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AN EXTENSION OF KOTZIG'S THEOREM 

ON THE MINIMUM WEIGHT OF 

EDGES IN 3-POLYTOPES 

OLEG V. BORODIN 

ABSTRACT. It is proved that if no triangular faces in a 3-polytope touch each 
other, then there exist two adjacent vertices with the degree sum at most 8. On 
the other hand, an example of a 3-polytope is constructed in which every two 
triangles have at most one point in common, but the degree sum of every two 
adjacent vertices is greater than 8. 

The weight of an edge in a 3-polytope is defined to be the degree sum of its 
end vertices. K o t z i g proved [1] that in each 3-polytope there exists an edge 
of the weight at most 13, the bound being sharp. For such bipartite 3-polytopes, 
where each face is a quadrangle, he strengthened this bound to 8 [2], that is also 
the best possible as shown by the dual of the (3,5,3,5)-Archimedian solid. 

In the present note, it is proved that the bound 8 for the minimum weight of 
edges is valid also in a broader class of 3-polytopes in which no triangular faces 
touch each other, but becomes invalid as soon as every two triangles are allowed 
to touch each other in at most one point. The second part of this statement 
follows from the figure below, while the first one is represented by 

THEOREM. If P is a 3-polytope in which no triangular faces touch each other, 
then there exists an edge in P of the weight at most 8. 

P r o o f . Let a 3-polytope P contradict to our Theorem. The Euler formula 

| V " | - | £ | + | F | = 2 

for P may be rewritten [3] as 

£ (s(v) - 6) + £ ( 2 » - 6 ) | F . | = - 1 2 , (1) 
v£V t>3 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 05C10. 
K e y w o r d s : Planar graph, 3-polytope, Edge weight. 
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where s(v) denotes the degree of a vertex v and F, is the set of i -faces. We 
define a function g: V U F —> R as follows: 

g(v) = s(v) — 6 for each v E V; 

g(f) = 2i-6 for each / G F,. 

Now (1) may be rewritten as 

E 9(x) = -l2. (2) 

Figure 1. 

We want to construct a function g* : VUF —• i? with the following mutually 
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excluding properties: 

£ <?•(*)= £ 9(x) = -l2; (3) 
xevuF xevuF 

g*(x) > 0 for each xeVUF; (4) 

this contradiction will complete the proof of our Theorem. 

First a few definitions. For a vertex v, we denote by t/i,V2,-.. ,Vj(v) the 
vertices adjacent to v in a cyclic order. A 6-vertex v is called particular if the 
face [... v\W2 . . . ] is a triangle, s(v2) = • • • = s(vr) = 3 , where r > 2 , and 
5(UJ) > 6 for i > r. We remind that according to the properties of our P, no 
vertex is incident with more than one 3-face and no 3-face is incident with more 
than one 3-vertex. The initial charge of each vertex or face, x, of P, is defined 
to be g(x). 

At the first stage of constructing g* , every nontriangular face, / , transfers 
parts of its charge to incident vertices. 
Namely, if / = [U1U2U3U4], then ui receives from / : 

0 if .s(ui) > 6, «s(u2) > 6, and ^(u4) > 6; 
3 /4 if s(ui) > 6, s(u2) > 6, and 5(u4) = 3; 
1/2 in all other cases; 

if the size of / is greater than four, then / transfers 3 /4 to each incident vertex. 
Now for every face / the value of g*(f) is completely defined and equal to 

the resulting charge on / . To construct g* for the vertices, another distribution 
of charges is required: Each vertex, w, of degree greater than four transfers to 
each adjacent vertex, v, the following charge: 

1/4 if s(v) = 4 and the edge wv is incident with a 3-face; 
1/2 if s(v) = 3 and wv is not incident with a 3-face; 
3 /4 if s(v) = 3 and wv is incident with a 3-face. 

After the second distribution of charges, the function g*: V U F —> R is com
pletely defined. By construction, (3) is satisfied. It remains to verify (4): 

First, let / = [U1U2U3U4] be a 4-face. If / does not give more than 1/2 to 
any incident vertices, then 

< 7 * ( / ) > 2 - 4 x l / 2 = 0. 

