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Czechoslovak Mathematical Journal, 43 (118) 1993, Praha 

METRIZATION OF UNIFORM LATTICES 

HANS WEBER, Potenza 

0. INTRODUCTION 

In [W2] we have studied uniform lattices as generalization of Boolean rings en

dowed with an FN-topology and of Riesz spaces endowed with a locally solid linear 

topology. In these two special cases the uniformity (induced by an FN-topology or 

a locally solid linear topology) is generated by a system (da)aeA of pseudo-metrics 

with the property 

(*) da(x V z, y V z) ^ da(x, y), da(x Az,y A z) ^ da(x, y). 

More generally, I. Fleischer and T. Tray nor [FT] have proved tha t any uniformity 

on a lattice induced by a modular function with values in a commutative topological 

groups is generated by a system (da) of pseudo-metrics with the property (*). It 

is natural question whether that also holds for an arbitrary uniform lattice, i.e. for 

a uniformity on a lattice such that the lattice operations V and A are uniformly 

continuous. The answer is no in general (see section 2), but yes in the case tha t the 

lattice is distributive (see section 1, (1.6)). The setting of section 1 is more general. 

There we study uniform spaces with one or more operations. In particular, section 1 

contains a simple proof of the known fact that the uniformity of a uniform semigroup 

(X, +) is induced by a system of pseudo-metrics (da) such that 

da(x + yyx' + y') ^ da(x, x') + da(y, y'). 

Hereby uniform semigroup is defined as a semigroup endowed with a uniformity such 

tha t the semigroup operation is uniformly continuous. 
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1. METRIZAT10N OF UNIFORM SEMIGROUPS AND ALGEBRAS 

In the following let (X,u) be a uniform space. We denote by A the diagonal 

A := {(x,x): x G X}. 

P r o p o s i t i o n 1.1. Let +: X x A' —• X be an operation on X. 

(a) + is uniformly continuous iff for every U G u tiiere is a V G u such that 

V + ACU andA+VcU. 

(b) If + is associative, then + is uniformly continuous iff u has a base of sets U 

with U + A C U and A+U CU. 

P r o o f , (a) Since + is uniformly continuous iff for every U G u there is a V G u 

with V + V C U, one implication (=>) is obvious. To prove the other implication 

(<=), let U G u and V, W G u with Vo V c U and A + IV, W + A C V. We show tha t 

W + W C U. H(x,x'),(y,y') G W, then (x + y,x' + y) = (x,x') + (y,y) G W + A C V 

and similarly (x' + y, x' + y') G V, hence (x + y, x' + y') G V o V C U. 

(b) <= follows from (a). 

=>: Let + be associative and W G u. We show that W contains an U G u with 

U + A, A + U C U. Choose V G u with V+V+VCVV, V + V CW and put 

( / : = { ( x , t / ) G l V : U , y ) + A , A + ( x , y ) , A + (xM/) + A C l V } . 

By definition, U C IV. Since A C V and V + V, V + V + V C VV, one gets V C U, 

hence U € u. We show that (/ -f A C U; analogously one obtains A + U C U. To 

prove U + A C U we have to check that U + A C W and (U + A) + A, A + (U + A) , 

A + (U + A) + A C IV. But this holds obviously, since + is associative, A + A C A 

and U + A, A + U, A + U + A C W by the definition of U. D 

If we write in (1.1) (b) f(x,y) instead of x + y, then the inclusions U + A C U 

and A + U C U mean that (f(x,y), f(x',y)) G U and (f(y,x), f(y,x')) G U hold 

for any (x,x') G U and y G A . This formulation is used in the next proposition. 

P r o p o s i t i o n 1.2. Let fc : X x A" —* A" be operations on X for i G / and 1o a 

finite subset of I; (IQ = 0 or / \ /o -=- 0 are admitted). Further, let q be a real 

number, q > \. Then there is a system D of pseudo-metrics on X, which generates 

the uniformity u, such that for any d G D and x, x', y, y' G A' 

d(fi(x, y), fi(x', y')) ^ q(d(x, x') + d(y, y')) for i € I0 

and 
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<*(/.(*, v), /.(*', J/')) ^ d(x, x') + «%, j/) for i € / \ /„ 

iff/, are uniformly continuous for i € /o awt! « ljas a base of sets U such that 

(fi(r,y),fi(x',y))eU and (My, .-),/ .(»,*')) € U 

for any (x,x') G U, y 6 A* auc/ i G / \ /o- Moreover, JT« iias a countable base, then 
one can replace in this equivalence the system D by a single pseudo-metric d. 

