Mathematic Slovaca

Said R. Grace
Oscillation theorems of comparison type of delay differential equations with a nonlinear damping term

Mathematica Slovaca, Vol. 44 (1994), No. 3, 303--314

Persistent URL: http://dml.cz/dmlcz/128947

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

OSCILLATION THEOREMS OF COMPARISON TYPE OF DELAY DIFFERENTIAL EQUATIONS WITH A NONLINEAR DAMPING TERM

S. R. GRACE
(Communicated by Milan Medved')

Abstract

In this paper, we study the oscillatory behaviour of the solutions of delay differential equations of the form

$\frac{\mathrm{d}}{\mathrm{d} t} \frac{1}{a_{n-1}(t)} \frac{\mathrm{d}}{\mathrm{d} t} \ldots \frac{\mathrm{~d}}{\mathrm{~d} t} \frac{1}{a_{1}(t)} \frac{\mathrm{d}}{\mathrm{d} t} x(t)+f\left(t, x(t-g), \frac{\mathrm{d}}{\mathrm{d} t} x(t-h)\right)=0, \quad n$ is even
by comparing with certain differential equations of the same or lower order whose oscillatory character is known. The obtained results can be applied to the delay differential equation

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{a_{n-1}(t)} \cdots \frac{\mathrm{d}}{\mathrm{~d} t} & \frac{1}{a_{1}(t)} \frac{\mathrm{d}}{\mathrm{~d} t} x(t) \\
& +q(t)\left(|x(t-g)|^{m_{1}}\right)\left(\left|\frac{\mathrm{d}}{\mathrm{~d} t} x(t-h)\right|^{m_{2}}\right) \operatorname{sgn} x(t-g)=0
\end{aligned}
$$

where m_{1} and m_{2} are positive constants.

1. Introduction

We consider the functional differential equation

$$
\begin{equation*}
L_{n} x(t)+f\left(t, x(t-g),{ }_{x}^{\prime}(t-h)\right)=0, \quad n \text { is even, } \quad\left({ }^{\prime}=\frac{\mathrm{d}}{\mathrm{~d} t}\right) \tag{E}
\end{equation*}
$$

where $L_{0} x(t)=x(t), L_{k} x(t)=\frac{1}{a_{k}(t)}\left(L_{k-1} x(t)\right)^{\prime}, k=1,2, \ldots, n, a_{n}=1$, $a_{i}:\left[t_{0}, \infty\right) \rightarrow(0, \infty), i=1,2, \ldots, n-1, f:\left[t_{0}, \infty\right) \times \mathbb{R}^{2} \rightarrow \mathbb{R}=(-\infty, \infty)$ are continuous, g and h are positive constants and $h \geq g$. We assume that:
(1) $\int^{\infty} a_{i}(s) \mathrm{d} s=\infty, i=1,2, \ldots, n-1$,

AMS Subject Classification (1991): Primary 34K15.
Key words: Oscillatory solution, Delay differential equation.
(2) there exist a continuous function $q:\left[t_{0}, \infty\right) \rightarrow(0, \infty)$ and real constants m_{1} and $m_{2}, m_{1}>0$ and $m_{2} \geq 0$ such that

$$
f\left(t, x_{1}, x_{2}\right) \operatorname{sgn} x_{1} \geq q(t)\left(\left|x_{1}\right|^{m_{1}}\right)\left(\left|x_{2}\right|^{m_{12}}\right) \quad \text { for } \quad x_{1} \neq 0 .
$$

The oscillatory behaviour of functional differential equations has been intensivel: studied in recent years. Most of the literature on this subject has been concerned with equations of type (E) and/or related equations, specially when f satisfiecondition (2) with $m_{2}=0$, see [1], [5], [7] and [8], and the references cited therein. It seems that very little is known regarding the oscillation of equation (E) when f satisfies condition (2) with $m_{2} \neq 0$, see [2]; [4], [10] and [12]. an! the references cited therein. In this paper, we proceed further in this direction to establish some new oscillation results for equation (E). Theorems 1 and 2 are concerned with the oscillation of equation (E) via comparison with the oscillatory behaviour of two equations of order n and $n-1$, and in Theorem 3 . we reduce the problem of the oscillation of equation (E) to the problem of the oscillation of a certain set of first order equations and the oscillation of all bounded solutions of certain retarded equation of order $n-1$.

