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Czechoslovak Mathematical Journal, 43 (118) 1993, Praha 

WEIGHTED FRIEDRICHS INEQUALITIES IN AMALGAMS 

HANS P. HEINIG, Hamilton, and ALOIS KUFNER, Praha 

(Received October 14, 1991) 

0. INTRODUCTION 

0.1. A Lebesgue measurable function / defined on (0, oo) is said to belong to the 
weighted amalgam of Lp and tp, with weight wy if 

(01) ll/lkPlP = { Ž [ / w(*)\f(*)\P**]"} 
PÍP} -/p 

< co 
n=0 

with 1 < p, p < oo. We shall write 

(0.2) feL"(^,w). 

In Carton-Lebrun, Heinig and Hofmann [1], the Hardy inequality in amalgams is 
studied, 

(03) \\Hf\\u.u < ol|/lkP,p 

with w, v weight functions and H the Hardy operator 

X OŰ 

(Hf)(x) = J f(t)åt (or Jf(t)àt). 

The inequality (0.3) can be rewritten in the "differentiar form 

(0.4) \\F\\u,iti$C\\F'\\VlPlP 

where F(0) = 0 (or F(oo) = 0). 
The aim of this note is twofold: 
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(i) to extend inequality (0.4) to higher order derivatives, 

(0.5) ||/-||Uif>, < C\\F^\\VtPtP, k > 1, 

with appropriate "boundary conditions" on F; 
(ii) to extend inequality (0.4) to functions of several variables, i.e., to derive for 

some functions / = / (#) , x £ R^, an inequality of the form 

(0-6) | | / | k f l f ^ C||V/||„,P(p 

where now 

{ °° r f " |^ p l xi? 

£ [ J w{x)\g(x)\P dx\ j . 
n = ° n<|r|<n + l 

Let us point out that inequality (0.5) generalizes to amalgams the "classical" 
higher order inequality investigated in Kufner and Heinig [2] while (0.6) generalizes 
to amalgams an analogous result of Sinnamon [3]. The inequalities (0.5) and (0.6) 
will be called Friedrichs inequalities in (weighted) amalgams. 

We start with two theorems from [1] which will be substantially used: 

0.2. Theorem. Suppose u, v are weight functions and / ^ 0. Let 1 < g, q < oo, 
1 < p t$ q, 1 < p <I q. Then there is a constant C > 0 such that 

9 19/9} l/9 

{£[/"w(//('"")Ҹ } 
n - u n 0 

(0.8) ^ C ' { Ž [ / «(*)/''(*)d«]W"} 
ІP/PЛ */P 

if and only if 

9/9^1/9 f m , n y \P'/P'\ 1/P " + 1 . я / л . i/я . ™ . " + 1 - .т/y^'. 1/^' 

SU 
m Є N 

Г °° / г \919\Ч9 ( т / г \Р/РЛ1 

& { £ ( / « Н } {Е(/.-'<.>*) } 
(0.9) = C\ < oo 

and 

m + * I/<J * i/V 

(0.10) sup sup ( i u(x)dx) ( I ví"p'(x)dx) = C2 < co. 
m€N m<«<m+l \ J / \ J / 

5 m 
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0.3. Theorem. Suppose u, v are weight functions and f ^ 0. Let 1 < q, q < oo, 
1 < p ^ </, 1 < P ^ < L Then there is a constant C > 0 such that 

nV /°? \i M/uUi 

{£[/->>(/««>*)Ч } 
( «> rnV -IP/PЧ I/P 

(o.п) ^ c { £ [ j «(«)/"(«)<»*] | 
n = 0 

if and only if 

? 7 n iff f co / T \ P " / P S -/P 
n + 1 . я / л . i /л- . лo . " + 1 . zЧ-i. i /«' 

s{|(/u w d i)"} ,{|.(/" , vwd ir} 
(0.12) = C 3 < o o 

and 

9 1/a m + 1 l/o' 

(0.13) sup sup (fu(x)dx) ( f vl~p,(x)dx) = C 4 < oo. 
m€N m<3<m+i \ J / \ J / 

m * 

0.4. Notice that for p > 0, p ^ 1, 

P 
(0.14) p' = 

p - 1 

In the sequel, we will frequently use the formulas 

(o.i5) P = ^rrT' £ = P - 1 = pT=T ^ ' - 1 ) = P' etc-

and also the inequality 

(o.i6) (X>») '<£«»• i e- E a » ^ ( E a » ) r > 

^ n ' n n ^ n ' 

which holds for r > 1, an ^ 0. 

