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ON NONCONVEX VALUED VOLTERRA INTEGRAL INCLUSIONS 

IN BANACH SPACES 

NlKOLAOS S. PAPAGEORGIOU, Athens 

(Received November 11, 1992) 

1. INTRODUCTION 

In a recent paper [22], we examined Volterra integral inclusions of the form 

(1) x(t) e p(t) + / U(t, s)F(s, x(s)) ds, t e T = [0, b] 
Jo 

in a separble Banach space X. In inclusion (1), p(-) E C(T,X), U(t,s) G C(X) for 

dWO^s^t^b with \\U(t, s)\\c ^ M and F: T x X -> 2X \ {0} is a closed valued 

perturbation. Our assumption on the kernel U(t,s) was general enough to allow 

interpretting U(t, s) as an evolution operator generated by a family of unbounded, 

densely defined operations {A(t): t G T}. If this is the case, then (1) describes 

the mild soutions of the semilinear evolution inclusion x(t) G A(t)x(t) + F[t,x(t)), 

x(0) = XQ, with p(t) = U(t,0)xo. Such inclusions were studied by Papageorgiou [17] 

under the hypothesis that U(t,s) is compact for all t — s > 0. In [22], the kernel 

U(t,s) was not assumed to be compact for t — s > 0, and instead it was assumed 

that the orientor field F(t,x) satisfied a compactness type hypothesis involving the 

Hausdorff (ball) measure of noncompactness. 

In this paper we continue alogn the lines of [22]. In addition to (1), we also consider 

the following Volterra integral inclusion: 

(2) x(t) Є p(t) + / U(t, s) ext F(s, x(s)) ds, t Є T = [0, b] 
Jo 

where extF(s,:r(s)) denotes the set of extremal points of F(s,x(s)). Problems of 

this from arise in the study of control systems, in particular in the derivation of 

"bang-bang principles". 
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We should note that the theory developed in [22] can no longer be applied on (2), 
because the multifunction (t, x) -> ext F(t, x) is not in general closed valued and we 
can not say anything about its continuity properties. So our results here extend the 
existence theorems obtained in [22], and also we prove a new, very general density 
(relaxation) result relating the solution sets of (1) and (2) above. Hence the work of 
this paper in addition of extending, also complements [22], by presenting a relaxation 
theorem, a result that is missing from the study conducted in [22], Finally, we should 
mention that our work here also extends the single valued one by Szufla [25] and 
the multivalued ones by Ragimkhanov [23] and Bulgakov-Lyapin [5] (who studied 
Volterra integral inclusions in Un) and by Chuong [6] and Papageorgiou [20] (who 
studied Volterra itegral inclusions in Banach spaces, but under much more restrictive 
hypotheses on the data). 

2. PRELIMINARIES 

In this section we establish our notation and recall some basic definitions and 
results about measurable and continuous multifunctions that we will need in the 
sequel. 

Let (ft, E) be a measurable spece and X a separable Banach space. Throughout 
this paper, we will be using the following notations: 

Pf(c)(X) — {A C X: nonempty, closed, (convex)} 

and 

F{w)k(c)(X) = {A C X: nonempty, (weakly-) compact, (convex)}. 

For any A G 2 X \ {0} , we set \A\ = sup{||x||: x e A} (the "norm" of A), a(x*,A) = 
sup[(x*,a): a e A], x* e X* (the "support function" of A) and for every z e X, 
d(z, A) — inf [||2 — a\\: a e A] (the "distance function" from A). 

A multifunction (set-valued mention), is said to be measurable, if for all U C A' 
nonempty open, F~(U) = {u e ft: F(UJ) n U ^ 0} € S. If in addition, we assume 
that F(-) is P/(K)-valued, then the above definition is equivalent to any one of the 
following two statements: 

(i) for every z e X, u -> d(z,F(uj)) is measurable, 

(ii) there exist fn: ft -> X n ^ 1 measurable functions s.t. F(LJ) = {/n(^)}n > 1 

for all UJ e ft. 
These equivalent statements all imply 
(iii) Gr F = {(u,x) e ft x X: x e F(u)}, with B(X) being the Borel O-field of X 

(graph measurability). 
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If there is a complete, <j-finite measure //(•) defined on E, then graph measura-

bility is in fact equivalent to measurability for P/(X)-valued multifunctions. For 

more details on the measurability of multifunctions, we refer to the survey paper of 

Wagner [28]. 

