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SOME RESULTS CONCERNING SECOND AND THIRD ORDER 

NEUTRAL DELAY DIFFERENTIAL EQUATIONS 

WITH PIECEWISE CONSTANT ARGUMENT 

GARYFALOS PAPASCHINOPOULOS and JOHN SCHINAS, Xanthi 

(Received April 30, 1992) 

INTRODUCTION 

Recently, there has been a lot of work concerning differential equations with piece-
wise constant argument (see Aftabizadeh, Wiener and Xu [1], Cooke and Wiener [4], 
[5], Huang [6], Ladas, Partheniadis and Schinas [7], [8], Papaschinopoulos [9], Pa-
paschinopoulos and Schinas [10], Partheniadis [11], Wiener and Cooke [12] and the 
references cited therein). The current strong interest in these equations is moti
vated by the fact that they describe hybrid dynamical systems (a combination of 
continuous and discrete) and therefore combine properties of both differential and 
difference equations. We also note that these equations may have applications in 
certain biomedical models [2]. 

In this paper we study the second and the third order neutral delay differential 
equations with piecewise constant argument of the form 

(i) ^(y(t)+Py(t -1)) = - < n / ( 2 [ ^ ] ) , 

(2) ^ - ( 2 / W + P 2 / ( t - i ) ) = - < z y ( 2 [ ^ ] ) 

where t G [—1, oo), p, q are real constants and [•] denotes the greatest-integer function. 
We note that some results concerning first-order equations of this form were in

vestigated in [10] and some results concerning second order equations of the same 
form with p — 0 are included in [7] and [8]. 

A function y: [—l,oo) .-> U is a solution of (1) if the following conditions are 
satisfied: 

(i) y is continuous on [— l,oo), 
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(ii) jj;(y(t) + py(t — 1)) = g(t) exists on [0,oo) and g is continuous on [0,oo), 

(in) j^r(y(t) + py(t — 1)) exists on [0, oo) except possibly at the points 2n — V 

?i G {1, 2, . . .} where one-sided second derivatives exist, 

(iv) y satisfies (1) on the interval [0,1) and on each interval [2?i — l,2;i + 1). 
n G { 1 , 2 , . . . } . 

A function y: [—1, oo) i-> U is solution of (2) if the following conditions are satis
fied: 

(i) y is continuous on [— l,oo), 
(ii) -^r(y(t) + py(t - 1)) = f(t) exists on [0,oo) and / is continuous on [0,oo), 

(hi) ^r(y(t) + py(t — 1)) exists on [0,oo) except possibly at the points 2n — V 

n G {1, 2, . . .} where one-sided third derivatives exist, 
(iv) y satisfies (2) on the interval [0,1) and on each interval [2n — l,2?i -f- 1), 

u G { l , 2 , . . . } . 
As is customary a solution of (1) is called oscillatory if it has arbitrarily large 

zeros. 
In Proposition 1 of this paper we prove that if q ^ —2 then for every initial 

function no : [—1,0] H-> U continuous on [—1,0] and for every ai G U there exists a 
unique solution y(t) of (1) such that y(t) = ?4o(£), —l^t^O and y(l) = a\. We also 
find necessary and sufficient conditions in order equation (1) to be asymptotically 
stable (see Proposition 2 below) in contrast to second order equations studied in [11] 
which are not asymptotically stable. In Proposition 3 we give sufficient conditions 
for the oscillatory behavior of the solutions of (1). In Proposition 4 we prove that 
if q ^ —6 then for every initial function y$\ [—1,0] H» R continuous on [—1,0] and 
for every a i , a 2 G R there exists a unique solution y(t) of (2) such that y(t) = yo(t), 

— 1 ^ t ^ 0 and y(l) = Oi, y(2) = a-i- We also prove that the equation of the form (2) 
is not asymptotically stable (see Proposition 5 below). Finally in Proposition 6 we 
give two sufficient conditions for the oscillatory behavior of the solutions of (2). 