0.5. Remarks, (i) Theorems 0.2 and 0.3 have been formulated only for p, g, p, q 
such that 

(0.17) 1 < p ^ g < oo, I <p<^q <oo. 
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In [1] also the case 

(0.18) 1 < q < p < oo. 1 < a < p < oo 

is investigated and it is shown that then the following two conditions are sufficient 

for (0.8) to hold: 

íll-yr/qr k 

(0.19) 

and 

±[±(ju(x)d*yxqw(j^\*H«) 
k=0 ln=k V J

n ' J Ln=0 V J
n ' 

fc + 1 p'/p'\ 

x( í vl-r'(x)dx\ ) 

Ї/Я 

= C 5 < oo 

00 r r / " V'U t , \ r / í ' , 1 
52\ I [ u(x)dx) í vl-r(x)dx\ vl-"(a)d8 

І/Г 

(0.20) 

where 

= C б < oo, 

i - i _ i i - i _ i 
r q p ' 7̂  q P 

(ii) It is quite evident how to formulate sufficient conditions for (0.11) to hold 

when (0.18) takes places. 

(iii) Besides (0A7) and (0A8), there are also other possibilities as far as concerns 
the mutual relations between the parameters p, q, p, q. Let us mention the case 

(0.21) 1 < 9 < V < °°> l < p < q < o o , 

which will be needed in the sequel. We will formulate the corresponding result and, 

for completeness, give here its proof, which in fact follows the ideas of the proof of 

Theorems 0.2 and 0.3 in [1]. 

0.6. T h e o r e m . Suppose u, v are weight functions and f J> 0. Let p, q, p, q 

satisfy (0.21). Then there is a constant C > 0 such that (0.8) holds if and only if the 

conditions (0.9) and 

\nVínV Y'U r . V'"' , l1/ r 

(0.22) sup I i I u(x)dx) í I vx~p {x)dx\ v1-" (s)ds 
= CV < oo 
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are fulfilled where 

(0.23) i = i - i . 
r q p 

P r o o f . (A) Sufficiency of conditions (0.9) and (0.22). Denote 

(o.24) s, = {f;[/«(*)(//(0d.yd*],,J \ 

(0.25) s2 = {f ; [ /«(x)^ / / (0d<yda ; ]
, , ' J \ 

r l = 0 n n 

r n r 
Using the fact that f = f + f with x £ (n, n + 1), we can estimate the left hand side 

0 0 n 
in (0.8) by 

c i ( 5 i + 5 2 ) 

where ci = 21/* if q < q and ci = 1 if q ^ q (we apply Minkowski's inequality twice). 
To estimate 5i we rewrite 5i as 

?z} lV \* 1*7n */* 
•?i = { £ f «(*)(E [mdtYdx] 

^ n=o L ^ M=O •; ' J 

r °° / "r! \«/f /n~l 'I1 \ h x , q 

(0.26) = { ? (yw(x) dx) ( ? y / (°d7} = 

{ OO , n - l v f % l / f 

2>(z°<)} • n=0 x / = 0 ' ' 

wliere 

(0.27) (7 y,ч 7 
Un=ІJ u(x)dx) , a,= j f(t)dt. 

The discrete Hardy inequality yields 

{ °° / n \*1 1 / f f °° ^ ! /P 

n=0 ^ /=0 ' ' ^ n=0 ' 
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for 1 < p ^ q < oo provided 

/ 00 \ l / ł / « \ I/p ' 
(0.29) в u p ( 5 > m ) ( 5 > r a - M =C3 

"ЄNVДŢ^ / V ^ / 
< oo 

(see Andersen and Heinig [4], Theorem 4.1). Using the second formula in (0.27) and 
Holder's inequality, we obtain that 

n + l n+1 
oo í f \P í f V 

E ^ < = E M / /(o<«0 = E M / »1/p(o/(o«-|/p(Od-) 
n=0 n=0 ^ J

n ' n=0 ^ ;( ' 
~ f n f vltv"/1 . v 

(0.30) ^ E ^ ( / V(0/P(0d<J (/« '-" (0<KJ 
ß/p' 

n=0 

If we také 

(0.31) 
n+1 

Vn = (J vl->\t)dt) 
-ÞІP' 

then the formulas (0.26), (0.28) and (0.30) imply 

n+1 

(0.32) 
P/P\ 1/P 

$. ^ < * { Е ( / Ч0/Р(0с1<)Р"} 

moreover, due to (0.27) and (0.31), condition (0.29) is exactly the condition (0.9). 
To estimate 5o, we use the "classical" Hardy inequality 

(0 

n+1 x .. n+1 . , 

33) í j u(*)(J f(t)dt\ dar] < c3,„í y •>(.-)/*(.-)<.* 

which holds for 1 < q < p < oo and w = 0, 1, . . . provided 

n + l n + 1 . 3 . i . . 

