(t0) = x(t0) - V>(0) ? y(t0) - ^(0) = Hmp(t/)(*o); 

b) there is a t\ ^ 6 + ± such that Fi = sup{r > 6: x(*) = y(t) for * G (6, r)} . 

Then there exists a *o € (*i,*i + ^) such that x(<o) r̂  2/(*o)- This implies that 

Tmp(x)(*0) = tf(0) + ft-11* f(s,xs)&s = V>(0) + fi°-1,pf(s,ya)ds = Tmp(y)(t0) 

and hence Hmp(x)(t0) ^ Hmp(y)(t0). 

In both cases the operator Hmp is injective on Mm and all assumptions of Theorem 

1 are satisfied. By this theorem the statement of Theorem 2 follows. • 
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