MAIN RESULTS 

We prove now our main results. 

I . T l I E SECOND ORDER EQUATION 

First we deal with the second order equation of the form (1). 

Proposition 1. Consider equation (1) where q ^ - 2 . Let y0: [-1,0] •-•> IR be a 
continuous function on [—1,0] and a0,Oi G IR. Then if p ^ 0 (resp. p = 0) equation 
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(1) has a unique solution y(t) which satisfies 

(3) y(t)=yo(t), * € [ - l , 0 ] (resp. y(0) = a0), y(l) = ai . 

Moreover for t = 2n - 1 + 0, n € {0,1 , . . .} , 0 < 0 < 1 the function y(t) is given by 

V(t) = (-P)2n (yo(0 - 1) + (\(&2 - 0) - 0) ao + (0 - l ) a_ x ) 

+ ( l - 0 ) a 2 n _ ! + ( 0 + | ( 0 - 0 2 ) ) a 2 n 

(4) +( t f-_ f l)( |_£)_3(_p)-n--.-ia 9 f c 
fc=0 

mid ift = 2vi + 0, n € {0 ,1 , . . .} , 0 < 0 < 1 

*(*) = (~P)2n+l (vo(9 - 1) + ( f (V2 - 0) - 0) a0 + (0 - l j a - i ) 

+ ( l - 0 + | ( 0 2 - 0)(p - 1)) a2n + 0a 2 n + 1 

(5) + (^_^)( |_ | )g(_ p ) 2 n-2fc a 2 f c 

fc=0 

where a_i = yo(—l), ao = 2/o(0) and a2 n+i, a2n, a2n_i are given by the difference 

equation 

( ^271+3 \ / b l l bl2 h3\ / «2n+V 

«2n+2 J = b21 b22 &23 Cl2n 
a'2n+l/ V 1 0 0 / \ a _ n _ i , 

2p2 - 4p - Ъq + 4pg + G 8p - 4p
2
 + q2 - Apq — 4 

Ьn = — — , 61 2 = — — , 
- + a 2 + g 

2p(p + a - 2 ) 2 ( 2 - p ) 4 p - a - 2 
" 1 3 = Г— , l>21 = — Г — , Һ-2 = 

Ъ-23 = 

2 + q ' 2 + g ' " 2 + g ' 
2p 

2 + q 

P r o o f . To prove our proposition we consider a solution y(t) of (1) such that (3) 
is satisfied. For each t e [-1, oo) there exists a n G {0,1,...} such that n ^ --|^ < 
n + 1. Then 2n - 1 ^ t < 2n + 1, nE {0,1,...}. We set 

(7) 2/(n) = a n , n 6 {-1,0,1,...} . 
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Thus from (1) and (7) it follows 

d 2 

(8) -fi2(y(t)+py(t-l)) = -qa2n 

where 0 ^ t < 1, n = 0 or 2n - 1 ^ t < 2n + 1, n G {V 2, . . .} . 
If 

(9) /?n = ^ f o ( 0 + . w ( * - l ) ) at * = n, n € { 0 , l , . . . } 

then by integrating (8) from 2n to t where l G [0,1), n = 0 or t G [2?i - 1, 2?i + 1), 
n G {1,2, . . .} we take 

(10) ^(y(t)+py(t - 1)) = fan - q(t - 2n)a2n. 

Hence, by integrating (10) from 2n to t where t G [0,1), n = 0 or t G [2n - 1, 2?i + 1), 
n G {1,2, . . .} we get 

(11) y(t)+py(t -l) = (t- 2n)fi2n + a2n+pa2n-1 - l(t - 2n)2a2n. 

Since y(t) is continuous in [ -1 , oo) by taking the limits as t -» 2n - 1, t —> 2n + 1 
in (11) and using (7) we obtain correspondingly 

(12) a2n_i + ^ a 2 n - 2 = a2n+pa2n-i - /32n - - a 2 n , n G {V2 , . . . } . 

