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(Received October 21, 1994) 

INTRODUCTION 

Back in 1965, A. Pietsch asked if a locally convex Hausdorff space (lcs) E must be 
nuclear whenever it has the property that every continuous bilinear form on E x E 

is nuclear (cf. [10], 7.4.5). The question remained open, even within the framework 
of Banach spaces where it translates to what is known as the "bounded non-nuclear 
operator problem": is a Banach space X necessarily finite-dimensional when all 
operators from X to its dual X* are nuclear? 

The related "compact non-nuclear operator problem" has a negative solution. In 
1983, G. Pisier [12] constructed (separable, infinite-dimensional) Banach spaces P 
which, among others, have the property that every approximable operator P -> P 
is nuclear. In 1990, K. John [8] observed that this is also true for approximable 
operators p(m) -» p(n) for any choice of positive integers m and n; here p(m) is the 
ra-th dual of P . He even proved that actually every compact operator P —» P* is 
nuclear. 

It is open whether there are "Pisier spaces" which do not contain a copy of t\ 
(cf. [9]). In fact, for any such space P all operators P -± P* would be nuclear, and 
the answer to Pietsch's question would be negative even when restricted to Banach 
spaces. 

Nevertheless, the Pisier spaces P can be used to give a negative answer to Pietsch's 
question within the class of Schwartz spaces; the clue is to change P's topology in 
such a way that compactness of the involved operators is automatic. An appropriate 
selection of a sequence of continuous seminorms on the resulting space makes it even 
possible to construct a non-nuclear Frechet-Schwartz space on which all bounded 
bilinear forms are nuclear. 
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The topology in question is the compact-open topology on P. More generally, 
given any Banach space X, let us write 

for X endowed with the topology of uniform convergence on compact subsets of X*. 

This topology is known to be the finest Schwartz topology on X which is consistent 
with the duality (X,X*); equivalently, it can be characterized as the coarsest locally 
convex topology on X which renders compact all continuous operators from X into 
any Banach space. See e.g. [2] for definitions and background. If X is infinite 
dimensional, then X0 can never be nuclear. One way of seeing this is by using an 
immediate consequence of a result of S.Bellenot [1] on factorization properties of 
compact Hilbert space operators. It follows from this that regardless of how we 
choose the infinite dimensional Banach space X, every Hilbert-Schmidt operator u\ 

£2 -> £2 admits a factorization u\ £2 -> X A £2\ see also [4]. Clearly, v can be chosen 
compact, so that v is continuous from X0 to £2- Nuclearity of X0 would therefore 
entail that every Hilbert-Schmidt operator on £2 is nuclear—a plain contradiction. 

RESULTS 

In particular, if P is any Pisier space, then Fo cannot be nuclear. However: 

Theo rem 1. If P is a Pisier space, then every continuous bilinear form on P0 x P0 

is nuclear. 

A stronger result is the following: 

Theorem 2. If P is a Pisier space, then 

P0 o e P0 = P0 &„ p 0 . 

Recall from Pisier's work [12] that P ®£ P = P ®n P. So the above can be 
looked at as a "quadratic" counterexample within the class of Schwartz spaces to 
Grothendieck's conjecture [2] that if two lcs E and F are such that E®eF = E®nF, 
then one of them must be nuclear. Recall that there are "non-quadratic" such coun­
terexamples, even within the class of all Frechet-Schwartz spaces having a basis whose 
topologies are generated by hilbertian seminorms (cf. [7]); however, the hilbertian 
nature of such spaces prevents the existence of "quadratic" counterexamples of this 
kind (cf. [6]). Nevertheless, using Theorem 2 we are able to construct "quadratic" 
counterexamples within the class of all Frechet-Schwartz spaces: 
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Theorem 3. There exists a non-nuclear Frechet-Schwartz space F such that 
(a) F ®£ F = F ®n F and 
(b) every continuous bilinear form on F x F is nuclear. 

PRELIMINARIES 

We are going to use standard terminology and results on Banach spaces, operator 
ideals, and locally convex spaces; our main references are [11] and [3]. Let us just 
recall some basic notions. 

Let E be any lcs (all lcs will be over K = R or C) . The system of all closed, 
absolutely convex neighbourhoods of zero in E will be denoted by 

U{E). 