Now let (n,£,Lt) be a finite measure space. Given F: ft —> Pf(X) a measurable 

multifunction, we denote by SF the set of all selectors of F(-) that belong in the 

Lebesgue-Bochner space Ll(X); i.e. Sl
F = {/ G Ll(S): f(u) G F(u) Lt-a.e.}. Clearly 

this set is closed, maybe empty and using Aumann's selection theorem (see Wagner 

[28], theorem 5.10), we can check that Sl
F is nonempty if and only if u) »-> inf [||x||: x £ 

F(u))} £ L\. This is the case if u -> |P(cj)| G L\ and such a multifunction is called 

"integrably bounded". A detailed study of SF can be found in [21]. Using SF we 

can define a set-valued integral for F(-), by setting fQ F(u>) d/x (u>) = {fQ f(u) d/x (LJ) : 

f G SF}. The properties of this integral were studied by Kandilakis-Papageorgiou 

[ii]. 

It is a simple consequence of the Banach-Dieudonne theorem (see for example, 

Bourbaki [3]), that A G Pkc(X) if and only if <T(-,A) is sequentially continuous 

on X^* (here X^* denotes the Banach space X* equipped with the weak* topol

ogy; recall that since by hypothesis X is separable, on bounded subsets of X* the 

relative uj*-topology is metrizable). Using this fact, we see that Pkc(X) can be 

embedded as a convex cone with vertex zero in separable Banach space Z (in par

ticular, Z = C(B^), where B^+ denotes the unit ball of X* equipped with the 

weak*-topology) and the embedding is additive, positively homogeneous and iso

metric. This is the well-known "Radstrom Embedding Theorem" (see for example, 

Klein-Thompson [13], theorem 17.2.1, p. 189). In particular, then if F: ft -> Pkc(X) 

is an integrably bouded multifunction, then the set-valued integral fQ F(u) dfi (u) is 

equal to the Bochner integral of F(-), when it is viewed as an element in Ll(Z) (see 

Hiai-Umagaki [9], theorem 4.5 (i) and Papageorgiou [16], proposition 3.1). Therefore 

if F: ft -> Pkc(X) is integrably bounded, then fQ F(u>) dLi (a;) G Pkc(X). 

On Pf(X) we can define a generalized metric, known in the literature as Hausdorff 

metric, by setting 

Һ(A, B) = max sup d(а, B), sup d(b, A) 
ì-ааA hаR -aeA beB 

for all A, B G Pf(X). It is well known that (Pf(X),h) is a complete metric space, 

while (Pk(X),h) is a Polish space (i.e. complete, separable, metric space). A mul

tifunction F: X -> Pf(X) is said to be Hausdorff continuous (/i-continuous), if it is 

continuous from X into (Pf(X),h). 

If V, W are Hausdorff topological spaces and G: V -> 2W \ {0}, then G(-) is lower 

semicontinuous (l.s.c), if for all U C W open, G~(U) = {v G V: G(v) n U # 0} is 
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open. If V, W are metric spaces, then this definition is equivalent to saying that if 
vn -> v in V, then G(v) C limG(vn) = {w e W: \imdw{w,G(w)) = 0} = {w e W: 

w = lim wn,wn e G(vn),n ^ 1} (here aV(-,-) denotes the metric on W). 

Let B denote the collection of all bounded subsets of X. The Hausdorff (ball) 
measure of noncompactness /3: B —> R+ is defined by 

(3(B) = inf{r > 0: B can be convered by finitely many balls of radius r} . 

Recall that /?(•) is nonexpansive with respect to the Hausdorff pseudo-metric on 
(2X \ {0}) fl B. For a comprehensive introduction to the subject of measures of 
noncompactness and their applications, we refer to Banas-Goebel [1]. 

3. EXISTENCE THEOREM 

For the rest of this paper, T = [0, b] and X is a separable Banach space. By Ll(X) 

we will denote the Banach space of all equivalence classes of Bochner integrable func
tions x: T —j» X, equipped with the usual norm ||.T||i = fQ \\x(t)\\ dt. Also by LW(X), 

we will denote the space of all equivalence classes of Bochner integrable functions 
x: T —> X, equipped with the norm (weak norm) \\x\\w = sup || fQ X(T) dr || (or 

equivalently \\x\\w = sup || f X(T) dT ||). 
0^5^£^6 

In this section we address the problem of existence of solution for inclusions (2). 
By a solution of (2), we mean a function of x(-) e C(T,X) such that x(t) = p(t) + 
f0

tU(t,s)f(s)ds, t eT, f e LX(X), f(s) e extF(s,x(s)) a.e. on T. We will need 
the following hypotheses on the data: 
H(F): F:T x X -> Pfc(X) is multifunction s.t. 

(1) t —•> F(t,x) is measurable, 
(2) x -» F(t,x) is .^continuous, 
(3) f3(F(t,B)) ^ k(t)/3(B) a.e. for all B C X nonempty, bounded (i.e. 

