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Czechoslovak Mathematical Journal, 45 (120) 1995, Praha 

ON GIGANTIC DENSITY OF ZEROS OF SOME SIGNALS 

DEFINED BY PRIME NUMBERS 

JAN MOSER, Bratislava1 

(Received March 23, 1993) 

1. FORMULATION OF THE RESULTS 

We introduce an infinite family of trigonometric sums with prime numbers 

(1) G(x;t,<p) = y2-===cos{t\n{p + x)+<pp}, x € (0,1), 
PTP^** 

where p and P are prime numbers and 

t > 0 , (fp£ ( - 7 1 , 7 1 ) , ( D = ( < D 2 , < P 3 , ^ 5 , . . . , < r ° P ) -

For x = 0, <p = 0 we obtain 

(2) G ( 0 ; t , 0 ) = 5 ^ - i = c o s ( * l n p ) , 

that is, the classical trigonometric sum with prime numbers, connected with the 
main term of the Riemann-Siegel formula [4, p. 94]. In the opposite direction, (1) 
results from the amplitude-frequency-phase modulation of (2). 

From the family (1) we select an infinite subset corresponding to the horizontal 
segment x £ (0,1), t = T: 

(3) £ ( * ; ? » = V ) - - = = c o s { T l n ( p + x) +(DP}. 
^PVP + ^ 

1 Supported by Grant GA-SAV363 

175 



From the viewpoint of theoretical radio-engineering we call the function G(x\T,<p), 
x G (0,1) with an arbitrary fixed vector <D a signal. Let, for instance, (Dp be in
dependent random quantities distributed uniformly on the interval (—*K,K). Then 
G(x;t,(p) is a random process while the signal is its realization. 

For signals of the type (3) we have 

Theorem. Let x G (0,1/(9P2)) . P G (2,T 1 / 9) . Then for an arbitrary fixed <p 
the interval 

( P6 \ 
[x,x + A 3— , T-> oo 
V ' T l n 4 P 7 

with A a sufficiently large positive number contains a zero of an odd order of the 
signal G(x\t,(p). 

Let N0((xi,x2); G) denote the number of zeros of odd orders of the signal 

/ 1 \ P6 

(4) G(x\T,ip), xe(xux2)C (O .gpj ) , A
Tln4p < * 2 - * i . 

The theorem yields 

Corollary. 

N0((x1,x2)',G)>^(x2-xl)T
l^f, T ^ o o . 

Remark 1. In the case 2 ^ P ^ InT which is crucial for us the zeros of the 
signal (4) are distributed directly with gigantic density 

We introduce also an infinite family of complex signals 

G ( z ; I » = T -^=™s{T\n(p + z) + pp}, 

where z — x + ir, x G (0,1) and \n(p+z) denotes the principal value of the logarithm. 

Remark 2. It is of interest to consider the problem of existence of zeros of the 
signal G(z\T,(p) which do not lie on the "critical" segment x G (0,1), r = 0. 

The proof of the above theorem is given in Sections 4-9 of the present paper. 
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2. OSCILLATION CHARACTERISTICS OF THE SIGNAL G(x\T,(p) 

The signal G(x;T, <p) represents the result of interference of oscillators of the type 

ap(x) • cos{$(:r; T, (fp)}, p ̂  P, 

where 
ap(x) = _ , $(a;;T,(Dp) =T\n(p + x) + yp 

y/p + X 

is respectively the amplitude and the phase, 

%»=n= T 
dx p + x 

is the spectrum of circular frequencies, 

(6) f^ = in^ = tjr-x 
is the spectrum of the phases in hertz. 

Remark 3. The differences of the adjacent frequencies of the spectrum 

1 T 
f{Pn-l) ~ f(Pn) = 7T ' T- w . v ' (Pn - Pn-l) 

2lX (pn_i +X)(pn +X) 

are very large (pn denotes the n-th prime number) and for the relative increments of 
frequencies we have 

f(Pn-l ~ f(Pn) _ Pn-Pn-1 

/(Pn-l) Pn+X 

Moreover, the differences pn — pn-\ of the adjacent primes behave in an extremely 
irregular manner. 

