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COMPARISON THEOREMS FOR DIFFERENTIAL 
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J O Z E F DZURINA 

(Communicated by Milan Medved') 

ABSTRACT. K u s a n o , N a i t o and T a n a k a have recently shown tha t 
we can deduce oscillatory and asymptotic behavior of the equation 

Lnu(t) + p(t)u(t) = 0 

from the oscillation of a set of the second order equations 

(W>y+mz(t)=°-
In this paper, the above-mentioned result will be extended to a class of delay 
differential equations of the form 

Lnu(t)+p(t)u[g(t)} =0 

for which asymptotic behavior is derived from the oscillation of the second order 
delay equations 

(^§j), + ^tHri(t)]=0. 

Let us consider the differential equations 

Lnu(t) + p(t)u(t) = 0, and (1) 

Lnu(t) + p(t)u[g(t)] = 0, (2) 

where n > 3, and 1 n denotes the disconjugate differential operator 

L -_---_ A ________ ______ _____ (3) 
71 rn(t) dt r n _i ( r ) dt' " d* n(t) dt r0(t) '

 l } 

It is assumed that ri(t), 0 < i < n , p(t), and g(t) are continuous and positive 
on [r0,oo), g(t) —> oo as t —• oo, and 

LXJ 

/ 
ГІ (s) ds = oo for 1 < i < n — 1. (4) 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 34C10. 
K e y w o r d s : Differential equation, Deviating argument, Comparison theorem. 
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The operator Ln satisfying (4) is said to be in canonical form. It is well known 
that any differential operator of the form (3) can always be represented in a 
canonical form in an essentially unique way (see T r e n c h [11]). In the sequel, 
we will assume that the operator Ln is in canonical form. 

We introduce the notation: 
u(t) 

L0u(t) = 
ro(t) ' 

Liu(t) = —T---Li_iu(t), 1 < i < n. 

The domain V(Ln) of Ln is defined to be the set of all functions u: [Tu, oo) —> R 
such that Liu(t), 0 < i < n , exist and are continuous on [Tu,oo). A nontrivial 
solution of (2) is called oscillatory if it has arbitrarily large zeros; otherwise it is 
called nonosdilatory. Equation (2) is said to be oscillatory if all of its solutions 
are oscillatory. 

If u(t) is a nonoscillatory solution of (2), then, according to a generalization 
of a lemma of Kiguradze [4; Lemma 3], there is an integer £, 0 < £ < n — 1, 
such that £ ^ n (mod 2) and 

u(t)Liu(t)>0 on [i i ,oo), 0 < z < ^ , 

(-iy-£u(t)Liu(t) > 0 on [t i ,oo), £-\-l<i<n. 

A function u(t) satisfying (5) is said to be a function of degree £. The set of all 
nonoscillatory solutions of degree £ of (2) is denoted by Mi. If we denote by M 
the set of all nonoscillatory solutions of (2), then 

A/* = A/fj U M2 U • • • U JVn_i if n is odd, 

and 

M = A/i U A/3 U • • • U A/n-i if n is even. 

It is known that equation (1) has always a nonoscillatory solution of degree 
0 (Alo ^ 0), see H a r t m a n and W i n t n e r [3]. Therefore, the extreme 
situation described in the following definition is of a particular interest. 

DEFINITION 1. Equation (2) is said to have property (A) if for n even J\f = 0 
(i.e. (2) is oscillatory), and for n odd J\f = Af0. 

K u s a n o and N a i t o [7], and T a n a k a [10] have established sufficient 
conditions for equation (1) to have property (A). Their results generalize those 
of L o v e 1 a d y [5] for equations of the form y^ + p(t)y = 0. K u s a n o , 
N a i t o and T a n a k a have compared equation (1) with the set of the second 
order equations of the form 

y'{t)^' + gi(t)y(t) = o, 
Mt) 
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where qi(t) have been constructed from ri(t), 0 < i < n and p(t). For details, 
see [7] and [10]. 

The objective of this paper is to improve the above-mentioned results. We 
compare equation (1) with the set of the second order delay equations of the 
form 

^ ) ' + 9.(*)*N-)l=0. 

where qi(t) and Ti(t) will be defined bellow, and then we extend our results to 
differential equations with deviating argument (2). 

We begin with formulating some preparatory results which are needed for 
proofs of the main theorems. 

