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AN EXAMPLE OF A GROUP CONVERGENCE WITH UNIQUE 

SEQUENTIAL LIMITS WHICH CANNOT BE ASSOCIATED 

WITH A HAUSDORFF T O P O L O G Y 

JoZEF BURZYK, Katowice 

(Received February 4, 1 

As usual, by C we denote the Cantor set equipped with the topology inherited 

from the real line. We assume that {0, 1} is the two-element group equipped witli the 

discrete topology. Throughout tlie paper we denote by A' the set of all continuous 

functions from C to {0, 1}. 

We write xn —• x(G) and say tliat a sequence {xn} converges to x in (X, G) if 

xn, x £ A' for n £ N and for every subsequence {txn} of {xn} there are a subsequence 

{vn} and an open dense subset A of C such that 

vn(t) —• x(t) for t £ A. 

It is not difficult to prove that G is a FLUSII-convergence, i.e., it satisfies the 

conditions: 

(F) xn —• x implies xJtln —> x\ 

(L) xn —> x, yn —> y implies xn ± yn -+ x ± y\ 

(U) if for every subsequence {un} of a given sequence {xn} there is a subsequence 

{vn} of {un} such that vn —• x for a given &*, then xn —+ x\ 

(S) if xn = x for n £ N, then xn —• x\ 

(II) if xn —> x and xn —> g, then x = y. 

We claim the following: 

T h e o r e m , (a) If V is a nonempty subset of X such thai. xn £ V for sufficiently 

large n whenever xn —> x(G) and x £ V, then for every y £ X there is a sequence 

{xn} of elements xn in V such that xn —> y(G). 

(b) If r is a topology on X which preserves the covergence G, i.e., xn —> x(G) 

implies xn —> x' in (A', r ) , «t1je/j nonempty open sets in (X, r) are sequentially dense 

in X. 



(c) If r is a topology on X which preserves the convergence G, then the intersection 

of any two nonepnity open sets in (X, r) is nonempty. 

(d) G is a FL US HP-convergence, i.e., G satisfies the following condition: 

(P) if Xij —+ Xi as j —•» co for i £ N and for any two subse(piences {pi} and {cji} of 

{i} we have xPiqt —• x for a given x, then Xi —* x. 

Summarizing, we may say that there is no Hausdorff topology which induces the 

convergence G. An example of a FLUSH-convergence group for which there is no 

Hausdorff topology inducing the convergence is given in [1]. J. Pochcial notes in [2] 

tha t convergences in Ta-topological spaces are FLUSHP-convergences and conver

gences in topological groups are FLUSH P-convergences. 

Observe that (a) implies (b) and (b) implies (c). Hence it suffices to prove (a) and 

(d). 

P r o o f of (a). Let a be an arbitrary fixed point in X and let U = V — a. We 

assert tha t if x £ U and xn —• x in (A", G), then xn G U for sufficiently large n. 

Indeed, if x £ U then x = v — a for some v £ V and, by (L), xn + a —» v in (X, G). 

Therefore xn + a £ V for sufficiently large n or, equivalently, xn £ U for sufficiently 

large n. Assume that u £ U and {ivn} is a sequence of ail rational numbers. Let 

{P n } be a base at w\ of closed-open subsets of C such that Pn D P n + i for n £ N. 

We put 

un = u • Ic\Pn 

where Ic\pn is the characteristic function of the set C\Pn. We note that un £ X for 

7i £ N and un(t) —-> u(l) for l £ G \ { i v i } . Therefore un —• u in (A', G). Consequently, 

there is an index n\ such that x\ £ U with 

-ci = % , = u • Ic\Qx G f/ and Q-. = P n i . 

We note that Q[ is a closed-open subset of C and w\ £ (Ji . By induction we find a 

sequence {xn} and a sequence {Qn} of closed-open subsets of C such that 

xn = u • Ic\(Q,u...uQn)i
 xn G U and iyn £ Q n 

for 7i £ N. We put 
oo 

A=\jQn 
n = l 

and note that A is an open dense subset of C and xn(t) —>• 0 for l £ A. This means 

that x n —» 0 in (X, G) and x n £ c7 for n £ N. Let {yn} be a sequence such that 

xn = yn — a. Then yn £ V7 for n £ N and, by (L), yn —• a, which was to be proved. 

• 



To complete the proof of our Theorem we should show that G has property (P) . 

To this aim we shall prove a number of lemmas. 

L e m m a 1. The following conditions are equivalent: 

(i) xn —> x in (X,G); 

(ii) for every subsequence {yn} of {xn} and for every nonempty open subset U of 

C there are a subsequence {zn} of {yn} and a nonempty open subset V of U such 

that zn(t) = 0 for t G V and n G N. 