The domain of $L_{n} D\left(L_{n}\right)$ is defined to be the set of functions $x:\left[T_{x}, \infty\right) \rightarrow \mathbb{R}$ such that $L_{j} x(t), j=0,1, \ldots, n$, exist and are continuons on $\left[T_{x}, \infty\right), T_{x} \geq t_{0}$. In what follows, we consider only the "nonconstant" solutions in $D\left(L_{n}\right)$, of equation (E). A solution of equation (E) is called oscillatory if it has arbitrary large zeros, otherwise, it is called nonoscillatory. Equation (E) is said to be oscillatory if all its solutions are oscillatory.

2. Main results

We begin by formulating preparatory results which are needed in proving our main results.

For functions $p_{i}:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}, i=1,2, \ldots$, we define

$$
\begin{aligned}
I_{0} & =1 \\
I_{i}\left(t, s ; p_{i}, \ldots, p_{1}\right) & =\int_{s}^{t} p_{i}(u) I_{i-1}\left(u, s ; p_{i-1}, \ldots, p_{1}\right) \mathrm{d} u, \quad i=1.2 \ldots .
\end{aligned}
$$

It is easy to verify that for $i=1,2, \ldots, n-1$

$$
I_{i}\left(t, s ; p_{1}, \ldots, p_{i}\right)=(-1)^{i} I_{i}\left(s, t ; p_{i}, \ldots, p_{1}\right)
$$

and

$$
I_{i}\left(t, s ; p_{1}, \ldots, p_{i}\right)=\int_{s}^{t} p_{i}(u) I_{i-1}\left(t, u ; p_{1} \ldots \ldots p_{i-1}\right) \mathrm{d} u .
$$

The following two lemmas will be needed in the proofs of the main result. .

OSCILLATION THEOREMS OF COMPARISON TYPE ...

Lemma 1. If $x \in D\left(L_{n}\right)$, then for $t, s \in\left[t_{0}, \infty\right)$ and $0 \leq i<k \leq n$
(i) $L_{i} x(t)=\sum_{j=i}^{k-1} I_{j-i}\left(t, s ; a_{i+1}, \ldots, a_{j}\right) L_{j}(s)$

$$
+\int_{s}^{t} I_{k-i-1}\left(t, u ; a_{i+1}, \ldots, a_{k-1}\right) a_{k}(u) L_{k} x(u) \mathrm{d} u
$$

(ii) $\quad L_{i} x(t)=\sum_{j=i}^{k-1}(-i)^{j-i} I_{j-i}\left(s, t ; a_{j}, \ldots, a_{i+1}\right) L_{j} x(s)$

$$
+(-1)^{k-i} \int_{t}^{s} I_{k-i-1}\left(u, t ; a_{k-1}, \ldots, a_{i+1}\right) a_{k}(u) L_{k}(u) \mathrm{d} u .
$$

This lemma is a generalization of Taylor's formula with remainder encountered in calculus. The proof is immediate.

LEMMA 2. Suppose conditions (1) and (2) hold. If $x \in D\left(L_{n}\right)$ is of constant sign and is not identically zero for all large t, then there exist a $t_{x} \geq t_{0}$ and an integer $m, 0 \leq m \leq n$, with $n+m$ even for $x(t) L_{n} x(t)$ nonnegative, or $n+m$ odd for $x(t) L_{n} x(t)$ nonpositive, and such for every $t \geq t_{x}$

$$
m>0 \quad \text { implies } \quad x(t) L_{k} x(t)>0 \quad(k=1,2, \ldots, m),
$$

and

$$
m \leq n-1 \quad \text { implies } \quad(-1)^{m-k} x(t) L_{k} x(t)>0 \quad(k=m, m+1, \ldots, n)
$$

This lemma generalizes a well-known lemma of Kiguradze (see [6]) and can be proved similarly.