Let ik £ {1, •. •, n — 1} , 1 < k < n — 1, and t,s £ [t0, oo). We define 

/o = l , 
t 

4(M; r» f c , . . . , r i J = / rifc(x)/fe_i(a:,5;rifc_1,...,rij dx. 
8 

It is easy to verify that for 1 < k < n — 1 

h(t,s;rik,...,rh) = ( -1 ) Ik(s,t;rh,... ,rik), 

Ik(t,s;rik,...,rh) = / ril(x)Ik-1(t,x\rik,...,ri2) dx. 
(6) 

For simplicity of notation, we put 

Ji(t,s) = r 0 ( t ) - f i ( * , « ; r i , . . . , r i ) , Ji(t) = Ji(t,t0), 

Ki(t, s) = rn(t)Ii(t, s; r n _ i , . . . , r n _*) , Ki(t) = K{(t, t0). 

LEMMA 1. Let £ be an integer such that 1 < t < n — 1 and £ ^ n (mod 2). 
Equation (2) has a solution of degree t if and only if the differential inequality 

{Lny(t)+p(t)y[g(t)]}sgny[g(t)] <0 (7) 

has a solution of degree £. 

This lemma exhibits an important relationship between differential equa
tion (2) and differential inequality (7). For a proof, see K u s a n o and N a i t o 
[8]. 
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LEMMA 2. If u E V(Ln), then for 0<i<k<n — 1 anJ i , s G [Tu, oo) , One 
/ms: 

_,-._(*) = ] P ( -1 ) J 'LjU^Ij-^s, t] rh . . . , r i + i ) 

(8) 

+ ( - l ) f c _ 2 + 1 / J f c_ . j (x , t ; r f e , . . . , r i + i ) r f c + i (x)L f e + i_(x) dx . 

t 

This lemma is a generalization of Taylor's formula. The proof is immediate. 
The following theorem is an extension of a result of T r e n c h [12]. 

T H E O R E M 1. Let 

oo 

IK^i^WJi-iWpQ) dt = oo (9) 

for i = 2 , 4 , . . . , n — 1 if n is odd, and for i = 1, 3 , . . . , n — 1 if n is even. Then 
equation (1) has property (A) . 

The proof immediately follows from [7; Theorem A] and [10; Theorem 1]. 
The following theorem covers the case when condition (9) is violated. For 

convenience, we introduce the following notations: 

CO 

qi(t) = ri+1(t) / Kn_i_2(x,t)Ji-i(x,Ti(t))p(x) dx , ^ 

t 

i = 1,2,... , n — 3 ; 

qn-i(t) = rn(t)Jn-2(t,Tn-1(t))p(t)] (11) 
CO 

qn-i(t) =rn-2(t) [ Jn-3(s,t)K0(s,t)p(s) ds ; (12) 

where Ti(t): [to, oo) —• R, 1 < i < n — 1, are continuous and satisfy 

Ti(t) —» oo as t —• oo , -j(r) < £ , for i = 1, 2 , . . . , n — 1 

r n _i( r ) ^ t on any [tu oo), rx > r0 • 
(13) 

THEOREM 2. Suppose that the integrals in (9) converge. Assume that the sec
ond order delay equations 

z'{t)\ 
(W)) +*W*N0]=0 (E.) 
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are oscillatory for i = 2 , 4 , . . . , n — 3 if n is odd, and for i = 1, 3 , . . . , n — 3 if n 
is even, and further suppose that either the second order delay equation 

( r ~ T w ) +^-l(tHTn-l(t)]=0 (E.,-0 

is oscillatory, or the second order equation 

( ^ ^ ) ' + *•"-(*)*(*) = 0 (En-l) 

is oscillatory. Then equation (1) has property (A) . 

P r o o f . Without loss of generality, we may assume that u(t) is a positive 
solution of (1). Then there exists an integer £ G { 0 , 1 , . . . , n — 1} , £ _̂ n (mod 2), 
and a number t\ such that (5) holds for t > t\. We claim that £ must be equal 
to 0 (if n is odd). Assume that 1 < £ < n — 3. By Lemma 2, with i = £ + 1, 
k = n — 1, and s > t > t\, taking (1) into account and then letting s —> oo, we 
obtain for t>t\ 

oo 

-Le+iu(t) > / r n (x) / n _^_ 2 (x , r; r n _ i , . . . , rejr2)p(x)u(x) dx , (14) 

t 

and if £ > 2, then putting i = 0, k = £ — 2, and t > s = t\ 

t 

L0u(t) > / i^_2(£, x; n , . . . , r^_2)r^_i(x)K£_itt(x) dx . (15) 

t i 

For details the reader is referred to [7] or to [10]. Combining (14) with (15) we 
have 

oo 

-Le+iu(t) > / r n (x) / n _^_ 2 (x , t; r n _ x , . . . , r£+2)p(x)rQ(x) • 

t 
X 

• / ^_ 2 (x , s ; r i , . . . , r^_ 2 ) r^_i (s )L^_i?x(s ) d sdx 

t i 
oo 

> / r n ( x ) / n _ ^ _ 2 ( x , t ; r n _ i , . . . , r ^ + 2 ) p ( x ) r 0 ( x ) -

t 
X 

• / ^_ 2 (x , s ; r i , . . . , r ^_ 2 ) r^_ i ( s )L^_ i i t ( s ) d s d x , 

n(t) 