P r o o f . Assume that (i) holds, {yn} is a subsequence of {xn} and U is a 

nonempty subset of C. Let {un} be a subsequence of {yn} and let A be an open 

dense subset of C such that un(t) —> 0 for every t G A. We see that W = U O A is a 

nonempty open subset of U. We put 

Fn = {t G W: uin(t) = 0 for ??? ^ n and ?n, n G N } . 

oo 

Note that Fn are closed subsets of IV and W = | J Fn. Hence, by the Baire category 
n = l 

theorem, there is an index 7?o such that hit FTl0 ^ 0. Assuming zn = uno+n for n G N 

and V = int Fno we see that zn(t) = 0 for every t G V and ?i G N. This shows tha t 

(i) implies (ii). To prove that (ii) implies (i) we take a countable base {Un : ?i G N} 

of open sets in C and a subsequence {yn} of {xrl}. If (ii) holds, then there are a 

subsequence {z i n } of {yn} and an open subset V! such that V\ C U\ and z\n(t) = 0 

for t G Vi and 7? G N. By induction we find a sequence of sequences {zfcn} and a 

sequence {Vn } of open sets Vn such that {zk + \n} is a subsequence of {zkn} for k G N 

and zkn(t) = 0 for t G Vk and n G N. We put 

U v-
k = \ 

and 

vn —: Znn 

for 7? G N. Then A is an open dense subset of C, vn(t) —+ 0 for t G A and {vn} 

is a subsequence of {yn}• This shows that xn —> 0 in (X,G) or, equivalently, (ii) 

implies (i). • 

We introduce auxiliary convergences on X. We write xn —-> -c(To) or xn —+ x 

in (A', T0) iff xn,x G A' for n G N and there is a dense subset A of C such that 

xn(t) -> x(<) for t G A. We write ajn -> ar(T) or arn -H- a: in ( K , T ) iff for every 

subsequence {un} of {x*n} there is a subsequence {vn} of {?/n} such that vn —> x(T 0) . 

Obviously, xn —> x*(Gf) implies x*n —* xj(T) but not conversely. 



L e m m a 2. ( N , T ) is a F US-convergence space with the following properties: 

(Lo) If xn —> x in (X, T) and y G X, then xn + y —> x + y in (X, T ) . If xn —> x in 

(X,T), then -xn -> -x in ( N , T ) . 

(Ho) ff-Cn = x and xn —> g in ( K , T ) , then x- = y. 

P r o o f . Properties FUS of T are obvious. Properties (Lo) and (Ho) follow from 

the fact that if x and y are continuous functions and x(t) = y(t) for t belonging to 

a dense subset of C, then x = y. • 

L e m m a 3. For every sequence {xn} in X the following conditions are equivalent: 

(i)xn->0 in (X\T); 

(ii) for every subsequence {yn} of {xn} the set 

A = {t G C: yn(t) = 0 for infinitely many ?i G N} 

is dense in C; 

(iii) for every subsequence {yn} of {xn} and for every open set U C C there is 

t G U such that yn(t) = 0 for infinitely many n G N. 

P r o o f . Obviously, (i) implies (ii) and (ii) implies (iii). To prove that (iii) 

implies (i) we take a countable base {Un : 77 G N} of open sets in C and a subsequence 

{yn} of {xn}. If (iii) holds, then there is an element t\ of U\ and a subsequence {~in} 

of {yn} such that z\n(t\) —* 0. By induction we select a sequence of sequences {zkn} 

and a sequence {tk} such that , for every k G N, {zjt+i,n} is a subsequence of {zkn}, 

tk £ Uk and zkn(tk) -* 0 as 77 —• cxo. Denoting zk = zkk for k G N and A = {tk : 

k G N} we see that A is a dense subset of C and zn(t) —+ 0 for t G A. This shows 

that (iii) implies (i). D 

L e m m a 4. If no subsequence of {xn} converges to zero in (X,T), then for every 

subsequence {un} of {xn} there are a subsequence {v7l} of {un} and a nonempty 

open set V in C such that vn(t) = 1 for t G V and n G N. 

P r o o f . We claim that , under the conditions of the lemma, for every subse

quence {un} of {xn} there are a subsequence {zn} of {un} and an open set (/ in C 

such that , for every t G (/, zn(t) = 0 for sufficiently large 77. Otherwise, by Lemma 3 

(iii), there would exist a subsequence {un} of {xn} such that un —• 0 in (X,T). We 

put 

Fn = {teU: ztn(t) = 1 for 77/ ^ 77} 

and note that F n are closed subsets of C and 

00 

U={jFn. 
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By the Baire theorem there is an index n0 such that int Fno ^ 0. Denoting V = 

int Fno and vn =- zUo+n for n G N we see that vn(t) = 0 for every t G V and n G N, 

which was to be proved. • 

L e m m a 5. Assume that {xn} is a sequence in X such that xn —• 0(T) and the 

only limit of every subsequence of {xn} is zero. Then xn —• 0(G). 