Next. for $t \geq T \geq t_{0}$, we put

$$
\begin{gathered}
A_{j, i}[t, T]=\int_{T}^{t} I_{i-j}\left(t, s ; a_{j}, \ldots, a_{i-1}\right) a_{i}(s) I_{n-i-1}\left(t, s ; a_{n-1}, \ldots, a_{i+1}\right) \mathrm{d} s \\
\quad \text { for } \quad i \geq j, \quad c=1,2 \text { and } i=1,2, \ldots, n-1
\end{gathered}
$$

and

$$
R[t, T]=\int_{T}^{1} a_{1}(s) \mathrm{d} s
$$

In the following theorem, we give a sufficient condition for the oscillation of the damped equation (E) via comparison with undamped equations of the form

$$
\begin{equation*}
L_{n} x(t)+c_{1}\left(a_{1}(t-h)\right)^{m_{2}} q(t)\left(|x(t-g)|^{m_{1}}\right) \operatorname{sgn} x(t-g)=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{m} y(t)+c_{2}\left(a_{1}(t-h)\right)^{m_{2}} q(t)\left(|y(t-h)|^{m_{2}}\right) \operatorname{sgn} y(t-h)=0 \tag{2}
\end{equation*}
$$

where $M_{0}=y(t), M_{k} y(t)=\frac{1}{b_{k}(t)}\left(M_{k-1} y(t)\right)^{\prime}, k=1,2, \ldots, m ; m=n-1$. $b_{k}(t)=a_{k+1}(t), k=1,2, \ldots, n-1$ and c_{1} and c_{2} are positive constants.

THEOREM 1. Let conditions (1) and (2) hold. If for every $c_{1}>0$, equation (E_{1}) is oscillatory, and for every $c_{2}>0$, every bounded solution of equation $\left(\mathrm{E}_{2}\right)$ is oscillatory, then equation (E) is oscillatory.

Proof. Let $x(t)$ be a nonoscillatory solution of equation (E). Assume $x(t)>0$ and $x(t-g)>0$ for $t \geq t_{0}$.

By Lemma 2, there exist a $t_{1} \geq t_{0}$ and an integer $N \in\{1,3, \ldots, n-1\}$ such that

$$
\begin{align*}
L_{k} x(t)>0 & \text { for } \quad t \geq t_{1}, \quad(k=1,2, \ldots, N) \\
(-1)^{N-k} L_{k} x(t)>0 & \text { for } \quad t \geq t_{1}, \quad(k=N, N+1, \ldots, n) . \tag{3}
\end{align*}
$$

Suppose that $N>1$. From (3), we see that $L_{1} x(t)$ is positive and increasing for $t \geq t_{1}$. There exist a $t_{2} \geq t_{1}$ and a constant $A>0$ such that

$$
\begin{equation*}
\stackrel{\prime}{x}(t-h) \geq A a_{1}(t-h) \quad \text { for } \quad t \geq t_{2} . \tag{4}
\end{equation*}
$$

Using (2) and (4) in equation (E), we get

$$
L_{n} x(t)+A^{m_{2}}\left(a_{1}(t-h)\right)^{m_{2}} q(t)(|x(t-g)|)^{m_{1}} \operatorname{sgn} x(t-g) \leq 0 \quad \text { for } \quad t \geq t_{2} .
$$