(0.34) [ f ( j u(x)dx\ ( fvl-','(x)dx\ vl-P'(s)ds = c4>„ < CЮ 

with 1/r = \/q — 1/p (see, e.g., Opic and Kufner [5], Theorem 1.15). Condition 
(0.22) implies that (0.34) holds and that csn in (0.33) can be choosen independent 
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on n, c3tn = c3. Using (0.16) with r = q/p ^ 1, we obtain from (0.25), and (0.33) 
that 

i -o r " } 1 -\qlp\ilv ( °° r nt" IPIP ifp\PH IIP 

£ [ y t^nxjdxj i = c3| £ [ y twwdxj i 
r OO r n + 1 T P / P ^ I / P 

^ 3 E / V(x)/"(x)dx [ . 
l - = ° L n J J 

This formula together with (0.32) yields (0.8). 
(B) Necessity of conditions (0.9) and (0.22). Suppose that (0.8) holds. Since for 

/ ^ 0 and x 6 {n,n + 1) 

* n - l / + 1 * n-1 / + 1 

(0.35) / /(«) <i< = £ / /(od< + / / (o d ' ^ £ / /w d ' = A« 
o '=° i n / = 0 , 

the left hand side of (0.8) is not smaller than 

( °° / nt* \ih\i/i ( °° / n t \ijq\il? 

(o.36) { £ A« ( y «(*)dr) } ^ { £ A« ( y «(*)dx) } 

for every fixed m £ N. Let us fix ro and choose / ^ 0 such that 

(0.37) / (x) = 0 for x £ m. 

Then it is An = A m for n \H m and the right hand side of (0.36) is not smaller than 

( °° / n t \flq\ lt* 

(0.38) A - { £ ( / «(*)<!*) } • 

Moreover, taking 

(0.39) / (x) = a,t;1-pl(x) for x G (/, / + 1), / = 0 , 1 , . . . , m - 1, 

where a/ are arbitrary non-negative real numbers, then 

m - l / + 1 

I d x 
»»» — I M 

= £ I <чvl-*\*ь 
' = < > / 

m-1 , ' + ' І W Г > l l / P m - i 

= £ Ҝ / v l"p ( * H / vt~p < * H = £ "'í3' 
ł=0 - J / J ' = o 

, 1 / p r ' t 1 ,1/p' m-1 
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where 

(0.40) 

If we denote 

1 + 1 П І / F 

a , = Г«f f ^---Ҷa-^da-l 

r'ľ - l1"' 
Д = П «'-'(*)dxl , Í = 0 , l , . . . , m - 1 . 

(0-41) 
\ f/<l\ l/tf 

£(/-»*) } • 
then we obtain that (0.38) is equal to 

m - l 

(0.42) Km Y, «iA-
/=o 

The right hand side in (0.8) attains for / defined in (0.37) and (0.39) the form 

m-l . "+1 \vlV\\/P 
C^l^f v{X)[anv^\x)YáxY^ J 

{ m - l r " J : 1 -\VJV\VP /m- l v 1/p 

n=0 L ~ J ' ^ n=0 ' 

with an from (0.40), and from (0.8), it follows due to (0.42) that 
m - l r i , m - l v 1/p 
T7I— i ^ • m - v I v j 

E^^7r(Sa0 
i=o Л m v /=0 ' 

But the vector (an, a j , . . . , a m _ i ) is arbitrary, since the numbers a/ have been cho­
sen arbitrarily, and consequently the vector (/?n, A, • •., An-i) belongs to ft and, 
moreover, 

/ m - l \l//>' r /m-\ \ l//>' 

( z l n <#-• ie- M-><) <cr. 
^ /=o ' A m ^ /=0 ' 

But this last inequality implies (0.9) in view of the notation from (0.41) and (0.40). 
Consequently, the condition (0.9) is necessary. 
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Now, také 
(x) for x € (m,m + 1), ={t / ( * ) • - u • 

otherwise 

in (0.8) with m 6 N arbitrary but fixed. Then (0.8) implies that 

f r7
! y/ry/r rmV i«/» 

c | | y „(.r)/(.-)d*j J =o^ y «(*)/(x)d«j 
m 

? "I ?/fl 1 */* 
^ < ^ I / «<*H / / (OdH da:1 l 

> n = 0 

^ 

{S[/"w(/Л 0 <")'di í 
m + * т 1/a iw+1 JГ - y 

[ / «(*)(//(<) «")'*-] = [ / «(«)(/*(*)<-.) d«] , 

that is 
-/« 

01 ar \ */* m+1 

ti(*)(/í(l)dl) d*J < o [ / *(*)/(*)d*] 
m / m 

1/Я 

But this is the Hardy inequality on (m,m + 1) and its validity implies that (0.34) 
holds with C4m ^ C. Since m was arbitrary, we have shown that also condition 
(0.22) is necessary. D 

1. THE CASE OF HIGHER ORDER DERIVATIVES 

1.1. For a fixed integer k ^ 2, write 

(1.1) Jfc = Jti+ k2, Jfc.GN, 

and denote by AC\ 2~" the set of all functions F defined on (0, oo) whose (it — l)-st 
derivative is absolutely continuous and which satisfy the "boundary conditions" 

F(0) = F ' ( 0 ) = . . . = r<*'-'>(0) = 0, 

F<*'>(oo) = F<*'+l>(oc) = . . . = F^-Dfoo) = 0. 

Consequently, we have *i conditions on the left end of the interval (0, oo) and «t2 

conditions on the right end. 
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1.2. Theorem. Suppose u, v are weight functions and F G AC\ 2 '. Let 1 < q, 
q<oo, l<p^q, l<p^q. Then the Friedrichs inequality in amalgams. 