P r o o f . One implication (=->) is obvious. Suppose now that /, is uniformly 
continuous for i G /o and u has a base of sets U such that (/»(x,y), / ,(x',y)), 
(/ .(y,*),/ .(y,*')) € U for (x,x') € U, y G A, i E / \ /0. 

Let v4 be the system of all sequence (Un)n£N of symmetric sets of u with the 
property that for any n G N Un o (/„ o Un C Un-i (with U0 := A x A") and that for 
(x,x') G Un and y G A the pairs (/,(*, y),/,(x',y)) and (/,(y, x),/,(y, x')) belong to 
Un_i for i G /o and belong to Un for i £ I \ /0. 

For a = (Un) E A define^ by ga(x,y) = 2"" iff(x,y) G Un-i\Un andya(x,y) = 
0 iff (x, y) belongs to each Un. 

Now define da: A x A -+ [0, i] by 

n 

da(x,y) := inf | ]^<7 a (xj ,Xj + i ) : n G N , X J G A , X 0 = x , x n + i = t/j. 
j = 0 

On p. 185 of [K] it is proved that da is a pseudo-metric and Un C {(x,y) G A x A: 
da(x,y) < 2~H} C Un-i Therefore (da)a^A generates u, since every U G u contains 
a sequence of A. 

Let x, x', y, y' G A. Obviously ga(fi(x,y), /,(x',y)) ^ 2</a(x,x') for i G /o and 

<1a(/*(*,y),/.(*', y)) ^9a(x,x') for iG / \ / o , hence 

da(Mx,y)Ji(x',y))^ 
n 

^ i n f \^,9a(fi{xj,y),fi{xj+xy)): n GN,x7 G A , X 0 = *,xn+i = x' j 
j=o 

n 

^ i n f \ X ^ 2 ^ a ( a : > ' ^ + 1 ) : n € N >*> G '^'^o = *,*n+i = x'j = 2</a(x,x') 
j = 0 

for i G /o 

and similarly 

<*«(/*(*, 2/), /.'(*', y)) ^ <*(*, *#) for t € / \ /o-
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Analogously one gets 

d*(fi(x',y),fi(x',y')) ^ 2da(y,y') for i 6 /o 

and 
<*«(/.(*', y), fi(x', y')) ^ da(y, y') for i e I \ /o-

Finally 

da(fi(x, y), f(x', y')) <£ da(f(x, y), / , (* ' , y)) + da(U(x', y), / , (* ' , y')) 

^2(da(x,x') + da(y,y')) for i € /o 

and analogously 

rf«(/.(^,y),/tU',j/'))$rf«(«,^)-i-rfa(y,.y') fori€/\/0. 

Now choose n € N with 2^ n t$ <T Then the family D := {djn: a e A) has the 
desired properties. 

If u has a countable base, A contains one sequence 7 = (Un), which is a base of 
u. In this case we can take D = {rf-/ } . D 

Some remarks to (1.2) are given in (2.1) and (2.2). 
The next two corollaries immediately follow from (1.1) (b) and (1.2) (applied with 

| / | = 1, /0 = 0 or | / | = 2, |/0 | = 1, respectively). 

Corollary 1.3. Jf (A", u,-f) is a uniform semigroup, then u us generated by a 
system D of pseudo-metrics on X such that d(x + y, x' + yf) ^ d(x, x') + d(y,\/) for 
ail x, x', y, y1 e X and de D. 

Note that in the commutative case in (1.3) the condition "d(x + y, x' + yf) ^ 
d(x, x') + d(y, t/) for all x, x', y, \f e X" is equivalent to the condition "d(x + z,y + 
z) ^ d(x,y) for all x, y, z € A". 

(1.3) was first given in [Wl, Hilfssatz (1.1)]. The proof, the idea of which was 
given in [Wl, p. 414], was elaborated in detail in [FM, p. 3-7] and [P, p. 8-11] and 
is quite long. In the proof given here, however, we can at once apply with the help 
of (l.l)(b) the rnetrization lemma [K, p. 185], which leads to an essentially simpler 
proof. 