But, in view of [3] and [8], it follows that the equation

$$
L_{n} x(t)+A^{m_{2}}\left(a_{1}(t-h)\right)^{m_{2}} q(t)(|x(t-g)|)^{m_{1}} \operatorname{sgn} x(t-g)=0 \quad \text { for } \quad t \geq t_{2}
$$

has a positive nonoscillatory solution, a contradiction.
Next, let $N=1$. Since $x(t)$ is an increasing function for $t \geq t_{1}$, there exist a $t_{3} \geq t_{1}$ and a constant $B>0$ so that

$$
\begin{equation*}
x(t-g) \geq B \quad \text { for } \quad t \geq t_{3} \tag{5}
\end{equation*}
$$

Using (2) and (5) in equation (E) we get

$$
\left.L_{n} x(t)+B^{m_{1}} q(t)(x)(t-h)\right)^{m_{2}} \leq 0 \quad \text { for } \quad t \geq t_{3}
$$

or

$$
L_{n} x(t)+B^{m_{1}} q(t)\left(a_{1}(t-h)\right)^{m_{2}}\left(L_{1} x(t-h)\right)^{m_{2}} \leq 0 \quad \text { for } \quad t \geq t_{3}
$$

Setting $y(t)=L_{1} x(t), t \geq t_{3}$, we have

$$
M_{m} y(t)+B^{m_{1}} q(t)\left(a_{1}(t-h)\right)^{m_{2}}(y(t-h))^{m_{2}} \leq 0
$$

Clearly, $y(t)$ is a positive and decreasing function for $t \geq t_{3}$. Applying [11; Corollary 1'], we see that the equation

$$
M_{m} y(t)+B^{m_{1}} q(t)\left(a_{1}(t-h)\right)^{m_{2}}(y(t-h))^{m_{2}} \leq 0, \quad \text { for } \quad t \geq t_{3}
$$

has a bounded, eventually positive and decreasing solution, a contradiction. This completes the proof.

In the following result, we replace equation $\left(\mathrm{E}_{2}\right)$ in Theorem 1 by the equation
$\Lambda_{m} w(t)+\left(a_{1}(t-h)\right)^{m_{2}}(R[t-g, T])^{m_{1}} q(t)\left(|w(t-g)|^{m_{1}+m_{2}}\right) \operatorname{sgn} w(t-g)=0$,
where M_{m} is defined as in equation (E_{3}).
THEOREM 2. Let conditions (1) and (2) hold. If, for all $c_{1}>0$, the equation $\left(\mathrm{E}_{1}\right)$ is oscillatory and for all large T with $t>T+g$ all bounded solution of equation $\left(\mathrm{E}_{3}\right)$ are oscillatory, then equation (E) is oscillatory.

Proof. Let $x(t)$ be a nonoscillatory solution of equation (E), say $x(t)>0$ and $x(t-g)>0$ for $t \geq t_{0}$. As in the proof of Theorem 1 , there exist a $t_{1} \geq t_{0}$ and an integer $N \in\{1,3, \ldots, n-1\}$ such that (3) holds. Next, we consider the two cases: $N>1$ and $N=1$. The proof of the first case is similar to that of Theorem 1 and hence is omitted. Now, we consider the case $N=1$. From (3) we see that the function $L_{1} x$ is decreasing on $\left[t_{1}, \infty\right)$. Next, for $t \geq t_{1}$ we have

$$
\begin{aligned}
x(t)-x\left(t_{1}\right) & =\int_{t_{1}}^{t} \frac{a_{1}(s)}{a_{1}(s)} x(s) \mathrm{d} s \\
& =\left(\int_{t_{1}}^{t} a_{1}(s) \mathrm{d} s\right) L_{1} x(t)-\int_{t_{1}}^{t}\left(a_{2}(s) \int_{t_{1}}^{s} a_{1}(u) \mathrm{d} u\right) L_{2} x(s) \mathrm{d} s \\
& \geq R\left[t, t_{1}\right] L_{1} x(t) \quad \text { for } \quad t \geq t_{1}
\end{aligned}
$$