" + 1 - i ł / n i / ł 
{ Ž [ / *{*)\ғ(*)\ч ь]''} 

(1.3) ^CÍ^ĘУ v(x)\F^(x)\pdxŢP} 
n + 1 -P/PЧ l/P 

holds with a constant C independent of F if and only if the following four conditions 
are fulfilled: 

Я/Я} 1/Ӯ 

sup 
m€N 

{ £ ( /«(«),(*•->>• Љ.YҶ 
*-n=m+l ^ J

n ' ' 

Ґ ~ / " t 1 XPVPЧI/P' 

(1.4) X Í . C ( vl-p (x)xk'p dx) \ <oo, 

s{£(/"w*"'d*) } 
(1.5) M £ ( / «1 - p (*)*(*2~1)p dr) [ <oo, 

m + 1 - > / « / / • . \ »/P# 

< OO. (1.6) sup sup f / u(x)xik*~l* dx) ( í v*-"'\x)xk3p' dx] 
mgN m<*<m+l \ J J \J ) 

> / « / m + I . . \ > / P ' 
< OO. (1.7) sup sup ( f u(x)xk" dx] ( f vl-r'{x)xlk'-l»'dx>\ 

m€N m<3<m+l \J / \ J / 
m s 

Proof . According to [2, Theorem 1], F £ ACJ 2~ ' can be written in the form 

X oo 

(1.8) F(x) = J IU(x,t)f(t)dt + j K2(x,t)f(t)dt = (Tf)(x) 
0 x 
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where 

(1.9) /**>(*) = / (* ) . 

Consequently, instead of the inequality (1.3) [which in fact is the inequality (0.5)] we 
can investigate the inequality 

(110) \\Tf\\u,,,i£C\\f\\u,j. 

We have 

(1.11) I<i(x,t)mxkl'ltk2 for 0 < < < x < o o 

and 

(1.12) K2(x,t)&xkltk2~x for 0 < x < < < o o . 

Here A(x,t) « B(x,t) means that there are two positive constants c\, c2 sucli that 
ci.A(a:,0 ^ B(x,t) ^ c2A(x,t) for x, t from the domain of definition of A, B (see 
again [2]). 

Denote 

X X 

(1.13) (Jif)(*) = J*kl-ltk*f(t)dt = x*"-1 J tk*f(t)dt, 
0 0 

oo oo 

(1.14) (hf)(*)= fxkxtk*-lf(t)dt = xk> Jtk>-lf(t)dt. 
X X 

According to Theorem 0.2, the inequality 

f - ^ r " / * 1 l f / ^ i / J f ~ r "I1 IP/P)UP 
(1-15) { £ [ y n(*)(A/) f (*)d*J J ^ C { £ [ J v(x)f»(x)dx\ J 

holds if and only if conditions (1.4) and (1.6) are satisfied, indeed: Due to (1.13), 
the left and right hand sides of (1.15) can be rewritten as 

{E [•/ "(-^'-^(/^/(Ocl^dx]' '} ' 
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and 
n + l 

{ °° r h lp'p\ lfp 

XI [ y -K*)«-*--(**-/(*))'d*J } , 
respectively, and the inequality (1.15) is nothing but inequality (0.8) with f(x) re­
placed by f(x) = xk2f(x), u(x) replaced by u(x) = u(x)x^kl'l^q and v(x) replaced 
by v(x) = v(x)x~k2P. Now conditions (1.4) and (1.6) are the conditions (0.9), (0.10) 
for the weights ti, t; instead of u, v. 

Analogously, we can show that, according to Theorem 0.3, the inequality 

r °° r nV *\?l<i}irt r °° r nY IPIP^UP 

(116) { £ [ / <*)(J*f)'(*)d*\ } < C | £ [ J v(x)fp(x)dx\ | 
n=o n n=0 fl 

holds if and only if conditions (1.5) and (1.7) are satisfied. Indeed, due to (1.14), 
the inequality (1.16) is nothing but inequality (0.11) with / (x) , u(x), v(x) replaced 
by f*(x) = xk2'lf(x)} u*(x) = u(x)xkiq, v*(x) = ^(x-Jx"^2"1^, respectively, and 
conditions (1.5), (1.7) are the conditions (0.12), (0.13) for u*, v* instead of u, v. 

Due to (1.8), (1.13), (1.14), 

H1kf.f = i™« i f i f ^ <*(ll*/lkf.# + P2/||uifif) 

and (1.3) follows from (1.15) and (1.16) due to (1.9). Consequently, the conditions 
(1.4)-(1.7) are sufficient for (1.3) to hold. 