(13) a2n+i +pa2n = a2n + pa2n-i + f52n - - a 2 n , n G {0,1,. . .} . 

By the continuity of the function g given previously in the definition of the solution 
of (1) and if we take the limits as t —> 2n — 1, t —> 2n + 1 in (10) we get from (9) 
respectively 

(14) /J2n-i = fon + qa2n, n G {V 2, . . .} . 

(15) /32n+i = /32n - qa2n, n G {0,1,. . .} . 

Using (12), (13), (14), (15) and performing some algebraic calculations we can prove 
that a2n-fi, a2n, a2n_i are given by the difference equation (6). 

We prove now that y(t) satisfies (4) and (5). Applying Lemma 3 [11, p. 4G3] to 
(11) and using (13) we take for t = 2n - 1 + 0, n G {0,1, . . .} , 0 ^ 6 ^ 1 

7 1 - 1 

У(t) = (~p)2nУo( - 1) + X) (-P)2n-2k-1z{2k + ) 
k=0 

n 

(16) + ^2 (~p)2n~2kz(2k -1+69) 
k=i 
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and for t = 2/i + 0, n € {0 ,1 , . . .} , 0 < 0 < 1 

y(t) = (-p)2n+1y0(e -\) + J2 (-P)2n_2fc2(2fc + 0) 
A;=0 

n 

(i7) +j2(-p)2n~2k+l=(2k-l+e) 

fc=l 

where 

z(2k + 0) = ( l - | 0 2 + e(p - 1 + ! ) ) a2fc + 0a2k+l + p(\ - -)a2fc_i, 

_(2* - 1 + 0) = ( l - | ( 0 - l ) 2 + (0 - l ) (p - 1 + | ) )a2fc 

+ ( . - l ) a 2 H . i + p ( 2 - ( 9 ) a 2 f c _ i . 

By setting 

C(») = £ ( -P) 2 "" 2 *-^, , c2(u) = £ (-p)2"-2fc-1a2fc> 

(18) fc=0 „ *= 0 

C3(») = £<-P>2U"2fc°---» 
fc=0 

we can easily get 

(10) c i ( n ) + p c 3 ( n ) = p ( - p ) 2 n a _ i . 

Moreover from (16) and (18) we obtain for t = 2/t - 1 + 0, n € {0,1 , . . .} , 0 < 0 < 1 

y(t) = (-P)2nyo(0 -\) + (9 + p- 0P)Cl(n) + (A(0) - P A ( 0 - l))c2(n) 

+ (2p - p0 + 0 - l)c3(n) + (0 - l ) a 2 n + i + A(0 - l )a2 n + (1 - 0)a2n_! 

(20) - (-p)2n (A(0 - l)a0 + (0 - l)ai + p(2 - 0)a_x) 

where A is a function defined by A(0) = 1 - §02 + 0(p - 1 + §). 
Also from (17) and (18) we take for t = 2n + 0, n € {0,1 , . . .} , 0 ^ 0 ^ 1 

y(t) = (-p)2n+1y0(e - 1 ) + (OP2 -P2 - eP)Cl(n) 

+ (p2A(0 - 1) - pA(0))c2(n) + (p - pB - 2p2 + 9p2)c3{n) 

+ (p + 6- p9)a2n+i + (A(0) - pA(0 - l ) ) a 2 -

(21) - (-p)2n+1 (A(0 - l)a0 + (0 - l)ai +p(2 - 0)a_i ) . 

505 



Furthermore put t ing in (20) 9 = 0 and using (7) we get 

PCi(n)+ ((p - I)2 +pq) c2(n) + (2p - l )c 3 (n) 

(22) = a 2 n +i + (p + q- 2 )a 2 n + (~p)2n ((2 - p - q)a0 - ax + (2p - l ) a _ x ) . 