There exists a $t_{2} \geq t_{1}$ so that

$$
\begin{equation*}
x(t-g) \geq R\left[t-g, t_{1}\right] L_{1} x(t-g) \quad \text { for } \quad t \geq t_{2} . \tag{6}
\end{equation*}
$$

Using (6) in equation (E) and the fact that $L_{1} x(t)$ is a decreasing function on $\left.\mid t_{1}, \infty\right)$ and $h>g$, we obtain

$$
L_{n} x(t)+\left(R\left[t-g, t_{1}\right]\right)^{m_{1}}\left(a_{1}(t-h)\right)^{m_{2}}\left(L_{1} x(t-g)\right)^{m_{1}+m_{2}} \leq 0 \quad \text { for } \quad t \geq t_{2} .
$$

Next, we set $v(t)=L_{1} x(t), t \geq t_{2}$; we get

$$
M_{m} v(t)+\left(R\left[t-g, t_{1}\right]\right)^{m_{1}}\left(a_{1}(t-h)\right)^{m_{2}}(v(t-g))^{m_{1}+m_{2}} \leq 0
$$

The rest of the proof is similar to that of Theorem 1 (the case $N=1$) and hence is omitted.

In the following theorem, we replace equation $\left(E_{1}\right)$ by a set of first order equations

$$
{ }^{\prime} y(t)+Q_{i}[t, T]\left(|y(t-g)|^{m_{1}+m_{2}}\right) \operatorname{sgn} y(t-g)=0, \quad T \text { is large. } \quad\left(\mathrm{E}_{\ell}: i\right.
$$

where $Q_{i}[t, T]=\left(a_{1}(t-h)\right)^{m_{2}}\left(A_{1, i}[t-g, T]\right)^{m_{1}}\left(A_{2, i}[t-h, T]\right)^{\prime \prime \prime 2} . i=3.5 \ldots$. $\ldots, n-1$, and obtain the following oscillation criterion for equation (E).

Theorem 3. Let conditions (1) and (2) hold. If for all large T with $t \geq T+y$. the equations $\left(\mathrm{E}_{4} ; i\right), i=3,5, \ldots, n-1$ are oscillatory and all bounded solution. of equation $\left(\mathrm{E}_{3}\right)$ (or equation $\left.\left(\mathrm{E}_{2}\right), c_{2}>0\right)$ are oscillatory, then equation (E) is oscillatory.

Proof. Let $x(t)$ be a nonoscillatory solution of equation (E). say $x(t)>1$ and $x(t-g)>0$ for $t \geq t_{0}$. As in the proof of Theorem 1 , there exist a $t_{1} \geq t_{1}$ and an integer $N \in\{1,3, \ldots, n-1\}$ so that (3) holds. We consider the twn cases: $N=1$ and $N>1$. The proof of the case $N=1$ is similar to that of Theorem 1 (or Theorem 2) and hence is omitted. Next, we consider the cast $N>1$. From Lemma 1 (ii), we get

$$
\begin{aligned}
& L_{N} x(s)=\sum_{j=N}^{n-2}(-1)^{j-\lambda} I_{j-N}\left(t, s ; a_{j} \ldots, a_{N+1}\right) L_{j} x(t)
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \quad t \geq s \geq t
\end{aligned}
$$

OSCILLATION THEOREMS OF COMPARISON TYPE ...