But these conditions are also necessary. Indeed: Since the operators Ji, Jo from 
(1.13), (114) are positive, we have 

(Jif)(*) < (Jif)(*)+(hfK*) < c4(T/)(x) = c4F(x), i = 1,2, 

due to (111), (112). Consequently, the validity of (1.3) implies the validity of both 
(1.15), (116) which again implies that (1.4), (1.6) and (1.5), (1.7) are satisfied, 
respectively. • 
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2. T H E MULTIDIMENSIONAL CASE 

2.1. Following Sinnamon [3] we introduce, for x E RN, the operators P, Q defined 

Ьy 

(21) (P/)O) = / / O 0 y . 
0 

oo 

(2.2) {Qmx) = Jf{xt)^L. 
1 

Denoting further 

(2.3) (Rf)(x) = x . V/(x) = fl * < ^ 
t = i OT|" 

we have 

(2.4) / = P(Rf) provided /(0) = 0 

(2.5) / = Q(-Rf) provided /(oo) = 0 

[/(oo) = 0 means that lim f(xt) = 0 for every x £ R^l. Indeed: 
t—*oo 

1 1 1 

P(Rf)(x) = J(Rf)(xt)j = J xt. V/(*l)y = / * * V/(x«) d* 
0 0 0 

1 

= / l / o o d. = /ooi; = /oo - /(o) = /(*), 

and analogously for Q(—Rf). 

2.2. We will deal with radial weights only. This means that for x = <rt, where <r, 
t are the polar (spherical) coordinates, a G E (= the unit N-sphere) and < > 0, it is 

w(x) = u(at) = u(/), V(X) = v(at) = i>(J). 
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2.3. Remark. We will consider the N-dimensional Friedrichs inequality in 
weighted amalgams in the form 

r °° r f * l ? l ^ I ' 1 
{ £ [ / «(*)|/(*)|M*| } 

*-° k<\x\<k + \ 

£ [ y t;(*) |*V/(*) |pd*J J . 

*= 0 *<H<ifc + l 

This is a generalization of the "classical" N-dimensional Hardy inequality 

(2.7) (yu(*0|/W|^l*) \ c ( ^ J v(x)\x^Vf(x)\pdx)j 

R " R" 

investigated in [3]: We obtain (2.7) from (2.6), taking q = q and p = p. But in 
[3, Theorem 3.4] it is shown that (2.7) cannot hold if p < q, and consequently, we 
cannot expect that (2.6) will hold if we assume that 1 < P < </, I < p ̂  q. 

Therefore, in the next two theorems we will assume that I < q, q < oo and 

(2.8) 1 < p = ?, 1 < p ^ q. 

2.4. Theorem. Suppose u, t; are radial weights on RN, f differentiable on RN, 
/(0) = 0. Let p, p, q, q satisfy (2.8). Then the inequality (2.6) holds with a constant 
C > 0 independent of f if and only if the following two conditions are satisfied: 

r m г І- lяłя\ lя 

a l S / "WH } 
*-° *<н<*+i 

(2.9) x { £ [ У v*->\x)\x\-»''úĄ'' } 
* = m *<и<*+i 

sup sup í / u(x) tlx) 
neNk-\<s<k \ J ) 

u(x)tlx I 

«<И<t 

(2.10) x ( f vx-'>\x)\x\-N''' dx\ < o o . 

t-i<H<» 
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P r o o f , (i) Sufficiency. Using (2.4) and (2.1), we can rewrite the left side of 
(2.6) as 

{ °° r f i « / ^ i / f 

£ [ J \P(Rf)(x)\qu(x)dx\ J 
*=° *<|.r|<t+l 

{ ^ r / I } (U\q i*/^-/? 

£ [ J yw)(*oT «wd*J } • 
*= 0 *<|*|<ft+i o 

Using polar coordinates, x = cry, and then the substitution yl = s, this is 

{ E [/ / l/wX^ylVw'-1 <W*]' '} 
* = ° S k 0 

= {E [ / "(y^-'/l/wH^vf d'-frpp 
*=° * E 0 

[note that since the weight is radial, u(cry) = u(y)]. Since 

y k y jt- i '+ 1 y 

/ = /+/ = £/+/ for » € (* '*+ , )» 
0 0 lb '=° / k 

we have that the left side of (2.6) can be estimated from above by 

(2.11) c , ( 5 , + 5 a ) 

where 

* + 1 - • - - ' ' + 1 |» !« /« •» l / » 5«={E [ / -(»)/r-,/|è /wK^)^f ^ f '} 
r « r * V i«/«r r i * " 1 ' V j . i » if /»-. •/» 

,..,., - {£[/-..*»-*] [/|g/wx«>?H } • 
A? E l 

(2.13) 5'2 = {E [/ ( / «(^-^/(«/K^-^py) dir]'''}1". 
E k 

111 (2.11), it is ci = 1 if 9 ^ 9 (we used Minkowski's inequality twice) and c\ = 21/* 
i f ? < ? . 
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To estimate S\, denote 