B eB) and with Jfc(-) e L\(T), 

(4) \F(t,x)\ ^ a{t) + c(t)\\x\\ a.e., with a(-), c(-) E L\(T). 

R e m a r k . Note that hypothesis H(F) (1) and (2) and theorem 3.3 of Papageor-
giou [19], imply that (t,x) -> F(t,x) is measurable on T x X. Also from hypothesis 
H(F) (3), we have that for all £ e T \ N (N is a Lebesgue null subset of T) and 
all x e X, F(t,x) e Pkc(X). Hence by modifying, if necessary, the orientor field F 
on the Lebesgue null set N C T, we may assume without any loss of generality that 
F(t,x) e Pkc(X) for all (t,x) e T x X. So in what follows we will assume that for 
all (t,x) eT x X, F(t,x) e Pkc(X) and so extF(t,x) ^ 0. Then from theorem 9.3 
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of Himmelberg [10], we have that (t,x) -> extF(t,x) is graph measurable (recall 
that X* equipped with the w*-topology (and hence with any topology compatible 
with duality (X*,X)) is separable; see Wilansky [29], p. 144). So in particular, if x: 
T -» X is measurable, then t -» extF(t,x(t)) is graph measurable. 

H(U): U: A = {0 ^ s ^ t^ b} -> C(X) is a map s.t. 
(1) U(-,s) is strongly continuous on [5,6], U(t,-) is strongly continuous on 

[0,*] for a l U e T , U(t,t) = 1, 

(2) /0* \\U(t',s) - U(t,s)\\^(s)ds = 7](t',t) -> 0 as *' - * -> 0+ with *' or * 
fixed and with i[)(s) = a(s) + c(s) (see H(F) (4)). 

R e m a r k . If \\U(t(,s) - U(t,s)\\c ^ t_~ > then w e c a n easily check that hy
pothesis H(U) (2) is satisfied, if for example, a, c e L\(T) (hence ip e L\(T)). In 
turn, this estimate is valid, if U(t, s) is the evolution operator (fundamental solution) 
generated by {A(t): t e T} a family of linear, generally unbounded operators s.t. 
(i) D(A(t)) = X and D(A(t)) is independent of t e T, (ii) for each t € [0,6], the 
resolvent R(X,A(t)) exists for all Re A ^ 0 and \\R(X,A(t)) | |£ ^ j ^ (Re A ^ 0) 
and (hi) \\{A(t') - A(t))A'1 (0)\\ < c\r' - t\a a e (0,1). For details, we refer to the 
books of Friedman [7], Ladas-Lakshmikantham [14] and Tanabe [26]. In particular, 
this is the case if X -> H —> X* is an evolution triple of separable Hilbert spaces and 
A(t): X —> X* is a linear, continuous, strongly monotone operator (see Tanabe [26], 
chapter 5, section 4) or if U(t, s) = K(t — s) with K(-) being an analytic semigroup 
(autonomous case; see [7], [14], [26]). Therefore our formulation incorporates large 
classes of semilinear evolution equations. 

H(p):p(-)eC(T,X). 

Theorem 3.1. If hypotheses H(F), H(U) and H(p) hold, then problem (2) ad
mits a solution. 

P r o o f . First we will obtain an a priori bound for the solutions of (1) (hence 
for thoose of (2) too). So let x(-) e C(T,X) be such a solution. We have: 

x(t) = p(t) + / U(t,s)f(s)ds, teT 
Jo 

with / e Ll(X) and f(t) e F(t,x(t)) a.e. Then we have 

l l ^ ) IKI Ip | | oc+ f\\U(t,s)\\c'\\f(s)\\ds 
Jo 

«S||p||oo+ / M(a(s) + c(s)\\x(s)\\)ds. 
Jo 
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Invoking Gronwall's inequality, we deduce that there exists M\ > 0 s.t. 

\\x(t)\\ < MX 

for all t € T and all solutions x(-) of (1). Let <p(t) = a(t) + Mxc(t), <D(-) E F+(T). 
Then we may assume without any loss of generality that \F(t,x)\ ^ <p(t) a.e. (oth
erwise we replace F(-,x(-)), by F(-,pMi(^(*)))? w ^ n PMi() being the Mi-radial 
retraction). 

Next we claim that we can find G: T -+ Pkc(X) an /i-continuous multifunction 
s.t. for alH E T, we have 

G(t) = p(t) + J U(t, s) conv F(s, G(s)) ds , t E T. 
•Io 

To this end, consider the following Caratheodory type approximations: 

G»W = { /-*"* „ 
I p(i) + / U(t- £,s) conv F(s,Gn(s)) ds , $^t^b. 