Using (3) and the fact that $L_{n-1} x$ is decreasing function on $\left[t_{1}, \infty\right)$, we obtain

$$
L_{N} x(s) \geq\left(\int_{s}^{t} T_{n-N-2}\left(u, s ; a_{n-2}, \ldots, a_{N+1}\right) a_{n-1}(u) \mathrm{d} u\right) L_{n-1} x(t)
$$

or

$$
\begin{equation*}
L_{N} x(s) \geq I_{n-N-1}\left(t, s ; a_{n-1}, \ldots, a_{N+1}\right) L_{n-1} x(t), \quad t \geq s \geq t_{1} \tag{7}
\end{equation*}
$$

On the other hand, from Lemma 1 (i), we have

$$
\begin{aligned}
x(t)= & \sum_{j=0}^{N-1} I_{j}\left(t, t_{1} ; a_{1}, \ldots, a_{j}\right) L_{j} x\left(t_{1}\right) \\
& +\int_{t_{1}}^{t} I_{N-1}\left(t, s ; a_{1}, \ldots, a_{N-1}\right) a_{N}(s) L_{N} x(s) \mathrm{d} s
\end{aligned}
$$

or

$$
\begin{equation*}
x(t) \geq \int_{t_{1}}^{t} I_{N-1}\left(t, s ; a_{1}, \ldots, a_{N-1}\right) a_{N}(s) L_{\mathrm{v}} x(s) \mathrm{d} s, \quad t \geq t_{1} \tag{8}
\end{equation*}
$$

Combining (7) and (8) we get

$$
x(t) \geq A_{1, N}\left[t, t_{1}\right] L_{n-1} x(t) \quad \text { for } \quad t \geq t_{1}
$$

Also, from Lemma 1 (i), we have

$$
\begin{aligned}
& \prime \\
& \prime(t)=\left[\sum_{j=1}^{N-1} I_{j-1}\left(t, t_{1} ; a_{2}, \ldots, a_{j}\right) L_{j} x\left(t_{1}\right)\right. \\
&\left.\quad+\int_{t_{1}}^{t} I_{N-2}\left(t, s ; a_{2}, \ldots, a_{N-1}\right) a_{N}(s) L_{N} x(s) \mathrm{d} s\right] a_{1}(t)
\end{aligned}
$$

or

$$
\begin{equation*}
f(t) \geq a_{1}(t) \int_{i_{1}}^{1} I_{N-2}\left(t . s ; a_{2}, \ldots, a_{N-1}\right) a_{N}(s) L_{N} x(s) \mathrm{d} s . \tag{9}
\end{equation*}
$$

S. R. GRACE

Combining (7) and (9) we obtain

$$
\dot{x}^{\prime}(t) \geq a_{1}(t) A_{2, N}\left[t, t_{1}\right] L_{n-1} x(t) \quad \text { for } \quad t \geq t_{1}
$$

There exists a $t_{2} \geq t_{1}$ so that

$$
\begin{equation*}
x(t-g) \geq A_{1, N}\left[t-g, t_{1}\right] L_{n-1} x(t-g) \quad \text { for } \quad t \geq t_{2} \tag{10}
\end{equation*}
$$

and

$$
\stackrel{\prime}{x}(t-h) \geq a_{1}(t-h) A_{2, N}\left[t-h, t_{1}\right] L_{n-1} x(t-h) \quad \text { for } \quad t \geq t_{2}
$$

Using the fact that $L_{n-1} x$ is a decreasing function on $\left[t_{1}, \infty\right)$ and $h>g$. we have

$$
\begin{equation*}
{ }_{x}^{\prime}(t-h) \geq a_{1}(t-h) A_{2, N}\left[t-h, t_{1}\right] L_{n-1} x(t-g) \quad \text { for } \quad t \geq t_{2} \tag{11}
\end{equation*}
$$

Now, using (10) and (11) in equation (E), we get

$$
\begin{aligned}
L_{n} x(t)= & -f(t, x(t-g), \stackrel{\prime}{x}(t-h)) \\
\leq & -q(t)(x(t-g))^{m_{1}}(\stackrel{\prime}{x}(t-h))^{m_{2}} \\
\leq & -q(t)\left(A_{1, N}\left[t-g, t_{1}\right]\right)^{m_{1}}\left(a_{1}(t-h)\right)^{m_{2}} \\
& \cdot\left(A_{2, N}\left[t-h, t_{1}\right]\right)^{m_{2}}\left(L_{n-1} x(t-g)\right)^{m_{1}+m_{2}} \quad \text { for } \quad t \geq t_{2}
\end{aligned}
$$