P r o o f . Let U be a nonempty open subset of C. We may assume that U is an 

open-closed set. Let x be the characteristic fuction of U, let {un} be a subsequence 

of {xn} and let {vn} be a subsequence of {un} such that vn —• 0 in (K ,To) . Assume 

that for a subsequence {ivn — x} of {vn — x} we have ivn — x —• 0 in (K, T) . Then, by 

(L 0) , wn —* x in ( K , T ) and x 7- 0 which is impossible. Therefore, no subsequence 

of {vn ~ -P} converges to zero in ( K , T ) . Hence, by Lemma 4, there exist an open 

set V and a subsequence {wn — x} of {vn — .r} such that wn(t) — x(t) — 1 for every 

t G V and 7i G N. We claim that V C U. Otherwise, V \U would be a nonempty 

open subset of C and, consequently, there would be an element t G V \ U such that 

wn(t) = 0 for sufficiently large n and x(t) = 0. On the other hand, wn(t) + x(t) — \. 

Hence wn(t) = 1 for sufficiently large ?i, which is impossible since ivn(t) — 0 for 

sufficiently large n. This contradiction shows that V C U. Therefore, wn(t) = 0 

for / G V and ?t G N. In this way we have proved that , under the conditions of 

Lemma 4, condition (ii) of Lemma 1 is satisfied or, equivalently, xn —• 0 in (A r ,G), 

which completes the proof of Lemma 5. • 

From Lemma 5 we get 

C o r o l l a r y 1. We have xn —•» x in (K, G) i/T x n —• x in ( K , T ) and there is no 

subsequence of {xn} which converges in {A',T} to an element different from x. 

L e m m a 6. The convergence (X, T) satisfies the following diagonal type condition: 

(4>) If Xij G X for i,j G N, Xij —• Xi in ( K , T ) as j —• oo for i G N and Xi —> 0 

in ( K , T ) , tiien tiiere are subsequences {mi} and {n,-} o/*{i} such that x m j n . —• 0 in 

(X,T). 

P r o o f . We may and will assume that Xij —• Xi in (X, To) as j —> oo for i G N, 

and Xi —• 0 in (A', To). Otherwise, applying the diagonal procedure, we would take 

such a subinatrix. Let Vi, V2, . . . be a base for the topology in C. Note that if yn —• y 

in (A r ,T0) , V is an open set in C and y _ 1 ({0}) f l K / f ) , then there are an element 

t G .y_1({0}) H V and an index n0 such that yn(t) = 0 for n ^ n0. Consequently, 

Vn ! ({0}) H V 7- 0 for n ^ n0. This remark implies that there is a subsequence {??i,} 

if {i} such tha t x»^({0}) fl 14 9- 0 for i G N and k = 1, . .., i. By the same remark 
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there exists a subsequence {nz} of {/} such that 

- n , ! n , ( { 0 } ) n i ; ! ( { O } ) n v t ^ . 

For every subsequence {ri} of {i} we put 

CO oo p , 

^ = n u uarp.ui°l)ni , :p. ,(io»n^' 
77i = 1 i = m j — 1 

where p; == m r . and a; — nri for i E N. First note that A is the intersection of a 

countable family of dense and open subset of C. Therefore, by the Baire Category 

Theorem, A is a dense subset of C. Moreover, notice that if t G A, then xPt<ii(t) — 0 

for infinitely many i G N. Hence, by Lemma 2(b), xin%ni —+ 0 in (A' ,T) , which was 

to be proved. D 

Assume that Y is an abelian group equipped with a convergence VV. By IV* we 

denote the convergence in Y such that 

xn -> x(W*) iff zn — 0(VV) implies jrn + zn -> x(W). 

We see that xn —> x(W*) implies xn —> x(W). 

L e m m a 7. Assume that W is a FL0USII0-convergence in Y. Then 

(i) VV* is a FLUSII-convergence in Y; 

(ii) if xn —> x(W+)} then the only limit of every subsequence of {xn} is x, i.e., if 
xn —• 0(VV*) and {yn} is a subsequence of {xn} such that yn —> g(VV), lijeu y — x; 

(iii) ifW has property (<I>), then VV* has property (P) . 