Jo 

Also for every n ^ 1, let 

Hn(*) =p( i ) + / U(M)convF(s,Gn(s))ds, *€ T. 
Jo 

Recall tha since F(t, •) is ^continuous and Pfcc(X)-valued, it maps compact sets 
into compact sets (see Klein-Thompson [13]). So by virtue of the Radstrom em
bedding theorem (see section 2), we have that for all n ^ 1 ans all t E T, Gn(t), 
Hn(t) E Pkc(X). 

Let t,tfeT,t< t'. We have: 

h{Hn(t'),Hn(t)) 

= h(p(t')+ / U(1/,s)convF(s,Gn(s))ds,p(0+ / U(t, s) conv F(s,Gn(s)) ds 

<\\p(t')-p(t)\\ 

+ h( / U(0)corTvF(s,Gn(s))ds, / U(i, s) conv F(s, Gn(s)) ds 
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Š | | P ( 0 - P ( * ) I I + | / U(ť,s)čoňvF{s,Gn(s))ds 
\ Jt 

+ h( í U(ť,s)čoňvF(s,Gn(s))ds, / U(ř,s)čóňvF(s,Gn(s))ds J 

^\\p(ť)~p(t)\\ + M J <p(s)ds 

+ i h(u(t\s)mfwF{s1Gn(s)),U(tJs)čoňvF{s,Gn(s))ds) 

^\\p(ť)-p(t)\\ + M j (D(s)ds 

/ \\U{ť,s)-U{t,s)\\c<p{s)ds = 0 ( ť , O 
Jo + 

(here M = sup ||U(*,s)IU; see hypothesis H(U) (1)). Clearly 0(t',t) 
(s,t)€A 

t' - t -> 0+ with t' or t fixed (see hypothesis H(U) (2)). 

Furthermore, we have: if t E [0, £], 

/i(Gn(í),HnW) =fc(p(«) iP(0+ / ^ ( M ) č o ř i v F ( s , G n ( s ) ) d s ) 

l rť 

^ / U(^s)čonvF(s,Gn(s))ds 
I Jo 

^ M / (D(s)ds < M / (D(s)ds = 7 i ( n ) 
Jo Jo 

, t - ^ 

0 as 

i f * є [ £ , ò ] , 

Л(G n (f),Я n ( í)) 

= л íp( t ) + í П U ( í - ^ , s ) æ ñ v F ( s , G n ( s ) ) d s , 

p(t)+ U(M)čæîvF(s,Gn(s))ds 

I /•* 
< / U(M)čõïïvF(s,Gn(s))ds 

I Л - £ 

+ J h{U(t,s)Wf^F{s,Gn(s)),U(t-^s)Ш^F{s,Gn(s))^ds 

637 



^M f ( D ( s ) d s + / n \\U(t,s)-U(t--,s)\\Ms)ds 
Jt-± Jo n 

^M f p(s)ds +n(t,t-±)=l2(n). 

Hence for all t £ T, we have 

h(Gn(t),Hn(t)) = 7(71) = max[7i(n),72(n)] -> 0 as n -> 00. 

Next let Vn(0 = U Gn(T) and PVn(*) = U Hn(t). Since 
m > n 

i 8 ( G m ( 0 ) = i 9 ( H m ( < ) ) - - 0 

for m £ {1, 2, . . . , n}, we have that for all n ^ 1 

/J(Vn(0)=/3(Vi(0) and /3(JVn(*)) = P{Wx(t)). 

From the properties of /?(•) (see Banas-Goebel [1], p. 21 and section 2) we have 

|)S(Wi(*)) " W ( t ) ) I ^ 7 H for all n ^ 1. 

Since 7(71) —> 0 as n —> 00, we get 

0(Wx(t)) = /J(Vi(t)) for all t e T. 

Using once again the Lipschitz continuity of /?(•) with respect to the Hausdorff 
metric, we get for t, t' eT, t < t': 

|0(Wi(O) - P(Wi(t))\^0{t\t) 

= > | i 8 ( V i ( 0 ) - i 8 ( V i ( t ) ) | <»(*',*) 

(i.e. both t -> Vi(<) and £ -+ Wi(£) are continuous functions on T). Then we have: 

ß{V!(t)) = ß{W!(t)) Š ß f U(t,s)čořwF(s,V1(s))ds 
.Jo 

Let Uk'.T —» K, k ^ 1, be measurable function s.t. Vi(s) = {uk(s)}k>1 for all 
s £ T (their exitence follows from the measurability of Vi(); see section 2). Then 