Setting $y(t)=L_{n-1} x(t)$ yields

$$
\begin{aligned}
\stackrel{\prime}{y}(t)+q(t)\left(a_{1}(t-h)\right)^{m_{2}}\left(A_{1, N}\left[t-g, t_{1}\right]\right)^{m_{1}}\left(A_{2, N}\left[t-h, t_{1}\right]\right)^{m_{2}} \\
\cdot(y(t-g))^{m_{1}+m_{2}} \leq 0 \quad \text { for } \quad t \geq t_{2}
\end{aligned}
$$

But in view of $[11 ;$ Corollary 1$]$, each of the equations $\left(\mathrm{E}_{4} ; N\right), N=3,5 \ldots$ $\ldots, n-1$, has an eventually positive and decreasing solution, which is a contradiction. This completes the proof.

The following results are immediate consequences of Theorem 3. The Corollaries below follow readily from results in [1], [7] and [9].

For all large $T \geq t_{0}$ with $t \geq T+g$, we put

$$
Q_{1}[t, T]=\left(a_{1}(t-h)\right)^{m_{2}}(R[t-g, T])^{m_{1}} q(t)
$$

COROLLARY 1. Let conditions (1) and (2) hold and $m_{1}+m_{2}<1$. Moreover, suppose that for all large T with $t>T+g$

$$
\begin{equation*}
\int^{\infty} Q_{N}[s, T] \mathrm{d} s=\infty, \quad \text { for } \quad N=3,5, \ldots, n-1 \tag{12;N}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{t-g}^{t} I_{n-2}\left(s, s-g ; a_{n-1}, \ldots, a_{2}\right) Q_{1}[s, T] \mathrm{d} s>0 \tag{13}
\end{equation*}
$$

Then equation (E) is oscillatory.
COROLLARY 2. Let conditions (1) and (2) hold and $m_{1}+m_{2}=1$. In addition, we assume that for all large T with $t>T+g$

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{t \rightarrow g}^{t} Q_{N}[s, T] \mathrm{d} s>\frac{1}{\mathrm{e}} \quad \text { for } \quad N=3,5, \ldots, n-1 \tag{14;N}
\end{equation*}
$$

and for some $i=0,1, \ldots, n-2$

$$
\begin{array}{r}
\limsup _{1 \rightarrow \infty} \int_{t-g}^{t} I_{n-i-2}\left(s, t-g ; a_{n-1}, \ldots, a_{i+2}\right) I_{i}\left(t-g, s-g ; a_{i+1}, \ldots, a_{2}\right) \\
\cdot Q_{1}[s, T] \mathrm{d} s>1 \tag{15}
\end{array}
$$

Then equation (E) is oscillatory.
Remark 1. From the known oscillation criteria for undamped equations of type (E) (i.e., equation (E) with $m_{2}=0$) in [1] and [7] and the references cited therein, we see that Theorem 1 applies to equation (E) with $m_{1}>0$ and $0 \leq m_{2} \leq 1$ while Theorems 2 and 3 are applicable to (E) with $0<m_{1}+m_{2}$ ≤ 1.