3 . DEFINITION OF THE KWN ESTIMATE FOR THE NUMBER 

OF ZEROS OF THE SIGNAL 

In connection with the Kotelnikov-Whittaker-Neuquist theorem from the theory 
of information the following result is used in radio-engineering (cf. [1, pp. 81, 86, 
96, 97]). 

Empirical Rule. If the period of a signal F(t) is U (e.g. t e (T,T + U)) and its 
spectrum is approximately bounded by a frequency W (in hertz) and if 2JVU > 1, 
then the function F(t) is determined "with a high degree of accuracy" by its values 
at 2IVU nodes which lie at the distance of 1/2TV. 
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The quantity 1/2W is called the KWN frequency of the signal F(t), and is funda
mental for our analysis. 

Let N0((T, T + U) ;F) denote the number of zeros of odd orders of the signal F(t), 
t e (T, T + U). As concerns the number of the KWN nodes in the interval (T, T + U) 
we formulate the following conjectures. 

Conjecture 1 (strong form). 

N0((T, T + U);F)~-^- = 2WU. 
2W 

Conjecture 2 (weak form). 

N0((T, T + U);F)<(1+ e)2WU, 

where e is an arbitrarily small positive number. 

Turning back to our problem we introduce 

Definition. A lower estimate of the type 

(7) No((T,T + U);F) >A2WU, 0 < A < 1 

is called a KWN estimate. 

Since the KWN frequency corresponding to the signal F(x;T,(p), x G (x\,x2) is 
(see (6)) 

I T T 
2/(2) = - • ^ — = 2W J w K 2 + x 2rc 

the estimate (7) assumes the form 

T 
(8) No^xux^ ;G) > A • — (x2 - Xl). 

Consequently, we make 

Remark 4. By virtue of (8) the estimate (5) is a KWN estimate only provided 
P — O(l) , t -> oo, that is, provided the number of oscillators generating the signal 
G(x; T,y) is bounded (e.g. for P = 5,17,257). 

Remark 5. The relation between the KWN Theorem and the Riemann-Siegel 

formula is dealt with in the papers [2], [3]. 
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4. T H E MEAN VALUE OF THE FUNCTION G2(x;T,<p) 

In what follows, the asymptotic identity 

(9) ] T - = l n l n P + 0 ( l ) , P - + o o 
P^PP 

due to Mertens and the estimâtes 

("» E'-«i-°(i£0. S^-°(c?)-
P^P P < P V 

x>*=°(^-)' *=i.2--
p^P 

will be useful. We have 

Lemma 1. For all sufficiently large T, A > 0 and for arbitrary x\, x2 satisfying 

P 3 

(11) (xux2) C (0,1), &7ptfp ^x2-xx 

we have 

X2 

(12) a ( l ) + O ( i ) < — 1 — y G2(:r;T, y>)dx < a(0) + o(i), 

Xi 

p ^ p p + ; r 

where K is a sufficiently large number. Further, 

(13) [ G2(x;T,p)dx~ J l n l n P , P -» oo. 
x2 — X\ J 2 

xi 

The relations (12), (13) are valid uniformly for x\, x2 and ip. 

P r o o f . We have (p, q ^ P) 

COS .^3 

2 V p + X ' ^ f ^ x / f r + *)(<- + *) (14) ^ а д Ц Z ^ + EE 

2 p., >/(p+-otø+*) 
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where 

Since 

Ü + x 
u2=Tìn — — + (pp - (çq, tj3 = Tìn[(p + x)(q + x)] + ҷ>p + (pq. 

Q i «T 

X 2 

l52da; = X!Y^/2, 
?>« 

where 

/2= 7 cos^ ir_ / <-(-*»"-) 
•> v (P + z)(q + £) J ^2v (P + :i;)(tf+ -0 

x i Xi 
X 2 

1 fr /7 77 r . -i*2 - / ' p + q + 2x . . 1 

= o(I^)+o(^yf)=o(i4 
we have (see (10)) 

X2 * 

(15) / S 2 d s = o ( ^ ) 