* + 1 * */« / t \ *h 
(2.i4) Uk = { J ui<yyyN~' dy) = c*( J *(*)**) > 

k *<|.r|<*+l 

f+1 1 / 
/ f\ f ds\q \í/q 

(2.15) i4,= ^y y ( / í / ) ( « ) T d<rj . 
£ / 

The Minkowski inequality yields 

I*"1 'V A.W \XI<* k~X / t\lV A. 1\V1 *-* 

(/ГE/( В Д (^-)%Í:( / | /« В Д (» 8 »Г) - Ľ 
ч £ i /=o *} ' ' /=o v £ * •} ' /=0 

and consequently 

X>(I>) 
*=o v /=o ' ' 

Using the discrete Hardy inequality (see [4, Theorem 4.1]) we can estimate the right 
side of (2.16) by 

(2.17) {
00 .. 1/p 

*=o ' 

< oo 

provided the (necessary and sufficient) condition 

/ oo \ 1/f / m A 1 / * 5 ' 

(2.18) •£(!>) (-EX"') 

is fulfilled. 
Let us choose an appropriate V*. Using the integral Minkowski inequality and 

then the Holder inequality we obtain from (2.15) that 

*+i j / 
At* J [/l(«/)('«)l,d'] 7 

* £ 

*+l j / 

(2.19) = J v]<Hs)s(N-l»*\J\(Rf)(*s)\qd<r] \'l^{s)s^N'l^'lds 

k £ 
*+l Xj *+l j , / 

^ ( / v ( ^ - ! J\(Rf)(°s)\q dads\ ( / t,,-«>),"-,-"*'d*) 
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and if we denote 

*+> . -Ph> 
vk = ( / _,-»'(_)-лr-1-",'d_) 

Jk 

= c4( f ^-"'(xЫ-^Лx^j 
(-•») 

*<|.r|<*+l 

we obtain in view of (2.19) and (2.3) that 

*+i 

V*-4P < c \ j ( J \(Rf)(<rs)\qv(s)sN-' ds\ d 
s * 

= <*( / t;(x)|_r.V/(_r)Pd^ . 

Pln 
<*\ 

k<\x\<k+\ 

This inequality together with (2.16) and (2.17) implies that 

i/Vn i/p ґ г /• l p / , 1 
5 , ^ c 6 | Ç [ y v(x)\xVJ(x)\чЛx\ | 

4 = 0 . < | _ | < ł + i 

= c e { ç [ / wИ*-v/(*)ľd*]PP} 
fc<|x|<* + l 

[note that q = p due to (2.8)]. Moreover, the condition (2.18) is, in view of (2.14) 
and (2.20), exactly the condition (2.9) (again we use the fact that q = p). 

To estimate #2, we use the Hardy inequality for the function G(y) = (Rf)(<ry)/y. 
It reads (see, e.g. Opic and Kufner [5, Theorem 1.14]) 

*+i • *+- .- - * + - q/p 

J u(y)yN~^ J G(s)ds'dy $ c 7 ( J v(y)yN-*+»\G(y)\p dy^j 
* y k 

k+\ 

(2.23) = c 7 ( y r(y ) t/ 7 V - 1 | (^/ )((Tt / ) | p ^ 
* 

provided the necessary and sufficient condition 

* + l jy * j , / 

(2.24) ^ sup ^ f y -(i/)^- 1 dy\ (fvl-f'(y)yN-l-N''' dy\ < °° 
* 
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is fulfilled (this condition concerns the case q ^ p; we in fact consider q = p). 

Using (2.23) in (2.13), we obtain (with p = q) 

<tlp\ - /? 

s* ^ c«{ E [/ ( / ^y"'' \W)("y)\p dy)d*]"'} 

{ <*> r r -\PIPIIP\ 

*=° *<|r|<Jfc+l 

[we used (0A6) with r = q/p ^ 1], But (2.25) together with (2.22) leads to (2.6) 
(with p = q). Moreover, the condition (2.24) is fulfilled since, in view of (2.14) and 
(2.20), it follows from the condition (2.10). 

(ii) Necessity. Take 

1*1 
(2.26) f(x) = Jg(t)dt. 

Then /(0) = 0 and x • Vf(x) = ^(|x|)|ar|. Using polar coordinates, x = <r/. and 
taking into account that the weights tt, v are radial, we can rewrite (2.6) in the form 

E[/»«><-i/H"'] } 
(2.27) < f { E [ / *C)<"-'+'\gil)\'<!<}' ' } 

But this is the inequality (0.8) from Theorem 0.2, with / replaced by y, u(t) by 
u(t)tN~* and v(t) by v(t)tN~l+p. The necessary and sufficient conditions (0.9), 
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(0.10) tlien take the form 

( oo , k + X .q/q^ \/q 

- ^ Ч = m t 

™ /kV . XP/PSI/P' f í i , \P/P 1 i/P 
(2.28) x i Y^( / vl~p (t)tři-1-Np át) > <oo, 

m + ! \/n * l/V 

(2.29) sup sup ( f u(t)tN-l<\t) ( ívl-',\t)tN-l-NP' dt) < o o , 
m€N m<»<m+l \ j / \J ) 

and in view of (2.14) and (2.20), (2.28) and (2.29) are the conditions (2.9), (2.10). 