If p ^ 1, relations (19) and (22) imply that 

c\(n) = pva2n+i +pua2n + (-p)2n+l(pa0 + vav) - (vqp2 +p)c2(n), 

c3(n) = -va2n+i - pa2n + (-p)2n(na0 + vay + a_ i ) + (vqp + l)c2(n) 

where v = r}\v2, P = [ +_?i~p • Then from the relations (20) (resp. (21)), (23) we can 

show tha t y(t) satisfies (4) for t = 2 ? i - l + <9, (resp. (5) for t = 2u + <9), n G {0, V . . . } , 

0 ^ 9 ^ 1. 

Suppose now p = 1. By adding (12) and (13) we can take 

n n 

(24) a 2 n + i - ai = " ^ (a2Jb+i ~ ci2k-\) = " ^ ( (1 - a)a2fc - a2 / c_2J . 
/ c = l A; = l 

So from (18) and (24) it follows tha t 

(25). qc2(n) = (1 - q)a0 - ax + a 2 n + i + (q - l)a2n 

Then, using (20) (resp. (21)), (19) and (25) we can easily prove tha t y(t) satisfies 

(4) for t = 2n-l+9 (resp. (5) for t = 2n + <9), n G { 0 , 1 , . . . } , 0 ^ 9 ^ 1 in the case 

p = 1. Therefore we proved tha t if y(t) is a solution of (1) which satisfies (3) then 

y(t) is defined by (4) and (5). 

Conversely let y be a function which satisfies (4) and (5). We can prove that y is 

a continuous function which satisfies (1) and (3). Therefore y is the unique solution 

of (1) which satisfies (3). This completes the proof of the proposition. • 

In the following proposition of this paper we study the asymptotic stability of (1). 

P r o p o s i t i o n 2. Consider equation (1), where q / —2. Then, (1) is asymptotically 

stable if and only if the condition 

(26) 0 < p < l , 0<q<2p2 + 2 

is satisfied. 

P r o o f . Suppose first tha t (1) is asymptotically stable. Then it is obvious 

that the difference equation (6) is also asymtotically stable. We can find that the 

characteristic equation of the coefficient matrix of (6) is the equation 

(27) x3 + mx2 + K2X + H3 = 0 
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where 

6O - 2p2 - 4pq - 4 4p2 - \pq + q + 2 -2p2 

^i — - , A^2 — — , ^ з — 
2 + q 2 + q 2 + q 

Since (6) is asymptotically stable, we have that every root of (27) is of modulus 

less that 1. Then from Lemma 4 [11,p.467], the following conditions are satisfied 

(i) (O + 2 ) g ( l - p ) > 0 , (ii) (r, + 2)(2p 2 -G + 2 ) > 0 , (iii) q(q + 2) > 0, 
(28) 

(iv) (q + 2)(-2p2 + 2pq + 2- q) > 0, (v) pq(-4p + q+2 + 2p2) > 0. 

From (i) and (iii) of (28) we take p < 1 and q > 0 or q < - 2 . 

If q > 0 from (ii) of (28) we take q < 2p2 + 2 and from (v) of (28) it holds p > 0. 

Thus (26) is satisfied. 

If q < —2 from (ii) of (28) we have 2p2 + 2 < q which is a contradiction. Hence 

we proved that if (1) is asymptotically stable then (26) is satisfied. 

Conversely, suppose that (26) is satisfied. Then, we can easily prove that all the 

conditions of (28) hold. So, from Lemma 4 [H,p.467], we have that equation (6) is 

asymptotically stable. Hence there exist constants A' > 0, 0 < p < 1 such that 

(29) | a 2 n | < A p n , 7 ^ ( 0 , 1 , . . . } . 

Therefore, from (4), (5) and (29) we can easily prove that (1) is asymptotically stable. 

This completes the proof of the proposition. • 

In the following proposition the oscillatory behavior of the solutions of (1) is 

obtained. We need the following definition: 

Consider the difference equation 

Xn+i = Axn, n e {0,1,...} 

where A is a r x r matrix. We say that a solution of the difference equation oscillates 

if and only if any component of the solution is not eventually of fixed sign. 