XI 

uniformly for x\, x2 and (p. Quite analogously we obtain the estimate 

X2 

(16) JS^ = 0(^). 
Xi 

Since 
X2 

a(l) • (~2 - a*) + o(^£^) < JG2dx < a(0) • (i2 - *•) + O ("-£..--) 
Xi 

provided 2 ^ P ^ K (see (14)-(16)), by virtue of (11) we obtain (12). If P -> oo 

then (see(9)) 

sH£^(£^H l n l n P +° ( 1 ) 
p < P ^ p 

and consequently 

/ c 2 d z = i(~2 - nJlnlnP + o(~2 - Xl) + o(-prj-5--). 
X l 

By virtue of (11) this implies (13). D 
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5. ASYMPTOTIC FORMULA FOR THE DOUBLE SUM 

We have 

Lemma 2. The identity 

x2 

<"> E£ / ( p l + X2^ ) = ( ^ 2 ^ l ) ( l n l n P ) 2 + 0{(a;2-Xl)lnlnF}-
P l , P 2 < P X i 

P l ^ P l 

holds for all sufficiently large P and (x\,x2) C (0,1). 

P r o o f . First of all, we have 

(18) 
(Pl+X)(p2+X) P 2 - P i £ ( 1)fe^Pf+1 P2 fc+1^ 

P 1 P 2 + P 2 - P 1 § ( 1 ) Âpř + 1 P*+ 1I 
xk 

P1P2 

Since (pi < p2) 

1 + R. 

1R,. 2 v í— î_Ufc - P2+P1-1 
1 ' p2 - PI h [PÌ+1 PÌ+1 } " rf*-(- - ғг) (1 - £) 

< 8 _ ^ = 8(J_ + J_) 
PГPo VpiPo P Г P Q / PlP2 V P l P 2 P1P2 

and also (see (9)) 

Pl7-=P2 

EE»-"(Eir5:i|)-oa»-n 

we obtain (17) from (18). • 
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6. LEMMA ON AN ESTIMATE OF THE TYPICAL QUADRUPLE SUM 

We have 

Lemma 3. Let 

(19) V(Xl,x2,T,P;V)= E E E E I' 
V\¥:VA,V2Z^VA,VZ¥1VA 
V\ 7^P2 ,Pl ^V3 » P 2 ^ P 3 

where 

(20) 

X2 

f COSCD , / 1 \ 

J v/(pi + x ) . . . (p4 + x) \ SP2/ yJ{pX + X) . . . (p4 + X) 

, rp^ (Pi + ^ ) ( P 2 + ^ ) ( P 3 + x) , 
^ = T l n — V + <PPl + <PP2 + ^P3 ~ ^P4> 

p 4 *T" X 

Then for all sufficiently large T > 0 the estimate 

1 P 6 \ 
(21) У = ° ( : 

<T ln4P/ 

holds uniformly for x\, X2 and cD. 

P r o o f . We have 

X2 
1 r 1 

I=TJ Wx)^^1 +x)...{pA+x)d(sincj), 

i i 

M(x) = (pi + P2)P3P4 + (P4 - P3)PlP2 + 2p
4
(pi + p

2
 + P

3
)X 

+ (pi + P2 + P3 + 3p4):r2 + 2x3 = a + 2bx + ex2 + 2x3. 

If a = 0 then 

(22) (pi + P2)P3P\ = (P3 - P4)PlP2-

However, in our case 

P3 t (P3 -P4) , PsfPl, P3JP2, 

P4 { (P3 -P4), P4fPli P4JP2, 

(Pl-P2)\Pl, (Pl+P2)fP2, ( P l + P 2 ) | ( P 3 - P 4 ) ; 
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consequently, if (pi +p 2 ) | (p3 - p 4 ) then p3 - p 4 = fc(pi +p 2 ) and (see (22)) p3p4 = 

kpip-2, a contradiction. Hence |a| ^ 1. Further (see (20), P ^ 2), 

26x + ex2 + 2x3 ^ - + 2 - 6 + 2~12 < 0.77. 
4 

Consequently, 

|M(x)| ^ 0.23, 

M ;(x) = 26 + 2cx + 6x2 < A(px + p2 + p3)p4 

for x € (xi ,x2) . Now 

T ^(l / ^ , 1 7f X ( I(P1+*)(P2+X)(P2+~X~) , \ 

n .—7 r M'(x)\ . . 