D 

Completely analogously, using only the operator Q from (2.2) and formula (2.5) 
00 

instead of the operator P from (2.1) and formula (2.4), and taking f(x) = — f g(t) dt 
M 

instead of (2.26), we can prove the following assertion, quoting Theorem 0 .3 . 

2 .5 . T k e o r e m . Suppose u, v are radial weights on RN, f differentiate on RN, 

/ ( oo ) = 0. Let p, p, q, q satisfy (2.8). Then the inequality (2.6) holds with a constant 

C > 0 independent of f if and only if the following two conditions ate satisfied: 

sШ / "H"T 
"l?/n 1/? 

SU| 
m€N 

fc<|.r|<fc + l 

{ °° r r , , V"/rV//5' 

£ [ J v[-r (x)\x\-N*> d*J J < 00, 
* = m fc<|x|<fc+l 

(2.31) sup sup ( / u ( x ) d x ) ( / vx-p'(x)\x\-Np'dx) < 00. 
fc€Nfc-l<5<fc\ J ) \ J ) 

fc-Kk|<* 5<|jTJ<fc 

2.6 . Remark. Up to now, we considered, in this section, only the case (2.8), i.e., 

P = tf> P ^ <j- Now, let us suppose that 

(2.32) i < ? < p < 00, I < p ^ g < oo 

and investigate inequality (2.6), again for radial weights u, t; and for / satisfying 

/ ( 0 ) = 0. 
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We can proceed as in the proof of Theorem 2.4 up to formula (2.18). Instead of 
formula (2.19) we have now 

* + 1 - - . / . , . kVr t . i . / , d . Ak* I \j\WKffs)\'áa\ *T^C| / \j\W)(<»)\'** 

T \ [ vlp 

Jfc S 
4 + 1 1/n - + 1 

$ c ( j .(_)_"-' [yi(R/)(«)i"<-,] d«) ( y .'-"•(.),^-«-^' d_) 

here, we used Minkowski's inequality, then Holder's inequality for the surface integral 
with parameter p/q > 1, and then again Holder's inequality for the integral over 
s G (k, k + 1) with parameter p. 

Now we proceed again as in the proof of Theorem 2.4 and obtain (2.20), (2.21) 
and (2.22), of course with p, p' instead of q, p. Among other changes we have 

. = c _ ( / vx-*\x)\x\-N*'dx\ Vk 
k<\x\<k + i 

and the condition (2.18) is exactly the condition (2.9). 

To estimate Sn. we arrive again at (2.23), but now we have q < p, and consequently, 
the necessary and sufficient condition reads 

*+ - *+ - riq * Ti * 

{I {Iu(y)yN~ldy) (/vl~p'MyN~l~Np'dy) 
k s k 

1 1 / r 

(2.33) x t ; 1 ^ ^ ) ^ - 1 - ^ ' ds > < oo 

with 1/r = l/q— \/p (see, e.g., [5, Theorem 1.15]), note that condition (2.33) replaces 
condition (2.24). Using again (2.23) in (2.13), but now with q < p, we obtain 

(2.34) S2 š cз 
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The Holder inequality, used for the surface integral with parameter p/q > 1, yields 

*+1 y/pq/q^i/i 
£ [ / J v{y)yN-1\{Rf)(<ry)\pdyd^ J 

{
CO r . np/p q/p\p/ql/p 

J2[ J v(x)\xVf(x)\Pdx\ I 
k=0 *<W<*+1 

Y \ J v(x)\x-Vf(x)\pdx\ | 

*= 0 *<W<*+i 

where we used (0A6) with r = q/p ^ 1. Formulas (2.22) (with p instead of q) and 
(2.35) lead to (2.6). 

Consequently we have proved the sufficiency part of the following assertion. 

2.7. Theorem. Suppose u, v are radial weights on RN, / differentiate on RN, 
/ (0) = 0. Let p, /"), q, q satisfy (2.32). Then the inequality (2.6) holds with a constant 
C > 0 independent of f if and only if the conditions (2.9) and 

sup | / ( / " ( * ) d * ) r f ( / v'-P'{z)\z\-NP'dzJq 

fc<|x|<fc+i |*|<|-|<fc+i *<M<W 
N l / r 

(2.36) x vl-p'(x)\x\-N*>' dx \ = C\ < oo 

are satisfied, where - = - — - . 
' r q p 

P r o o f . The sufliciency of (2.9) and (2.36) was shown in Remark 2.6 since (2.36) 
implies (2.33). 