Corollary 1.4. Let (X, xi, V,A) be a uniform lattice and q > 1. Then u is gener

ated by a system D of pseudo-metrics on X such that d(x V z,y V z) ^ d(x,y) and 

d(x A z, y A z) ^ q - d(x, y) for all x, y, z e X and d 6 D. 

274 



In general one cannot replace in (1.4) q by 1 (see (2.3)), but that is possible in the 
distributive case; more general holds: 

Theorem 1.5. Assume that +,«: X x X —• X are two uniformly continuous 
associative operations on (X, u), which satisfy the distributive laws 

(x + y)z = (xz) + (yz) 

and 
z (x + y) = (z x) + (z y) for all x,y,z G X. 

Then u is generated by a system D of pseudo-metrics on X such that 

d(x + y,x' + y') ^ d(x, x') + d(y, y'), 

d(xy,x'y')^d(x,x') + d(y,y') 

for all x,x',y,|/GX anci d G D. 

P r o o f . Let W G u. By (1.2) it is enough to prove that W contains a U G u 
with U + A, A + U, U • A, A • U C U. 

By (1.1) (b), there is a V G u such that V + A, A+V CV CW. Put 

V: ={(x,y)eV:(x,y).A,A(x,y),A(x,y)AcV}. 

Of course U C W. As in the proof of (1.1) (b) one gets that U Eu and l / A , A U C 
U C V. Now we prove that U + A C U\ analogously one gets A + U C U. To prove 
U + A C U we have to check that U + A C V and (U + A) • A, A • (U + A), A • 
(U + A) • A C V. First we have U + A C V + A C V. Further (U + A) • A C 
[/•A + A A C U + AC V + A C V, analogously A (U + A) C U + A C V. Finally 
[A • (U + A)) • A C ((/ + A) • A C V. D 

Corollary 1.6. If (X, u, V, A) is a distributive uniform lattice, then u is generated 
by a system D of pseudo-metrics on X such that d(x V z,yV z) ^ d(x,y) and 
d(x A z, y A z) ^ d(x, y) for all x, y, z £ X and d G D. 

L Fleischer and T. Traynor [FT] have proved that the uniformity on a lattice 
induced by a modular function with values in a quasinormed group is generated by 
a pseudo-metric d such that 

(i) d(x V : , j / V : ) $ d(x, y), d(x Az,yAz)^ d(x, y), 
(ii) d(u, v) <£ d(x, y) if x -$ u ^ v $ y, 
(iii) d(x A y, x) = d(y, x V y) 

275 



(iv) c/(x,y) = c / (xAy,x V y) . 

In brief, we examine these properties in a more general setting. 

P r o p o s i t i o n 1.7. Let d be a pseudo-metric on a lattice X such that for all x, y, 

zex hold 

d(x V z,y V z) ^ d(x,y) and d(x A z,y A z) ^ d(x,y). 

Then 

(a) x 1$ u ^ v ^ y implies d(u,v) ^ d(x, y), 

(b) c/(x A y, x) = c/(y, x V y) ^ c/(x, y), 

(c) \d(x, y) <J d(x A y, x V y) ^ 2c/(x, y) for ai/ x, y, u, v € X. 

P r o o f , (a) d(u,v) = d(u Av,y Av) ^ c/(u,y) = d(x V ti,y V u) ^ c/(x,y). 

(b) c/(x A y , x ) = c/(yAx,(x V y ) A x ) -̂  d(y,x\/y), dually d(x\/y,y) = c/(x Vy, (x A 

J/) V y) ^ c/(x, x A y) . Hence c/(x A y, x) = c/(x V y, y) = d(x V y,yV y) ^ c/(x, y) . 

(c) d(x, y) ^ c/(x, x A y) + c/(x A y, y) -$ 2c/(x A y, x V y) by (a). c/(x A y, x V y) ^ 

c/(x A y, x) -f r/(x, x V y) ^ 2c/(x, y) by (b). 

The inequalities in (1.7) (c) are sharp: Define on the free lattice {0, ci,6,1} with 

generators a,b a metric by d(0,a) = c/(0,6) = d(l,a) = c/(l,6) = 1 and d(a,b) = 2 • 

c/(0, 1) = 2 or c/(0,1) = 2c/(ci,6) = 2; in the first case we have ±d(a,b) = c/(aA6,aV6), 

in the second case d(a A b, a V 6) = 2 • c/(ci, 6). 

Given (K,c/) as in (1.7). I don't know whether there exists another pseudo-metric 

on X with the properties (i) to (iv), which generates the same uniformity as d. 