- V(pi + x ) . . . (p4 + x) • M2 \ smwdx* 

.0(I^SBH) + {^(^+...)} 

+ fl{ 2
T

 1P4/2V/PlP2P3(Pl +P2 +P3)} 
and finally (see (10), (19), (20)) 

v=o{±(z^y}+o{^E±(E^y} 

+o{x-^(Epr)2(Zvp;)2} 
= o(±.-?-)=o(2^.-£-) 

\T \n*p) U \ T \n*p) 

= og.pVp) 
uniformly for xi , x2 and (p. D 
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7. MEAN VALUE OF THE FUNCTION G4(x;T,(D) 

We have 

Lemma 4. For all sufficiently large T, A > 0 and for arbitrary x\, x2 satisfying 

the conditions 

(23) (xux2) C (0, g i j ) , ^ - — < x2 - xi; 2 ̂  P ̂  T 1 / 9 , 

we have 

x 2 

(24) /3(l) + o(^)<^-i^-|o4(^;T^)da:</J(0) + o(i)) 

Xi 

ft*)-1Eg(P1+X)(P2+a) + 1 E ^ i - - ^ < * 

(25) / G 4 ( x ; T , ( D ) d a ; - ^ ( l n l n P ) 2 , P -> oo. 
x2 - xi J 4 

x i 

The relations (24), (25) are valid uniformly for x\, x2 and (D. 

P r o o f . We have 

(26) G4(x; T, <p) = S4 + S5 + S6 + S7 + 5 8 , 

where (P i , . . . ,p 4 < P) 

(27) S4 = /?(*), 

(28) S 8 = 5 8 1 + S 5 2 + S5з = 5 X ) E . E 
COSCJ5i 

2 P i ^ , P 3 ( í 9 1 + X ) \ / ( P 2 + ^ ) ( P 3 + ^ ) 

+ 5ĽĽĽ 
P l , P 2 , P 3 

cosu;52 

ìwv cos Ш53 

2 rŽŽZiiZ (p i + z M ^ + z K P s + x ) ' 
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^51 = ^52 = -^53 = T\n[(p2 + X)(p3 + X)] + CDp2 + CDp3 , 

~ ~ ~ ^ 3 -r--\ v—> -r—<v COSCJfil 

29 5 6 = Sei + 5 6 2 + 5 6 3 = - V V V , ,, . , =-=-
4 v^vT & + * )> j (P-+-0(P3+-0 

3 -r--\ Y~^ V ^ c o s -^62 
4 p f ^ - ^ з ^ (PI + ^ ) N A P 2 + XKPЗ + Ï ) 

3 ү ^ ү ^ COS^бЗ 

8---.--- ( p x + x ) ( p 2 + a ; ) ' 
P l т - p 2 

^ б l = ^ 6 2 = T ІП ; h CDp2 - (Dpз , 

P З + X 

T)л + X 
c.jGз = 2 F ln • h 2cDPl - 2 ^ P 2 , 

P2+X 

(зo) s7 = s7i + s72 + s73 = 5 £ 5 ; £ 
4 ^ T^ (Pl +X)\/(P2+^)(PЗ+^) 

P І 7 - P 2 , P І 7 - P З 
P2Ť-PЗ 

3 v—\ -r—v -r--v -r---\ COS CJ72 

+ - E E E E Л / ( P ! + X) . . . (p 4 + X) 
P l 7-PЗ ,P1 Ť-P4 , P l F P 2 
P2 т-PЗ ,P2 т~P4 ,PЗ ФVA 

+ J E E E E 
P l , P 2 , P З , P 4 

COS CD73 

>/(pi + z) . . . (p 4 + X) ' 

rp} (Pl + ^ ) 2 

" ? 1 = T l n ( P 2 + Z ) ( p 3 + * ) + ^ " ^ " ^ ' 

.7-, (Pl + 3 p ( p 2 + f f ) . 