P r o o f of (i). Assume that xn —> x(lV*), {xnin} is a subsequence of {xn} and 

*n -> 0(VV). We put umn = zn for ?i G N and uk = 0 if k G N and jfc ^ ??j.n for ?i G N. 

By (Ho), (U) and (F), un -> 0(VV). Hence xn+un — 0(IV). By (F), x m n + zn - 0(lV) 

which proves (F) . To prove (L) we note that xn —> x(iV*) iff xn — x —> 0(VV*). Indeed, 

assume that xn —• x(VV*) and zu —> 0(VV). Then xn + zn —> x(VV). Hence by (L0) 

we have x n — x + zn —> 0(VV) or, equivalently, xn — x —> 0(VV*). Assume now that 

x n - x -> 0(VV*) and zn -> 0(lV). Then z r i - x -f zn -> 0(VV). Hence, by (L0) , 
xn + zn —> x(VV) or, equivalently, x„ —> x(H7*). Now assume that x n —- x(lV*) and 

2/n — 2/(W*) and z7l -> 0(VV). Then xn - x -> 0(1V*) and gn - g + z n — 0(VV). Hence 

we get 

(xn-x) + (yn-y) + zn — 0(W) 

or, equivalently, a*n -f yn — x — y —> 0(lV*) and J-71 + yn —> a,* -f g(VV*). This proves 

(L). Assume that a; E Y, {J:71 } is a sequence in Y, and for every subsequence {un } of 
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{xn} there is a subsequence {vn} of {un} such that vn —• x(W*). Moreover assume 

that zn —> 0(W). Then, by (F), xn + zn —> x(W) or, equivalently, x n —> x(W+). This 

proves (U). Properties (S) and (II) follow from (II0) and (L0) . D 

P r o o f of (ii). Assume that xn —> x(W+), xmn —> g(VV) and {zn} is a sequence 

such that zrlln = y — xmn for n G N and z^ = 0 for k G N and k ^ 77in for 71 E N. 

From (L0) , (H 0 ) , (F) and (U) it follows that zn -> 0(VV). Thus xn + zn -> x(W) and 

#mn 4- ~m„ — ?j f ° r ^ £ N. Hence, by (F) and (Ho), y — x, which proves (ii). D 

P r o o f of (iii). Assume that x*2; G Y for i, j G N, Xij —> x,-(VV*) as j —± oo for 

i G N and for any subsequences {?7i;}, {??2} of {?} we have 

Xmtnt-0(W*). 

To show that x t —> 0(lV*) we take an arbitrary sequence {z;} such that z\ —> 0(VV), 

and choose a subsequence {p,-} of {/}. Then, by the definition of VV* and properties 

(F) and (L) for VV, we can write 

XP> -XP,PJ + 2t>> -+ZPXW) 

as j —+ oo for i G N and zPt —> 0(VV). Now, if the convergence VV has property(<I>), 

there exist two subsequences {7^} and {si} such that 

(xkt+zkt)-xkttl - 0 ( 1 V ) 

and 

xktU - 0 ( V V , ) 

with ki — prt and /; = pSt for i G N. This together with the definition of IV implies 

xkt+zkt ->0(VV). 

In this way we have shown that every subsequence of {xi + Z{} has a subsequence 

which converges to zero in (A', VV) or, equivalently, Xi + Zi —> 0(IV). Consequently, 

Xi —> 0(lV*), which proves (iii). D 

Now we can prove statement (d). 

P r o o f of (d). By Lemmas 2 and 6, T is a FLoUSHo^-convergence in X. 

Therefore, by Lemma 7, T* is a FLUSH P-convergence in X. We claim that G — T*. 

Indeed, assume that xn —> x in (X, (7), zn —> 0 in (A',T) and {pn} is a subsequence 

of {?.}. Let {?n} be a subsequence of {pn} and let A be an open dense subset of C 

such that xVn(t) —> x* for / G .4. Let {c/n} be a subsequence of {?*n} and let B be a 
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dense subset of G such that zqn(t) -> 0 for / G B. Then A C\ B is a dense subset of 

G and xqn(t) + zqn(t) —» x(t) for t E A D B. Consequently, xn + zn —> £'(T). This 

shows tha t x n —» ^ ( T , ) , i.e., G C T*. Assume now that x n —> ^(T*) and {g,t} is a 

subsequence of {-cn} such that gn —> g(T). Then, by Lemma 7 (ii), y — x. Hence, 

by Corollary 1, xn —• x(G) which shows that G D T*. Finally, G = T*. Since T, is a 

FLUSHP-convergence on A', G is a FLUSHP-convergence in A" and this proves (d). 

• 
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