F(s,Vi(s)) = U F(siuk(s)) and for each k ^ 1, s -> F(s,itfc(s)) is measurable (cf. 
/ c ^ l 
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hypothesis H(F)). So s -•» F(s, Vi(s)) is measurable (see propostion 2.3 (i) of Him-
melberg [10]) ===> s —> conv F(s, Vi(s)) is measurable (see theorem 9.1 of Himmelberg 
[10]). Let vk: T -+ X, k ^ 1, be measurable maps s.t. convF(s, Vi(s)) = {vk(s)}k^l-
Then U(t,s) convF(s, Vx(s)) = U(*,s)K(*)}^i = { U ( M W ( * ) } ^ i - So applying 
lemma 2.2 of Kisielewicz [12] (see also Heinz [8], theorem 3.1 and Monch [15], propo
sition 1.6), we get 

ß{Vi (t))^ß I U(t,s)vk(s)ds:k^ 1 
jo '•• 

t 

< 

ś 

M f P(vk(s): k^l)ds 
Jo 

M f /3(coirvF(s,Vi(s)))ds =M f (3(F(s,V1(s))) ds 

M f k(s)/J(Vi(s))ds. 
Jo 

Invoking Gronwall's inequality, we get that 

0(V1(t))=Q for all* e T . 

Next note that for every n ^ 1 and every t G T, we have: 

Gn(t)CVX(t) 

where Vi(*) = conv [Vi(*) U ( - Vl(t))]. From Mazur's theorem Vi(*) G Pkc(X) 
and is symmetric. Let An(*)(-) = a(-,Gn(t)) and fi(t)(-) = O(-,Vi(£)). Recall (see 
section 2) that for all n ^ 1 and all t G T, An (*)(•). M*)(') G C(B^), with B£,, being 
the unit ball of X* equipped with the relative iv*-topology (hence B^* is compact 
metrizable). Note that for t, t' e T, t < t' we have 

\\\n(tf)-\n(t)\\CiB.m)= SUp ^ ( ^ . G n C O J - ^ C ^ . G n W ) ! 
||:r*||^l 

= h(Gn(t'),Gn(t)). 

Observe that if t ^ ± ^ t' 

h(Gn(t'),Gn(t))=h(p(t') + J U(t' - ±,s) conv (F(s,G(s))) ds ,p(t) 

<\W)-P(t)\\ + M f ^(s)ds 
Jo 

ť -t 

0 
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rť--

i i ^ t ^ t ' , 

h(Gn(t'),Gn(t)) 

< \\p(t') ~P(t)\\ + M f <p(s)ds+ f " \\U(t' -b-,s)- U(t - b-,s)\\Ms)ds 
Jt-± Jo 

f t ' " * 

= \W) -P(t)\\ + M / p(s)ds +r,(t' - £ , * - £ ) 

and this by virtue of hypothesis H(U) (2), implies that {t —•> An(£)(-)}n^>i is equicon-
tinuousin C(T,C(BW.)). 

Also for every t E T, and for every x*, z* e B*, we have 

|An(t)(x*) - Xn(t)(Z*)\ = max[An(0(x* - **), An(*)(** - **)] 

^ V(t)(x* - z*) 

=> {An(£)(-)}n^i is equicontinuous on C(BW.). 

Hence from the Arzela-Ascoli theorem, we get that for all t e T, {An(£)(-)}n>1'"* is 

compact in C(BW+). A new application of the Arzela-Ascoli theorem, this time in the 

space C(T,C(BW+)), tells us that {An}n^i is relatively in C(T,C(BW*)). So passing 

to a subsequence if necessary, we may assume that An —> A in C(T, C(BW+)). Clearly 

for every t e T, X(t)(-) e C(BW.) is sublinear. Thus there exists G(t) e Pkc(X) s.t. 

a(x*,B(t)) = X(t)(x*), x* eX*. Since t -> X(t)(-) belongs in C(T, C(BW.)), we get 

that t -> G(t) is tVcontinuous from T into P/CC(K) and in fact Gn(t) —> G(t) for all 

t e T, hence Hn(t) A G(t) for all t e T. 

Now for every x* G A'*, we have 

a(x*,F(t,Gn(t))) =a(x*, ( J F(t,x)) = sup a(x* ,F(t,x)). 
V J V x€GB(0 J xeG^ 

Since Gn(t) G Pfcc(A) and F(t,-) is /i-continuous (hence cr —> O(x*, F(t,x)) is 
continuous), we can find xn G Gn(t) s.t. 

O-(>,F(*,Cn(t))) = O(x*,F(*,xn)). 