^ = T l n ( P 3 + X ) ( p 4 + X ) + ^ + ^ " ^ " * " ' 

u; 7 3 = T ln[(pi + x ) . . . (p 4 + a;)] + cDpi + (/?p2 + <pP3 + cDP4, 

(31) s8 - s8i + s8 2 + s8 3 = - y ^ V } •— , ^ r 
T ^ - P T ( P 1 + ^ ) 3 / V P 2 + - 5 

3 v--\ -r--\ -r—\ COS CJ82 

+ ? E Ľ E 2 + + (^1 + : Г ) V / ( P 2 + ^ ) ( P З + Ж ) 
P l т - P З , P 2 т - P З 

P І 7 - P 2 

2 г ^ l ^ Ł . l ^ л /(p 1 +x).. .( P 4 + x); 

P i F P ^ í P г т - P ^ ^ P З т 1 ^ 

P l 7 ^ P 2 , P l т ^ P З , P 2 т ^ P З 

(P! + z ) 3 , 0 
8 1 =

 p 2 + д :

 + 3 ^ 1 - ^ 2 . 
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rr^ (P i+Д^) 2 (P2+Д:) , 0 ^ ^ n 

^82 = TІП — — + 2(Dpi + (Dp2 - <^pз, 
Pз + Æ 

Ф ^ (Pi + дQ(P2+дQ(pз + дQ , ^ ^ 
^sз = Tln — — + <pPl + ifP2 + ippз - <pP4. 

JJĄ | -ř» 

D 

7.1. A typical and relatively the most difficult is the case of an estimate of the 
integral of the sum 5s3- In that case we have the estimate (see (19)-(21), (31)) 

X2 

| 5 „ d x = V = 0 ( I ^ ) 
X l 

uniformly for X\, X2 and <D. Analogously we establish the estimates 

/ ^ d , = o ( I . ^ ^ ) , . = 1,2,3, 
Xl 

7n J r̂  f̂1 T 3 ln lnP\ , ^ o J S6idxD = 0(-. ^ 2 p j , Z = l,2, 

1 2 1 2 

/563d, = o(i.^), /5„d.r = 0 ( I . - ^ ) , 
ri xi 

X2 X2 

/ s" d"°(ra)' Is-d"°(fSp)-
r i x i 

X2 X2 

/581dx = o(I.^), /582dx = o(I.^), 

X I 

uniformly for x\, X2 and (/P. Consequently, we conclude (see (26), (28)-(31)) that the 
estimate 

(32) J(S5+S6+S7 + Ss)dx = o(±-j-r^) 
X l 

holds uniformly for x\, X2 and (p. 

7.2. Now, in the case 2 ^ P ^ If we have (see (24), (26), (27), (32)) 

x 2 

/?(!) • (x2 - Xl) + o(^rj;) <jG*dx< 0(0) • {x2 - Xl) +0(^j) 
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and by virtue of (23) this implies (24). Since 

E / ^ ^ = 0 ( * 2 - Z І ) , 
+ x) 

Pi x , 

we have 
x 2 

JGidx = ^(x2-x1)(ln\nP)2 + 0{(x2-x1)\n\nP} + 0 ( j ^ ) 

Xi 

for P -> oo (see (17), (24), (27), (32)), and by virtue of (23) this yields (25). 

8. INTEGRAL ORDER OF THE FUNCTION \G(x\T,(p)\ 

First of all, using (12), (13), (24), (25) we establish estimates 

x2 r , 

JG2(x;T,tp)6x>yiJ& 

(l + e)/3(0)-(x2-x1), 2^P^K, 
JG*{x;T, ip)dx < 

( l - є ) a ( l ) - ( a ; 2 - x i ) , 2 < P < K, 
ì ^ 

(1 
f(l+e)(a;2-a;i)(lnlnP), P -+ oo. 

l(x2 - o:i)lnlnP, P -> oo, 
xi ^ -

x 2 

Further, applying (12), (13) and the Cauchy-Bunyakovskii inequality we obtain es
timates 

X2 

J \G(x;T,<p)\ 
i(l + є). (x2 - xx)y/oЩ, 2 <: P <: к, 

dx < 
i±£ 

x i 

[^(x2-x1)\An\nP) P->oo. 