If we define d\(x,y) := c/(x A y, x) + c/(x A y, y), then c/j is a pseudo-metric with 

d ^ d\ ^ 2c/, with the properties (i) to (iii) and at least d\(x,y) ^ d\(x Ay, x Vy) for 

all x,y e X\ but in the example given before (X = {0,ci ,6,1}, c/ with c/(0, 1) = 1) we 

have d\(a,b) > d\(aAb,a\/b). It would be near at hand to take as distance function 

d'i(x,y) :=d(x A y , x V y ) 

or 

d-6(x,y) := sup{c/(u,i;): x A y -$ u, v = x V y } . 

But neither c/2 nor c/3 satisfies, in general, the triangular inequality, as shows the 

following example: Define on the lattice X = { x i , . . . , X 9 } of figure 1 a metric by 

d(xi, x , + 0 = l(i = 1, . . . , 8), d(xi, x9) = 1 (t = 2, 3, 4, 6, 7), d(xv, x8) = c/(x2, x4) = 

c/(x6,xs) = 1, d(x\,x$) = 3 and c/(x,,Xj) = 2 for all other pairs with i < j . Then 

c/ 2 (x 3 ,x 7 ) = ^3(^3,^7) = 3 
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but 

d2(x3ì x9) = d2(x9, x7) = rf3(-rз, x 9) = d2(x9, x7) = 1. 

(1,0) 

Figure 1 

2. COUNTEREXAMPLES 

R e m a r k 2.1. In (1.2), the assumption that Io is finite is not superfluous. 

P r o o f . Take (X, u) = R the reals with the usual uniformity, / = 70 = N and 

fn(x,y) = nary (n E N; x,y 6 R). Suppose that u is generated by a metric rf such 

that 

d(fn(x,y),fn(x',y))^d(x,x') for all n € N and x,x' , t /€R. 

Then 

rf(l,0) = rf(/„(±,l),/„(0,l))^rf(i,o)-+0 (n-oo), 

a contradiction. D 

R e m a r k 2.2. In (1.3), the assumption that the addition is associative is not 
superfluous. 

P r o o f . Take (X, u) = [0,2] with the usual uniformity, x 0 y := min{2,xy} 
for x, y G [0,2]. Suppose that n is generated by a metric rf such that rf(x 0 y, x' 0 
y) -̂  rf(x,x') for all x, x', y € [0,2]. Then rf(x,0) = d((\x) 0 2, 0 0 2) ^ rf(±x,0) 
and by induction rf(x,0) ^ rf(2"nx,0), hence rf(l,0) = rf(2~n,0) — 0 (?* -* oo), a 
contradiction. D 
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The examples given in (2.1) and (2.2) also show that in (1.2) one cannot replace 
q > 1 by q = 1. 

The example (2.3) shows that in (1.6) we cannot dispense with the distributivity. 

E x a m p l e 2.3. (cf. Figure 2). Let 7\'o := {x G R: x = 0 or \x\ = £ for some 
n G N}. Define on L := ({0} x A'0)U(A'o x {0}) C R2 two real-valued functions / and 
9 by / (0,y) = g(0,y) = y, f(x,Q) = - |* | ; g(x,0) = \x\ if x <$ 0 and g(xt0) = ^ if 
x = - for an ?i G N. 

n 

For a, b G L define 

a <J 6 iff #(a) .$ f(b) or a = 6. 

Let u be the uniformity induced on L by the usual uniformity of R2. 

(a) Then (L, ^) is a lattice, u is a compact metrizable uniformity and (L,u) is a 
uniform lattice. 

(b) If d is any continuous pseudo-metric on L such that for all x, j/, z G L 
d(x Vz,yVz)^ d(x, y) and d(x Vz,yVz)^ d(x, y), 

then rf((0,-l),(l,0)) = 0. 
In particular, u is not generated by a metric satisfying (*). 