83 



JOZEF D.URINA 

for all t > t2, where 1-2 > t1 is chosen so that Te(t) > t1 for t > t2. Since 
_^_i^(t) is increasing, we conclude from above that 

CO 

-Li+1u(t) > Le-^Te^)] / r n ( _ ) / n _ £ _ 2 ( x , t ; r n _ i , . . . ,rl+2)p(x)r0(x) • 

t 
X 

• / Ii-2(x,s\r1,...,ri-2)ri-1(s) dsdx. 

nit) 

Let y(t) be given by 
y(t) = Le-Xu(t). 

Note that y(t) > 0, and, in view of the above inequality, 

CO 

-Li+1u(t) > y[ri(t)] f Kn-£-2(x,t)Je-1(x,Te(t))p(x) dx . (16) 

\ 

That (16) also holds for I = 1 follows from (14) and the fact that L0u(t) > 

£o^[TivO] • Noting that 

^1)' = re+1(t)Le+1u(t), 

we see from (16) that 

( ^ j ) +Qe(t)y[re(t)}<0, for t>t2. 

Lemma 1 implies that equation (E^) has an eventually positive solution. But 
this contradicts our assumption. 

Let £ = n — 1 . First suppose that equation (E n _i) is oscillatory. We easily 
see that 

-Lnu(t)=p(t)u(t) (17) 

and, by Lemma 2, we have 

t 

L0u(t) > / In_3(r,x;ri,...,rn_3)rn_2(x)Ln_2ix(a:) dx . (18) 

ti 

Combining (17) with (18) and taking (13) into account we have 

t 

-Lnu(t) >p(t)r0(t) / In_3(r,x;ri,...,rn_3)rn_2(x)Ln_2H(x) dx . 

T n - l ( t ) 
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Since Ln-2u(t) is increasing, we obtain from the above that 
t 

-Lnu(t) > Ln_2u[Tn-1(t)]p(t)rQ(t) / / n _3(1 . , x ; r i , . . . , r n _3) r n _ 2 (x ) Ax 
J
m (19) 

= Ln-2u[Tn-1(t)]p(t)Jn-2(t,Tn-1(t)) , 

for all large £, t>t2. We see that y(t) = Ln-2u(t) > 0 satisfies 

j / ^ - > i =rn(t)Lnu(t). 
rn-i(t) 

Therefore we have from (19) that 

(rn-!lt))
 +^-i(t)y[rn-i(t)]<0, for t > t2 . 

Again, by Lemma 1, one gets that equation (E n _i) has an eventually positive 
solution, contradicting the hypotheses. 

Now, suppose that equation (E n _i) is oscillatory. Then, by [10; Theorem 2] 
and by [7; Theorem B], it follows that equation (1) has no nonoscillatory solution 
of degree £ = n — 1 . This completes the proof. • 

K u s a n o and N a i t o in [7; Theorem B] and T a n a k a in [10; The
orem 2] have established comparison theorems to the effect that we can derive 
property (A) of the nth order equation from the oscillation of the second order 
equations. Those results are included in Theorem 2 (by putting Ti(t) = t). 

Moreover, in the examples stated below, we show that we often obtain better 
results if we deduce property (A) of equation (1) from the oscillation of second 
order delay equations than from that of the second order ordinary equations 
(without delay). 

Now we are prepared to extend our results to equation (2). The main tool in 
our efforts is the following result, which is due to K u s a n o and N a i t o [8]. 

L E M M A 3. Let 

g(t) e Cl ([t0, oo)) , g'(t) > 0 , g(t) < t. (20) 

Equation (2) has property (A) if the equation 

Lnu(t) + p(t)u(t) = 0 (21) 

has property (A) . where 

~(t) = PJg-mrnjg-Kt)] 

Applying Theorems 1 and 2 to equation (21) we obtain the following two 
corollaries 
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COROLLARY 1. Let (20) hold. Further suppose that all the conditions of The
orem 1 are satisfied with p(t) replaced by p(t). Then equation (2) has prop
erty (A) . 

COROLLARY 2. Let (20) hold. Further suppose that all the conditions of The
orem 2 are satisfied with p(i) replaced by p(t). Then equation (2) has prop
erty (A) . 