Similarly for G(t) G Pfcc(K). Therefore we have: 

h(^mfw F(t,Gn(t)) ,c6Tw F(t,G(t))) 

= sup \a(x*,F(t,Gn(t))) -a(x*,F(t,G(t)))\. 
| | x * | | < l ' V y V / ! 
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But o(-,F(t,Gn(t))) - o(-,F(t,G(t))) G C(B*W.) and so we can find xn G B* 

such that 

h(cmvF(t,Gn(t)),cmvF(t,G(t))) = | r / ( < , F ( i , G n W ) ) - r / ( < , F ( i , G ( i ) ) ) | . 

Also by what was said above, we can find vn G Gn(t), wn G G(t) s.t. 

a(x*n,F(t,Gn(t))) =o(x*n,F(t,vn)) and o(x*n,F(t,G(t))) = o(x*n,F(t,wn)). 

Recall that Gn(t), G(t) C V\(t) G Pk(X). So by passing to a subsequence if 
necessary, we may assume that 

x*n —> x* in X* and u n 4 v , wn A w in X. 

Then 

\a(x*n,F(t,vn))-o(x*F(t,v))\ 

^ \o(x*n, F(t, vn)) - o(x*n, F(t, v)) | + \o(x*n, F(t, v)) - o(x*,F(t, v)) | 

^ h(F(t,vn),F(t,v)) +o(x*n-x*,Vi(t)) - > 0 a s n - » o o , 

since o(-,Vi(t)) is continuous on bounded subsets of X* endowed with the relative 
iv*-topology. Similarly, we get o(x*n,F(t,wn)) -i> o(x*,F(t,w)). Therefore finally 
we have 

convF(*,Gn(*)) A convF(t,G(t)) in Pkc(X) 

=> U(t,s)convF(s,Gn(s)) A U(t, s) cofivF(s,G(s)) in Pkc(X) (t ^ s ^ 0). 

So using theorem 3.5 of Papageoriou [18] (or even the Radstrom embedding the
orem), we get 

P(t)+ I U(t,s)convF(s,Gn(s))ds A p(t) + f U(t, s) convF(s,Gn(s)) ds 
Jo Jo 

in Pkc(X) 

=> G(t)=p(t)+ f U(t,s)convF(s,Gn(s))ds, t£T 
Jo 

and t -» G(t) is /i-continuous from T into Pkc(X). 
Now let T C Ll(X) be defined by 

T = {/ G Ll(X): f(t) G cxmF(t,G(t)) a.e.} 
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a n d £ C C ( T , X ) b y 

E = L € C(T, X): y(t) = p(t) + J U(t, s)f(s) ds , t € T, f € T j . 

A straightforward application of the Arzela-Ascoli theorem, shows that E £ 
Pkc(C(T,X)). Let i?: E -> 2 L ' W \ {0} be denned by 

R(x) = sf(.iX(.))-

Apply theorem 1.1 of Tolstonogov [27], to get r : E —> L^X) continuous s.t. 
r(y) £ extR(y) for all y € E. But from Benamara [2], we know that ext R(y) = 
expS\,(. M.)} = SlxtF{.y{,)y Let £: £ ^ C(T,X) be defined by 

Ç(z) ( t )=p( í )+ / U(t,s)r(x)ds. 
Jo 

Note that from the definitions of the sets T and E, we have 

x(t) G G(t) for all t G T 

==» r(s)(.) G T 

=-> f(:r) € £ ; i.e. £ : £ - > £ . 

We claim that £(•) is continuous. Indeed let xn -> x in E. Then since r(xn), 

r(x) G S^ and Vi(-) is Pkc(X)-valued and integrably bounded, we have that 

r(xn) 4 r(x) in Ll(X) (see Schechter [24]). So for every t G T 

/ U(t,s)r(xn)(s)ds 4 [ U(t,s)r(x)(s)ds. 
Jo Jo 

Set qn(t) = / J U(t, s)r(xn)(s) ds , q(t) = /0 U(t, s)r(x)(s) ds ,gn,qe C(T, X). Us
ing hypothesis H(U) (2), we can easily check that {gn(-)}n^i C C(T,X) is equicon-
tinuous and for all t G T, qn(t) G /0 U(t, s)Vi(s) ds G Pkc(X). So by the Arzela-
Ascoli theorem, {qn}n^i is relatively compact C(T,X), hence qn —> q in C(T,X). 
Therefore £(xn) = p + qn -> £(x) = p + q in C(T, K) = > £(•) is indeed contin
uous. Apply Schauder's fixed point theorem to get x G E s.t. £(x) = x. Clearly 
x G C(T, X) is the desired solution of (2). • 
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4 . A DENSITY RESULT 

Let 5 and Se be the solution sets of (1) and (2) respectively. In this section we 
show that we can approximate, with arbitrary degree of accuracy, elements in S using 
those in Se. We already konw (see [22]), that under hypotheses H(F), H(U) and 
H(p), 5 is a nonempty, compact subset of C(T,X) (in fact, hypothesis H(F) can 
be weakened further for establishing that). Here we will need the following stronger 
hypothesis on the orientor field: 
H(F)1:F: T x X -> Pfc(X) is a multifunction s.t. 