Proposition 3. Consider equation (1), where q ^ —2. Tiien. every solution of 

(1) oscillates if one of the following conditions is true 

(30) p<I> , < m i n { ^ ^ , - 2 } , 

(31) p=0 and q > 0, 

(32) p = 1 and q > 0. 
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P r o o f . From Lemma 1 [3, p. 52] every solution of tlie difference equation (6) 
oscillates if the characteristic equation (27) of the coefficient matrix of (G) lias no 
positive roots. We can prove tliat if (30) is satisfied then K-I ^ 0, i = 1,2,3, Hz-
are defined in (27). This implies that equation (27) has no positive roots and so 
every solution of the difference equation (6) oscillates. Then it is obvious that every 
solution of (1) oscillates if the condition (30) is satisfied. 

Suppose that the condition (31) holds. Then using Lemma 1 [3, p. 52] and Cor-
rolary 1 [11, p. 462] we can show that every solution of the difference equation (G) 
oscillates. This implies that every solution of (1) oscillates. 

Let now the condition (32) is satisfied. Then from (12), (13), (14), (15) we take 

(33) <l2n+4 + — a2n+2 + TT" 0-2n = 0. 
2 + q 2 + q 

Using Corrolary 1 [11, p. 4G2], we can prove that every solution of (33) oscillates. 
Therefore every solution of (1) oscillates. Thus the proof of the proposition is com
pleted. 

II. T H E THIRD ORDER EQUATION 

We consider now the equation of the form (2). 

In the following proposition we give a result concerning existence and uniqueness 

of the solutions of (2). 

Propos i t ion 4. Consider equation (2) where q ^ —G. Let Ho : [—1,0] »->• IR be 
a continuous function on [—1,0] and an, Oi, O2 £ ^- Then, if p ^ 0 (rcsp. p = 0) 
equation (2) has a unique solution y(t) which satisfies (3) and 

y(2)=a2. 

Moreover for t = 2n - 1 +6, n € {0,1, . . .} , 0 ^ 9 ^ 1 the function y(t) is given by 

y(t) = (-p)2nyo(8 - l) + e-^-p±a2n+l 

+ (g(2-g) + ( g - ^ ) ( g - | + f ) )a 2 , t +
( g - 1 f - 2 ) a a , , - 1 

n - l 

+ (-p)2n(\x(e)ai + A2(l9)oo + \3(0)a-i) + \,(0) £ (-p)2n-2k-la2k 

k=0 
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and if t = 2n + 9, n e {0,1,...}, 0 ^ <9 < 1 

(02-0)(a + 6) 
y(i) = (-pfn+lУo( -l) + 

12 
a 2 n+2 + (2 - Ø)a2ll+i 

+ 
( -l)( -2) t /û2 

+ ( ŕ _ ( ) ö , _ l ) ( ћ - í + § ) ) „ . 
n—1 

+ (-p)2n+1(\1{ )al+X2( )ao+Xз( )a-i)+^( )Yi(-p)2n-2ka2k 
k=0 

wliere 

Ai(*) = ^ , A 2 ( 0 ) = ^ - 2 ) + ( 0 2 - 0 ) ( f | - | + ^ ) , 

( l - g ) ( g - 2 ) # 2 - 9 ) ( p - l ) ( 2 g + p - 3 ) 
A3(#) = 2 ' 4^ ' = 19 ' 

O_! = ? jo(-l), a 0 = ?/o(0) and a 2 n + 2 , a 2 r i + i , a 2 n , a 2 n _ i are given by the difference 

equation 

/ a 2 n + 4 \ / c n c l 2 C13 c i 4 \ / a 2 n + 2 \ 

(34) 
C21 C 2 2 C 2 3 C 2 4 

1 0 0 0 
a 2 n + i 

a 2 n 

V 0 1 0 0 / \ a 2 n _ i / 

Op2 - 18p - 20a + 5pq + 36 - lSp2 + 54p - 48 
c n = — , Ci-2 = — 

q + 6 
18p2 - 54p - Зq + pq + 18 

ciз = — , c i 4 = 
ç + G 

q + 6 

P(18 - 6P) 
ç + 6 

Using the same argument to prove Proposition 1 we can prove the above proposi
tion. • 

In the following propsition of this paper we prove that equation (2) is not asymp
totically stable. 