Given U G U(E), let pu be its gauge functional, let 

Eu 

be the Banach space obtained from completing the associated normed space 

E/ker(pu), and let 

$ [ / : £ - > Ev 

be the corresponding canonical map. If V G U(E) is contained in U, then there is a 
unique $uv £ C(Ev,Eu) such that $u = $uv°$v-

We write 
B(E,E) 

for the space of all continuous bilinear forms E x E -> K. Given 0 G B(E,E), we 

can find U G U(E) such that 

\P(x,y)\ ^PU(X) -Pu(y) 

for all x,y G E. It follows that /3 admits a factorization /? = 0u°(^u x $u) with 
Pu G B(Eu,Eu). Since 

C(Ev,Eu*) -+ B(E,E): u^ (*&otio*c(-), •) 

is clearly a linear injection, we arrive at the identification 

B(E,E)= | J C(Eu>Eu*). 
ueu(E) 
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Let J\f denote the ideal of all nuclear operators between Banach spaces. The 
members of 

BM(E,E):= ( J M(Eu,Eu*) 
ueu(E) 

are called the nuclear bilinear forms on E x E. To say that a bilinear form /3: 

E x E -> K is nuclear thus amounts to requiring the existence of a U G U(E) and 
of sequences (x*n), (yn) in Eu* such that 

£ll<lk-H^lk<^ 
n 

and 

n 

for all x, y G E. Here we have used that the adjoint of $u identifies E\j with a linear 
subspace of E*, the continuous dual of E. 

PROOFS 

Though Theorem 2 implies Theorem 1, we start by a simple direct proof of the 
latter result. 

P r o o f of T h e o r e m 1. Let (3 G B(P0, P0) be given. By what we have just 

explained, there is a U G U(P0) together with an operator u G C(Pu,Pu*) such that 

P(x,y) = (($*ju$u)x,y) 

for all x,y G P. By P0 's nature, v := $*jU$u'' P —> P* is compact; it was shown 

in [8] that it is even nuclear. Therefore it factors v: P A Co -> t\ —> P* with 

A a diagonal operator and a, b G C(P,CQ). Clearly, we may even chose a and 6 

to be compact, so that a = a$v and b = b$v for some V G U(Pc) and suitable 

operators a,b G £(Py,co). Of course, we may suppose V C U so that, if we define 

v G Af(Pv,Pv*) by u := 6*Ad, then i; = ^ y i i ^ t / v - It follows that 0y: Pv x Pv -> 

K: (x,y) »-> (vx,y) is a nuclear bilinear form, and since /5 -= ^©(^V x ^V), we are 

done. • 

In order to prove Theorem 2, we must look closer at the map 

(*) C(PV,Pu) "> M(P,P*)'U h-> *r / t i*r / 

established in the preceding proof. We have already seen that for each u G 

C(Pu,Pu*) there is a V C U inU(P0) such that $*uvu$uv belongs to M(PV,PV*)\ 
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so the range of the map (*) is actually the union of all M(PV, PV*),V G U(P0). We 
are going to show that all of C(Pu,Pu*) is actually mapped into J\f(Pv,Pv*) for a 
single V. More precisely: 

Proposition. No matter how we select a neighbourhood U G U(P0), it contains 

a neighbourhood V G U(P0) such that u t-> $uv*u$uv defines a bounded operator 

ofC(Pu,Pu*) totf(Pv,Pv*)-

P r o o f . We shall now use that, by [12], J\f(P,P*) is a closed subspace of 
C(P,P*)\ 

The adjoint of $u ® $u: P®-nP —> Pu^nPu is given by u »-> <&u*u$u, i-e. the 
map appearing in (*). 

Since U belongs to U(P0), $u is compact, and so the operator in (*) is compact 
as well. There is thus a null sequence (vn) in J\f(P,P*) such that {$u*u$u'> u G 
Bc(Pv,Pum)} IS contained in conv{vn: n G N} . We may even assume that each vn 

is of the form vn = $u*un$u where un G Bc(pv^p*), see e.g. 9.4.2 in [3]. 

Each vn has a decompsition vn = bn*Anan where an and bn are compact operators 
P —> Co and A: Co -> l\ is a diagonal operator. Let v(-) denote the nuclear norm. 
Clearly, we may suppose that ||an | | • | |An | | • ||bn|| ^ 2 • v(vn), and we may arrange 
for | |An | | ^ 2 and max{||an||, ||6n||} ^ v(vn)i for each n. In particular, lim ||an | | = 

n—>oo 

lim | |M = 0. 
n—>oo 

Introduce the Banach space X = Co(co) of all norm null sequences in Co, and let 
pn: X —> Co be the projection onto the n-th coordinate, n G N. Then a: P -> X: 

x i-> (anx)n and b: P —> X: x »-> (6n.r)n are well-defined operators, and we may 
write vn = b*pn*Anpna since an = pna and bn = pnb for each n. A standard 
diagonalization argument reveals that a and b are even compact. Therefore we can 
find V G U(P0) satisfying V C U, together with operators a,b G £(Fvs-Y) such that 
a = a$v and 6 = 6$v. Write vn = <lv*Wn$V where wn := b*pn*Anpna belongs to 
Af(Pv,Pv*)- Since the involved operators are continuous and since $v has dense 
range we may conclude that $uv*un$uv — u)n G N(Pv,Pv*)- Note that 

v(wn) = v(§uv*un$uv) = v(b*pn*Anpna) 

^\\a\\.\\b\\-v(An)^2-\\d\\.\\b\\. 