(1) t -+ F(t,x) is measurable, 

(2) h(F(t,y),F(t,x))^e(t)\\x-y\\a.e. with £(.)eL\(T), 
(3) /3(F(t,B)) < k(t)/3(B) a.e. for all B C X nonempty bounded and with 

k(-)eL\(T), 
(4) \F(t,x)\ ^ a(t) + c(t)\\x\\ a.e. with a(-) G L\(T). 

R e m a r k . Again, because of H(F)i (3) and by modifying, if necessary, the 
orientor field on a Lebesgue null subset of T, we can assume without any loss of 
generality that F(t,x) G Pkc(X) for all (t,x) G T x X. 

Theorem 2. If hypotheses H(F)1} H(U) and H(p) hold, then Se = S the closure 
taken in C(T,X). 

P r o o f . Let x G S. Then by definition, we have 

x(t) =p(t)+ I U(t,s)f(s)ds 
Jo 

for all* G T and with / G Ll(X), f(x) G F(s,x(s)) a.e. Let E C C(T,X) be as in 
the proof of theorem 1. Given y G E and e > 0, let H: T -» 2X \ {0} be defined by 

H(t) = {ueX: | | /(0 -7i|| <e + d(f(t),F(t,y(t))),ueF(t,y(t))}. 

Using hypothesis H(F)1, we can easily check that Gr H G C(T) x B(X), with C(T) 
being the Lebesgue cr-field of T (i.e. the Lebesgue completion of the Borel cr-field 
B(T)). Applying Aumann's selection theorem, we can get u: T —> X measurable 
s.t. for all t G T, u(t) G H(t). Let $ : E -> 2L '(X) \ {0} be defined by 

*(y) = {u G S ^ y ( . ) } : ||/(*) - u(i)|| < e + d(f(t),F(t, y(t))) a.e.}. 

From proposition 4 of Bressan-Colombo [4], we know that $(•) is l.s.c. and has 
decomposable values (i.e. if A C T is measurable and ui, u2 £ $(y), then XA^I + 
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XA^U2 G $(y))- Hence y -> $(y) is l.s.c and has decomposable values. Apply 
theorem 3 of Bressan-Colombo [4], to get u£: E —> Ll(X) a continuous function s.t. 
My) <- *(yj for all y £ E. Hence | |/(i) - u£(y)(t)\\ ^ e + ds(f(t),F(t,y(t))) ^ 
e + £(t)\\x(t) — y(t)\\ a.e. Also apply theorem 1.1 of Tolstonogov [27], to get v£: 
E -> LX

W(X) s.t. \\u£(z) - v£(z)\\w < e for all z G E. 

Now let en I 0 and set un = u£n, vn = v£n. Let xn G E s.t. 6(xn) = xn. 
Their existence is guaranteed by Schauder's fixed point theorem (see the proof of 
theorem 1). Clearly xn G Se. Recall that E C C(T,X) is compact. So by passing 
to a subsequence if necessary, we may assume that xn —> x in C(T,X). For every 
x* G X*, we have: 

\(x*,x(t)-xn(t))\<\(x*,J U(t,s)(f(s)-vn(xn(s)))ds) 

= \U>1 U(t, s)(f(s) - un(xn)(s)) ds) 

+ \l x*, / U(t,s)(un(xn(s) - vn(xn)(s))) ds \ 

^M\\x*\\ ft\\f(s)-un(xn)(s)\\ds 
Jo 

+ / (x*,U(t,s)(un(xn)(s) - vn(xn)(s))) ds 

^ M | | x * | M + M||x*|| / e(s)\\x(s)-xn(s)\\ds 
Jo 

/ (x*,U(t,s)(un(xn)(s) - vn(xn)(s))) ds + 

But by construction un(xn) -vn(xn) -> 0 and since un(xn) — vn(xn) G S^ with 

Vi(-) Pjtc-valued and integrably bounded => un(xn) - vn(xn) -^ 0 in Ll(X). So 
/ 0 (x*,U(t,s)(un(xn)(s) - vn(xn)(s))) ds -> 0 as n -> oo. Hence in the limit as 
n —•> oo, we get 

||x(«) - 5(0| | ^ Af||x*|| f e{s)\\x{s) - x{s)\\ ds 
JO 

==> x -= x (Gronwall's inequality). 