P r o o f , (a) (L, .$) is a lattice by the next lemma (2.4), applied for K = {0} x I\0 

with its natural order, s(a) = (0,</(a)) and i(a) = (0,f(a)) (a € L). 
By definition, u is metrizable. L is a closed, bounded subset of R2, hence (L,u) is 

compact. 
We prove now that V and A are continuous. From that it follows that V, A are 

uniformly continuous since (L,ti) is compact. Since (0,0) is the only accumulation 
point of L, it is enough to show that 

(i) (a, b) »-* a V 6 and (a, b) •—> a A b are continuous in ((0,0), (0,0)) and that 
(ii) a »-> a V b and a »—• a A 6 are continuous in (0,0) for every 6 £ L, 6 -̂  (0, 0). 
(i) By (2.4), aV6 and a A 6 belong to {s(a),8(b),i(a),i(b),a,b}. Hence ||a Vfc||oo, 

||« A 6(100 ^ max{||a||00, I^Hoo}. This implies (i). 
(ii) Let 6 € L, 6 7- (0,0). Put U := {a e L: \\a\\^ < i||6||oo}. If 6 = (0, y) 6 K 

with i/ > 0, then aAfc = a for a 6 (/, hence a »—> aAt is continuous in (0, 0). Similarly, 
if b = (0, y) € A' with y < 0, then a V 6 = a for a 6 JI, hence a t—> a V 6 is continuous 
in (0,0). In all other cases (for b) the functions a >-* a V 6 and a i-> a A 6 are constant 
on U and therefore continuous in (0,0). 

(b) Suppose that a* is a pseudo-metric on L, which is continuous in (0,0) and 
satisfies (*). For n G N, put 

rn=(i,oV /n=^-i,oV an=(o^\ &n=(o,-iV 
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Then d(bn,rn) = d(ln+\ A rn,an+i A rn) $ d(/n+i,an+i) = d(bn+i V / n+i , r n+i V 
/n+i) ^ ^(frn+i,rn+i), hence by induction d(b\,r\) t$ o ,(6n,rn) for n G N. Since 
</(/>», rfl) — 0 (n — oo), it follows that d((Q, -1) ,(1 ,0)) = d(burx) = 0. D 

Lemma 2.4. Let K be a lattice, L a set, which contains A', and i, s: L —• A' two 
functions such that i(x) = s(x) = x for x £ K and i(x) < s(x) for x £ L \ A'. T/ien 

x ^ t / (in L) iff s(x) t$ i(y) (in A') or x = y 

defines a partial ordering on L. With respect to this partial ordering L becomes a 
lattice and K is a sublattice of L. Moreover, ifx,y are incomparable elements of L, 

then 

sup{x, y} = sup{s(x), s(y)} and inf(x, y) = inf {i(x), i(y)}. 
L K L K 

P r o o f . Since i(x) = s(x) = x for x £ A', the relation defined on L coincides 
on A' with the given partial ordering on A'. Obviously, t̂  is reflexive on L. 

t̂  is antisymmetric: Suppose that x, y £ L with x ^ y, y ^ x, x £ y. Then 
s(x) t$ i(y) and s(y) ^ i(x). Since i(z) t̂  s(z) for all z £ L, one obtains s(x) ^ 
i(y) t̂  s(y) t̂  i(x) t̂  s(x), hence s(x) = i(x) = s(y) = t(y). It follows that x, y G A', 
since s(:?) ^ i(z) for z £ L\ K. Consequently, x = s(x) = s(y) = y. 

t$ is transitive: Suppose that x, y, z G L with i ^ y, y t̂  : and x ^ y ^ z. Then 
s(x) ^ i(y) t̂  s(y) t̂  £(j2r), hence s(x) t$ i(z) and a: t̂  z. 

Let x, y be incomparable elements of L. a := sup{s(x),s(y)} is the supremum 
K 

of {-c,y} in L: Since a £ A', we have s(a) = t'(a) = a. Therefore s(x) t̂  a = i(a), 
hence x t̂  a and just so y ^ a. Let 2 £ L be an upper bound of {x,y}. Since 
x,y are incomparable, it follows that z -̂  x and z ^ y and therefore s(x) 1$ 1(2) 
and s(y) ^ i(z), hence s(a) = a t̂  1(2). Consequently a ^ z. Similarly one gets 
that inf{e(x), i(y)} is the infimum of {x,y}. In particular, L is a lattice and A' a 

K 
sublattice of L. • 

In the example (2.3), (L, u) is a compact HausdorfT uniform lattice. It follows from 
some statements in [W2] that L is (as lattice) complete and that u is order continuous, 
exhaustive and satisfies (F) and (<r) (see [W2] for the definitions). Therefore (L,u) 
has strong topological properties. On the other hand, the lattice L is not modular. 
It would be of interest to decide, whether such an example exists also in the modular 
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