Proposition 5. Consider equation (2) where q ^ —6. Then (2) is not asymptot
ically stable. 

P r o o f . Suppose that (2) is asymptotically stable. Then it is obvious that the 

difference equation (34) is also asymptotically stable. We can easily find that the 

characteristic equation of the coefficient matrix of (34) is the equation 

(35) x + pix3 + p2x + p3x + /i4 = 0 

509 



where 

-6p 2 + 23ry - Spq - 18 18p2 + 23ry - 32pry + 18 
Vi = 7~ ' V* = ~~ ' 

q + 6 q + 6 
-18p 2-8pry + ry -6 6p2 

V3 = — , li4 = ——:• 
q + 6 q + 6 

Equation (34) is asymptotically stable if and only if every root of (35) is of modulus 
less that 1. Therefore from Lemma 1 [9] the following conditions are satisfied 

(i) <*!-.<), (ii) — > 0 , (hi) ^ > 0 , (iv) ^ > 0 , 
a\ a\ o'i 

(36) (v) 21 (22*1 _ 2 l U °-«« 
ai \ a\ a.\) a\ 

where 

48ry(l-p) 48O 8q{8p - 5) 
a i = 7~—' a'2 = —~~> a '3 = T?—' 

r/ + 6 ry + 6 ry + 6 
8{-Gp2 - 5a + 6) 16(3p2 - pq + 3) 

<*4 = ~- , «5 = - ^ • 

ry + 6 ry + 6 
Using conditions (i), (ii), (iii) of (36) we can easily get 

(37) | < P < 1 -

Condition (iv) of (36) and relation (37) imply that 

(38) 0 < ( Z < ^ ^ . 
V 

Finally from the condition (v) of (36) we take 

(39) pry2 + 2ry (c(p2 + 1) + (p2 - 1)(5 - 2p)) + 12(p2 - 1)2(1 - p) < 0. 

Let 

(40) D = (6(p2 + 1) + (p2 - 1)(5 - 2p))2 - 12p(p2 - 1)2(1 - p ) . 

After some simple computations in (40) we obtain 

(41) D = 12(p2 + l)(8p2 - 2) + 24p(p2 + 1)(1 - p 2 ) + (p2 - l)2(16p2 - 32p + 25). 
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Relations (37) and (41) imply that D > 0. Therefore from (39) it holds 

-c-VD -c+\fiD 
42 — < q < 

P P 

where c = 6{p2 + 1) + (p2 - 1)(5 - 2p). Since from (37) p < 1 we can easily show 

that c > 0. Then using (40) we take y/D < c. So from (37) and (42) it is obvious 

that q < 0 which contradicts (38). This implies that the difference equation (34) is 

not asymptotically stable and so equation (2) also is not asymptotically stable. This 

completes the proof of the proposition. • 

In the last proposition we give two sufficient conditions for the oscillatory behavior 

of the solutions of (2). 

Proposition 6. Consider equation (2) with q ^ - 6 . Then every solution of (2) 

oscillates if one of the following conditions is satisfied: 

(43) ( i ) p < i q>6*-lp ' (ii) P = °' q<~6-

P r o o f . We can show that if one of the conditions (43) is satisfied then m ^ 0, 

i = 1,2,3,4, /.ti are defined in (35). Therefore arguing as in Proposition 3 the proof 

of the proposition follows immediately. • 
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