Otherwise, suppose ui receives 3 /4 from / . Then it may be assumed in addition 
that .s(u4) = 3 and ,s(u2) > 6. Furthermore, s(u3) > 6 due to the property of 
P, therefore / gives nought to U2 and 

< 7 * ( / ) > 2 - 2 x 3 / 4 - l / 2 = 0. 
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If / is an i-face where i > 4, then 

9*(f) = 9(f) ~ i x 3/4 = 2i - 6 - 3i/4 = (j - 24/5) x 5/4 > 0. 

Now consider a vertex v E V. Assume first that s(v) = 3 . If v is incident 
with a 3-face, then it receives at least 1/2 from each of the two nontriangular 
faces, 3/4 from adjacent vertices along each of the two edges incident with 
3-faces, and also 1/2 along the edge not incident with a 3-face. This implies 

g*(v) > s(v) - 6 + 2 x 1 / 2 + 2 x 3 / 4 + 1/2 = 0. 

If v is not incident with a 3-face, then there holds 

g*(v) > - 3 + 3 x 1/2 + 3 x 1/2 = 0. 

Let s(v) = 4; if v is incident with a 3-face, then 

g*(v) > - 2 + 3 x 1/2 + 2 x 1/4 = 0, 

otherwise 

g*(v)> - 2 + 4 x 1 / 2 = 0. 

Consider the case s(v) = 5. If v is incident with a 3-face, then 

g*(v) > - 1 + 4 x 1/2 - 1/4 > 0. 

(We make use of the fact that v is not adjacent to 3-vertices here.) If v is not 
incident with a 3-face, then 

g*(v)> - l + 5 x l / 2 > 0 . 

At last, assume s(v) > 6. Let also v be incident with t faces of the size 
three (of course, 0 < t < 1) and p such nontriangular faces that give nought 
to v, i.e., are of the type [vu\U2U$\ where s(u\) > 6 and s(u$) > 6. Then v 
receives from the faces s(v) — t — p times 1/2 or 3/4. Our next purpose is to 
estimate how much should v transfer totally to adjacent vertices of degree 3 
and 4 . 

For t = 0 we clearly have 

g*(v) > s(v) - 6 + (s(v) - p) x 1/2 - (s(v) - p) x 1/2 > 0. 

Assume from now on that t = 1, i.e. v is incident with a 3-face, say [trDit^]-
Observe that at most one of the vertices vi, V2 may be of degree not greater 
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than four, hence v\ and t>2 receive from v at most 3/4 totally. Evidently, at 
most s(v) — 2 — p of the vertices V3, V4,..., vs(v) may have the degree 3 or 4 . 
It follows that 

g*(v) >s(v)-6+(s(v)-l-p)x 1 /2- ( s (v) -2-p)x 1/2-3/4 = s(v)-6-l/A. 

So, the target inequality g*(v) > 0 remains still unproved only under the 
following assumptions: s(v) = 6; all the faces incident with v except [vvit^] 
are 4-faces; precisely 4 — p vertices among V3, . . . , VQ receive 1/2 from v each, 
i.e. are 3-vertices; finally, one of v\, V2 , say V2, receives 3 /4 , i.e. is a 3-vertex. 
But it follows that among VZ,...,VG precisely p vertices have degree at least 
6, hence s(v{) > 6 for 7 — p < i < 6. Besides, S(VJ) = 3 for 2 < i < 6 — p. In 
other words, if v is not particular, then g*(v) > 0 is already proved. However, 
if v is particular, then it receives 3/4 from certain incident face; in our case 
from [^1^6^] if p = 0 and from [VJ-PVVQ-PZ] if p > 0: s(z) > 6 since z is 
adjacent to the 3-vertex VQ-P . Therefore 

g*(v) > (4 -p) x 1/2 + 3/4 - (4 - p) x 1/2 - 3 / 4 = 0. 

So, (4) is proved. Now from (3) and (4) we get a contradiction 

0< Y, »*(*)= E 9(x) = -l2, 
xeVuF x£VuF 

which completes the proof of our Theorem. 
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