The well known inequality 

Ь Ь o / o 6 

j\g{x)\dx>ij g\x)dx\ Jjg\x)dx\ . 
a a a 

(use the Hoelder inequality with g2 = \g\s • \g\~s, p = | , q = 3) implies 

Lemma 5. For all sufficiently large T, A > 0 and for arbitrary x\, x2 satisfying 
the conditions (23) we have 

(33) (i-3e)J^<^-^j\G{x]T,lp)\dx<{l+e)y/^tíj 

187 



provided 2 ^ P ^ K and 

1 - 3 5 
(34) 

vlб 
v t l n l n P < [\G(x\T,ip)\dx< ^ - ^ v l n l ň T 

provided P —> oo. Moreover, bofc12 (33), (34) are valid uniformly for x\, X2 and p. 

Remark 6. We have thus determined the order of the area of the curvilinear 
trapezoid corresponding to the graph of an arbitrary signal. In this connection a 
question arises of the proof of an asymptotic identity improving the estimate (34). 

Since 

where 

9. P R O O F OF THE THEOREM—CONCLUSION 

x2 

I G(x] X, p) dx = ] T X, u = T 
I P^P 

x2 + x2 

I = J VFT= TJ "/PTid{smuj) 

X\ X\ 

= i [ v ^ H F s i n ^ + J - - [ v ^ T ¥ c o s i ] " - -A--Z, 

we have 

i = oi s/V m 
Consequently, 

x-
(35) JG(x;T,V)dx = o(^p) 

X\ 

uniformly for x\, X2 and p. 

If under the conditions (23) the function G(x;T, </?), x G (0:1,0:2) does not change 

sign, then (35) implies the inequality 

x2 

(36) [\G(x;T,<p)\dx < A 
pЗ/2 

T l n P ' 

188 



Further, for sufficiently large T, A > 0 and an arbitrary fixed vector <p we have 

estimates (see (33), (34), e = 1/6) 

(37) J \G(x;T,lp)\dx>lK 

(x2 - xOv/lnlnP, P -> co. 

However, under the conditions 

*T&P=X2~X1' °^Xl^9P^ 

(see (23) and the assumptions of the theorem) the relations (36), (37) are contradic

tory. Consequently, the interval 

( X I ' S I + Д Ť П ? P ) '
 0 < a ľ l < 5 T 9 P 2 

contains a zero of an odd order of the function G(x\T,<p) (of course, the condition 
xi e (0,1/9P 2 ) implies that (xux2) C (0,1/(8P 2)) for sufficiently large T). 

1 0 . CONCLUDING REMARKS 

The method of the proof of the theorem makes it possible to obtain analogous 
results even for families of signals obtained for example in the following way: 

(A) by differentiation: 
dG dG 
dx' dt ' 

(B) by replacing the summation in (3) by a summation 
(a) by an arbitrary choice of primes not greater than P, 
(b) by numbers of the type 

<11 = P1P2, ?2 = P3P4, ?3 = P5P6, • • • ^ P , 

(say, by products of twin primes), 
(c) or, generally, by numbers 

ni < n2 < . . . < nk ^ P, (n»,rij) = 1, i # j , i,j^k, 

(C) by a substitution 

y/p + x -î> (p-r-x)ÍT, O- Є (-L,L). 
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In particular, let us mention the family of signals (C) a = 0, i.e. 

G0{x-1T,<p)= ^ c o s { T l n ( p + x) + (Dp}, xe (0,1) 

with random excitation of phases. 

Acknowledgement. I express my deep gratitude to editors for translation of the 

paper from Russion. 

References 

[1] Goldman, S.: Theory of Information. Constable and Company, London, 1953. (In Rus
sion.) 

[2] Moser, J.: Riemann-Ziegel formula and some analogues of the Kotelnikov-Whittaker-
Neuquist theorem from the theory of information. Acta Math. Univ. Comen. 58-59 
(1991), 37-74. (In Russian.) 

[3] Moser, J.: On the order of a sum of E. C Titchmarsh in the theory of Riemann zeta 
function. Czechoslov. Math. J. 41(116) (1991), 663-684. (In Russian.) 

[4] Titchmarsh, E.C.: The Theory of Riemann Zeta Function. IL, Moscow, 1953. (In Rus
sian.) 

Author's address: 84215 Bratislava, Mlynska dolina, Slovakia (Katedra matematickej 
analyzy MFFUK). 

190 


		webmaster@dml.cz
	2020-07-03T10:14:09+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