Let now u G Bc(pVip*) be arbitrary. There are An ^ 0 such that v := $u*u$u has 
the representation v = Yn^nUn in Af(P,P*). To complete the proof, just observe 
that w := Yln Xnwn exists in Af(Pv,Pv*) and equals $uv*u$uv- D 

The p r o o f of T h e o r e m 2 is now immediate. Given U G U(P0), let V G 

ZV(P0) be such that V C U and u H-> S t / y ^ t / v maps C(Pv,Pu*) = (Pi/ ®TT PUY 
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continuously into J\f(Py,Py*) and hence continuously into (Py ®£Py)*. Our map is 
the adjoint of $uv®$uv which therefore is continuous from Py ®£Py to PtJ 0,- PtJ. 
But since Po0 ePo and Po07-Po have natural representations as projective limits of 
the Pu®£Pu and the Pt/07-PLl, respectively (U G U(P0); cf. [3], 16.3.3 and 15.4.3), 
we may conclude that the identity P0 0 e P0 —•> P0 0?- P0 is continuous. D 

Theorem 1 follows from Theorem 2: in fact, the latter implies that every contin­
uous bilinear form on P0 x P0 is integral. It must be nuclear since each U G U(Po) 
contains a V G U(Po) such that $.yv • IV -> -°t/ is compact; cf. [11], 24.6.3. 

Let us now proceed to our final goal. 

P r o o f of T h e o r e m 3. As before, (b) follows from (a); indeed, (a) and (b) 
are equivalent since we are dealing with metrizable lcs. 

Given an lcs E, we call a neighbourhood U G U(E) non-nuclear if there is no 
V G U(E) such that the operator $uv: Ey -+ Eu is nuclear. Clearly, if U G U(E) 

is non-nuclear, then any V G U(E) which is contained in U is non-nuclear as well. 
Certainly, E is a non-nuclear lcs if and only if U(E) contains non-nuclear members. 

Let P be a separable Pisier space. Then [P*,cr(P*.P)] is separable; let {xn: 
n G N} be a countable dense subset of this space. By Theorem 2, each U G U(Po) 

contains aVy G U(PQ) such that $uvv '- Pvu ~> Pu is compact and $uvv 0 ®uvv '• 

Pyu 0 e Pv/y —> Py 07T PO* is continuous. Since P0 is a non-nuclear Schwartz space, we 
can construct a decreasing sequence (Un)n of non-nuclear members ofU(Po) by fixing 
a non-nuclear Ui G U(Po) and then setting Un+1 = Vun for each n G N; moreover, 
we may certainly assume that xn G U° for each n. Then (J U° is weak * dense in 

n 
P*, and so P|Un = {0}. Consequently, the seminorms pun generate a metrizable 

n 

lc topology Tm on P . The completion of [P, 7^,] is a non-nuclear Frechet-Schwartz 
space which has the property (a). • 

R e m a r k s . If E is P , or [P,a(P, P*)], then £ 0 e E = E 0^ £ and so one might 
conjecture that this also holds when E is P endowed with any lc topology T which 
is compatible with (P, P*). Such a conjecture, however, turns out be too optimistic. 

(a) For a first counterexample, take T to be the lc topology T2 generated by 
all hilbertian seminorms on P , that is, by all seminorms of the form ||tx(-)||, u any 
operator from P into any Hilbert space. It was shown in [5] that P2 := [P, T2] 
cannot be nuclear. This implies that P2 0 e P2 7- P2 0^ P2 . In fact, we may either 
invoke [6] or argue that otherwise each U G U(P^) would contain a V G 2Y(P2) such 
that ^ t /v- Pi/0e-°v —> Pu®irPu is continuous, equivalently, that $uv '• Pv -> PL! 
would be a Hilbert-Schmidt operator between Hilbert spaces [4], contradicting the 
non-nuclearity of P 2 . 

(b) Another example can be obtained by essentially repeating the argument given 
at the end of the introduction. 
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Let P2,o be the space P with the lc topology generated by all seminorms ||v(-)||» v: 

P —> £2 any compact operator. It follows from Bellenot's result [1] mentioned in the 

introduction that every Hilbert-Schmidt operator admits a factorization through P 

and hence through P2.0 since we may assume the factors to be compact. As before, 

-p2,o ®e -°2,o ¥" P2,o ®n -p2,o- otherwise P2,o would be nuclear and this would force 

all Hilbert-Schmidt operators to be nuclear.—P2.0 and P2 are different whenever P 

contains a copy of t\\ see [9] for more on this. 

We conclude by posing a more restricted version of the problem we started with and 

which has its origins of course in the main result of [7]: Is there a non-nuclear Frechet-

Schwartz space F with a basis such that all continuous bilinear forms F x F - i K 

are nuclear or, equivalently, such that F <g>£ F = F ®n F? 
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