S o x - - l imxn in C(T,X) with xn G Se. Therefore S = Se C(T,X) D 
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5 . CONTROL SYSTEMS 

In this section, we use theorem 2 to obtain a bang-bang principle for controlled 
Volterra integral equations. So we consider the following two systems: 

(3) 

and 

(4) 

x(t)=p(t)+ f U(t,s)[f(s,x(s)) + B(s)u(sj]ds, teT, 
Jo 
u(t) G V(t) a.e., u()-measurable 

x(t)=p(t)+ J U(t,s)[f(s,x(sj) + B(s)u(s)]ds, teT, 
Jo 

u(t) G extV(t) a.e., ii()-measurable. 

These systems may correspond to controlled semilinear evolution equations, in 
which case p(t) = U(t,0)xo, with XQ G X (initial state) and U(t,s) is the evolution 
operator, generated by a family {A(t): t G T} of generally unbounded, densely 
defined linear operators. We model the control space by a separable Banach space Y. 

Let S and S€ be the trajectories of (3) and (4) respectively. Also R(t) = {x(t): 

x G S] and Re(t) = {x(t): x G Se} be the corresponding reachable sets at time 
t G T. We will need the following hypotheses: 
# ( / ) : / : T x X -> X is a map s.t. 

(1) t -> f(t,x) is measurable, 
(2) \\f(t,x) - f(t,y)\\ ^ t(t)\\x - y\\ a.e. with £(•) G L\(T), 

(3) ||/(*,a;)|| ^ a(t) + c(t)\\x\\ a.e. with a, c G L\(T). 

# ( # ) : # : T —> £(y ,K ) is measurable for the strong operator topology on C(Y,X) 

(i.e. for all u G Y, t -> #(f)^ is measurable) and for every teT, B(t) is a 
compact operator and ||#(£)||£ ^ fc, k > 0. 

# (V) : V: T -+ Pwkc(Y) is a measurable multifunction s.t. |V(*)| ^ N for all t G T. 

Theorem 3. If hypotheses # ( / ) , #(U ) , # ( # ) , H(V) and H(p) hold, then S = 

Se ( T 'X ) and for ai1 * G T, #(*) = #7(0ll'11. 

P r o o f . Let F: T x X -> ftc(K) be defined by 

F ( t , x ) = / ( * , x ) + B(*)V(0. 

Let C C I b e nonempty bounded. We have 

0{F(t,C))^l3(f(t,C))+l}(B(t)V(t)). 
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Since by hypothesis H(B), B(t) is compact, B(t)V(t) e Pkc(X) and so 
(3(B(t)V(t)) = 0. Also from hypothesis H(f) (2), we get f3(f(t,C)) ^ £(t)/3(C) a.e. 
Therefore we get 

(3(F(t,C))t:£(t)(3(C)a.e. 

Let vn: T -» Y, n ^ 1, be measurable functions s.t. V(t) = {vn(t)}n>1 for all 

t e T. Then for every x* e X*, t -> <r(x*,£(*)V(<)) = s\ipa(x*,B(t)vn(t)) is 

measurable = > t -» H(£)V(£) is measurable = > £ —» F(t,x) is measurable. 

Also if x, y e X and z G F(£, x), then by definition z = f(t, x) + B(t)u, u e V(t). 

So we have: 

d(z,F(t,y)) ^ \\f(t,x) - f(t,y)\\ ^ £(t)\\x - y\\ 

= > h(F(t,x),F(t,y)) <^l(t)\\x-y\\ a.e. 

Finally because of hypothesis H(f) (3) we get 

|f(*,x)| ^ a(t) + kN + c(t)\\x\\ a.e. 

So we satisfied hypothesis H(F)\. Then consider the following integral inclusions 

(5) x(t)ep(t)+j U(t,s)F(s,x(x))ds, teT 
Jo 

and 

(6) x(t)Єp(t)+ U(t,s)extF(s,x(x))ds, teT. 
Jo 

Let S 1 be the solution set of (5) and S1 the solution set of (6). A straightforward 

application of Aumann's selection theorem, gives us that S = S 1 . On the other 

hand, since extB(t)V(t) C B(t)extV(t), we have that 5] C Se. From theorem 2, 

we get 

sfiT'x) = s 
=-> Sf ( T ' X ) = 5. 

Recalling that the evaluation map et\ C(T,X) -» X, defined by e t(x) = x(t) is 

continuous, we also get that R(t) = Re(t) for all teT. U 

So if J: C(T,K) -» R is a continuous cost functional and m = inf[J(x): x e S], 

then given e > 0 w e can find a bang-bang control u e SextV(-) W l t ^ corresponding 

trajectory z£(-) e Se s.t. 0 ^ J(x£) — m ^ e. Bang-bang controls can be realized 

physically much easier than the other control functions. 
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