To prove necessity, we again choose / from (2.26) and obtain (2.27), and then we 
use Theorem 0.6 similarly as we used Theorem 0.2 in the proof of Theorem 2.4. D 

The theorem analogous to Theorem 2.7 for / such that /(oo) = 0 has the following 
form: 

2.8. Theorem. Suppose u, v are radial weights on RN, / differentiable on RN, 
/(oo) = 0. Let p, p, q, q satisfy (2.32). Then the inequality (2.6) holds with a 
constant C > 0 independent of f if and only if the conditions (2.30) and 

« j p { / ( / « U ) d * ) r , ( / vl-''(z)\z\-N"' dz)r1 

*<W<fc+i Jfe<|*|<M M<M<*+-

} l /r 

= c; < 
l /r 

~* oo 
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are satisfied, where •--.= -- — --. 
7 r 1 P 

3. REMARKS AND EXAMPLES 

3.1. According to Remark 0.5 (i), the theorems from Section 1 and Section 2 can 
be extended to the case 

1 <q<p< oo, i<q<p<oo 

and at least sufficient conditions for the validity of the corresponding weighted Hardy 
(Friedrichs) inequalities in amalgams can be derived. The formulation of the corre­
sponding results is left to the reader. 

3.2. Let us consider a special case of parameters p, p, q, q, namely such that 

(3.1) q < q and p > p. 

The inequality (0.16), used for r = q/q, leads to the estimate 

r CO r n + l , , " / * . l / « , OO " + 1 v 1/f 

[J2[ J u(x)\f(x)\Ux\ J <(5;/iiW|/(*)|!dxJ 
n—U n n-=U n 

oo . i 

(3-2) = (J u(x)\f(x)\< dx^j \ 

Supposing that 

(3.3) 1 < p ^ q and f(0) = 0, 

we can estimate the last integral by the "classical" Hardy inequality 

oo . i OO . , 

(3.4) ^Ju(x)\f(x)\q<\x^ \c(Jv(x)\f'(x)\p<\x} 

0 0 

provided the (necessary and sufficient) condition 

i/« / r \ I/P' 
(3.5) sup (fu(x)dx\ ( íví~','{x)dx\ =Cx < oo 
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p/p\ p/p\ 1/p 

holds. Using again inequality (0.16), now with r = p/p, we obtain that 

/ 7 \ i / p r "V ) I / P 

( / v(x)\f'(x)\p dx) =\52 v(x)\f'(x)\p dx \ 
o ' "-»=»» ' 

= {E([/^)i/'wrH ) } 
( ~ r " t 1 IP/PI i/p 

(3.6) M - M / ^i/'^r^J } • 
From (3.2), (3.4) and (3.6) we obtain the Hardy inequality in amalgams, 

(3-7) ll/lkv,,- < C\\f'\\v,p>f 

which was derived under the unique condition (3.5), supposing, of course, that (3.1) 
and (3.3) hold. 

Condition (3.5) does not depend on p, q. Since conditions (3.1) and (3.3) imply 

(3.8) 1 < p ^ 7, 

we have from Theorem 0.2 that the two conditions (0.9) and (0.10) are necessary 
and sufficient for (3.7) to hold. 

Thus, we can derive (3.7) in two ways: either from Theorem 0.2 under the nec­
essary and sufficient conditions, or via the "classical" Hardy inequality (3.4) under 
condition (3.5). The following example shows that condition (3.5), being sufficient 
for (3.7) to hold, is not necessary. 

3.3. Example. Take 

(39) " W = iT+7 f o r * € ( n , » + l), » = 0,1,2, . . . , 

v ( x ) = l for xe (0,oo). 

Taking s = ?7i £ N in (3.5), we have that 

-/f / 7 \ 1/P' / °° "V i \ i/f 
(y*(«)d*) (yv«-''(*)d*) = ( E y ;rrrd*) '?7,,/p/ 

m 0 — n 

, / °° 1 \ ! / f 

- - '^(E -TT) -~= 
consequently, condition (3.5) is not fulfilled. 
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Further, we have that 

m+ì ., m+s l / ï / ГОГ \ 1/P' 
( f u{x)dx\ ( í vl-p'(x)dx] 

m+s m 

1 ( i - * ) 
m + 1 

i / í 
sV < C 

for every s £ (0, 1) and for m = 0, 1, 2, ..., so that condition (0.10) is satisfied. 

Finally 

" + 1 . я / л . 1/я ., m _ " + 1 

*7<M i / ^ r m / t \ P ' / P S I/P' { °° / r \я/я\чяr m / r . \PІP\l 

E(/-»-•) } {E(/•-'(•>-•) } 
Í

0 0 / I \ ł/«Ч ! / ł 
ү^ ( _ L . j i {ш}1/" < cW-ílï+o/í+i/ŕ' 

t i — t n * Z У = Cm- 1 l« + 1 l« + 1 l ' 5 ' , m E N 

and this will be finite if 

(3.10) - - + r + ^ 0 . 

q q p' 

Then also condition (0.9) will be satisfied. 

But (3.10) is fulfilled if we take, e.g. 

1 1 - n - U 

q = - , q = U , p = -

and also conditions (3.1), (3.3) and (3.8) are satisfied. 

This example shows that the consideration of weighted amalgam norms allows to 

use a broader class of weight functions «, v (e.g., that from (3.9)) than the application 

of the weighted ZAnorin. 
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