We show that the conclusions of Corollaries 1 and 2 can be strengthened as 
follows: 

THEOREM 3. Assume that equation (2) has property (A) . Then every non-
oscillatory solution u(i) of (2) satisfies 

,. w(t) 
lim —y- = 0 

t^oo r0(t) 

if and only if 

j J0(g(t))Kn^(t)p(t) dt = oo. 

The proof of this theorem immediately follows from [6; Theorem 1] of 
K i t a m u r a and K u s a n o . 

For the special case of equation (2), namely, for the equation 

(^k(^)u ' ( i )) ' ) , + 7 , W u b w ] = 0 ' (22) 

we have the following result: 
COROLLARY 3 . Let (20) hold. Further suppose that at least one of the follow
ing conditions holds: 

(i) 
OO / t 

/(/•H-féih--' 
(ii) the equation 

V T2{t) ' 

with T2(t) defined as in (15), is oscillatory; 
(iii) the equation 

'MV+L ( , ,7.£Md .U )_0 
Mt) 

is oscillatory. 

(ri(í)i 7[FWd7 
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Then equation (22) has property (A). 

E x a m p l e 1. Let us consider the third order Euler equation 

( f l / V ' ) ' + ^ J / = ° . * > ! > « € R . (23) 

We put for this equation T2(t) = t/3. Then, by Corollary 3, equation (23) has 
property (A) if the second order delay equation 

(^VW)' + 3^y(*/3) = o 

is oscillatory. By a generalization of the well-known criterion of H i 11 e [2], it 
comes if 

a > ^ ' 

and moreover, by Theorem 3, if a > — - = , then every nonoscillatory solution 

y(t) of equation (23) satisfies lim y(t) = 0. Note that we obtain a better result 
t—>oo 

than T a n a k a ' s criterion [10] provides. 

To describe better the situation in which not all second order equations (E;) 
are oscillatory, we use the following definition and in the sequel we suppose that 
fci, fc2,.. •, fcm E {1 ,2 , . . . , n — 1}, where m > 1 are all mutually different such 
that n^ki (mod 2), 1 < i < m. 

DEFINITION 2. We say that equation (2) has property Aklj...^krn if 

M = A/o U Mkl U • • • U Afkrn if n is odd, 

and 

A/* = Mkl U • • • U A4m if n is even. 

THEOREM 4. Assume that (20) holds. Let (9) be satisfied for i E { 1 , 3 , . . . , 
n — 1} — {fci, . . . , fcm} if n is even, and for i E { 2 , 4 , . . . , n — 1} — {fci, . . . , fcm} 
if n is odd. Then equation (2) has property Akl^t^km . 

THEOREM 5. Assume that (20) holds and the integrals in (9) converge. Let 
qi(t) and Ti(t), 1 < i < n — 1. be defined as in (10), (11) and (13). Then 
equation (2) has property Akl^.^krn if equations (E^) are oscillatory for i E 
{1, 3 , . . . , n — 1} — {fci, . . . , fcm} if n is even, and for i E { 2 , 4 , . . . , n — 1} — 
{fci, . . . , fcm} if n is odd. 

The proofs of Theorem 4 and 5 follow from Corollary 1 and 2, taking 
[1; Theorem 9] into account. 
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R e m a r k 1. If equation (E n _i) is replaced by equation ( E n _ ! ) , then The
orem 5 remains valid. 

E x a m p l e 2. Let us consider the fifth order delay equation 

( l - 1 y ( 4 ) ( l ) ) ' + ^ y ( \ / l ) = 0 , t > l , a>0. (24) 

We put T2(1) = Xt for some A G (0,1). Then, by Theorem 2, equation (24) has 
not any solution of degree £ = 2 if the second order delay equation 

y"(t) + f(\-^x)y(Xt) = 0 (25) 

is oscillatory. By a generalization of the criterion of H i 11 e [2], it sets in if 

<i-h*)>i <26> 
15 32 

If we put A = — , then (26) reduces to a > — . Note that we have obtained 
better result than T a n a k a ' s criterion [10] provides. On the other hand, by 
Theorem 2, equation (24) has no solution of degree £ = 4 if the second order 
equation 

(«-V(t))' + ^ » o = ° 
is oscillatory, which, by H i 11 e 's criterion, comes if a > -zr= . Finally, by 

Theorem 2 and 5, 

if a > -r-z-, then equation (24) has property (A), 

32 60 

if — < a < ---=- ? then equation (24) has property A4, 

if a > 0, then equation (24) has property A2..4, 

and moreover, by Theorem 3, if a > ---=•, then every nonoscillatory solution y(t) 
of equation (24) satisfies lim y(t) = 0. 

£ — • 0 0 
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