The following example is illustrative:
Example 1. Consider the fourth order differential equation

$$
\begin{align*}
\left(\frac{1}{t}\left(\frac{1}{t}\left(\frac{1}{t} x(t)\right)^{\prime}\right)^{\prime}\right)^{\prime} & +\frac{231}{16} t^{-13 / 2}\left(2(t-h)^{1 / 2}\right)^{m_{4}}(t-g)^{-m_{3} / 2} \tag{5}\\
\cdot\left(|x(t-g)|^{m_{1}}\right)\left(\left|x^{\prime}(t-h)\right|^{m_{2}}\right) \operatorname{sgn} x(t-h)=0, & t>g
\end{align*}
$$

S. R. GRACE

where $g, h, m_{j}, j=1,2,3,4$ are real constants, $m_{1}>0, m_{2} \geq 0$ and $g \ldots i$ ≥ 0. It is easy to check the following:
(i) when $m_{2}=0, m_{4}-m_{3}>3$ and $m_{1} \geq 1$, equation (E.5) is oscillat!, by $[1$; Theorems 2 and 4$]$ and $[7$; Theorems 3.2 and 5.1$]$:
(ii) when $m_{2}>0$ and $\frac{1}{4}\left(13-m_{4}+m_{3}+2 m_{2}\right) \leq m_{1}+m_{2} \leq 1$. equation (E_{5}) is oscillatory by Theorems 2 and 3 :
(iii) when $m_{2}=m_{4} \geq 0$ and $m_{1}=m_{3}>0$,
equation $\left(\mathrm{E}_{5}\right)$ has a nonoscillatory solution $r(t)=t^{1} 2$.
Thus, we conclude that the damping term which appeared in equation (E: (i.e., erration (E_{5}) with $m_{2} \neq 0$) plays important role in preserving or disrupting the oscillatory character of undamped equation (E_{5}) (i.e.. equation (E:with $m_{2}=0$).

Theorems 1-3 applied to the special equation

$$
\left.\left(\frac{1}{a_{1}(t)} x^{\prime}(t)\right)^{\prime}+f\left(t, x(t-g), \dot{x}^{\prime}(t-h)\right)=0 \quad \quad \mathrm{E}_{-1} \right\rvert\,
$$

(i.e., equation (E) with $n=2$) yields the following corollary.

COROLLARY 3. Let conditions (1) and (2) hold. If for all larg T rery bounded solution of the equation

$$
y^{\prime}(t)+Q_{1}[t, T]\left(|y(t-g)|^{m_{1}+m_{2}}\right) \operatorname{sgn} y(t-g)=0
$$

is oscillatory, or for all large T and every $c>0$, all bounded solutions of the equation

$$
v^{\prime}(t)+c\left(a_{1}(t-h)\right)^{m_{2}} q(t)\left(|v(t-h)|^{m_{2}}\right) \operatorname{sgn} v(t-h)=0 . \quad(\mathrm{E}-
$$

are oscillatory, then equation $\left(\mathrm{E}_{6}\right)$ is oscillatory.
Remark 2. In view of Corollaries 1 and 2, one can easily see that (ornlary 3 is an extension of our results in [4] and some of the results in $[12$.

Remark 3. From the proof of Theorem 3, we see that Theorem 3 remainvalid when the constant m_{2} in condition (2) is identically zero. i.e.. f satisfic

$$
f\left(t, x_{1}, x_{2}\right) \operatorname{sgn} x_{1} \geq q(t)\left|x_{1}\right|^{m_{1}}, \quad m_{1}>0 \quad \text { and } \quad x_{1} \neq 0 .
$$

where q is defined as in condition (2).
In this case. we establish a criterion for the owillation of eqnation E whet Emproves our eatioy ment in is.

Now we - tate the mont be nothe that for *

Theorem 4. Let conditions (1) and (16) hold. If for all large T and $N==$ 1.3.....n-1, the equations

$$
\begin{equation*}
y^{\prime}(t)+C_{i}[t, T]\left(|y(t-g)|^{m_{1}}\right) \operatorname{sgn} y(t-g)=0 \tag{17;N}
\end{equation*}
$$

art oscillatory, then equation (E) is oscillatory.
Proof. It follows from the proof of Theorem 3, and hence is omitted.
Theorems 1-3 seems to be new even when specialized to the equation

$$
x^{(n)}(t)+f(t, x(t-g), \dot{x}(t-h))=0, \quad n \text { is even }, \quad\left(E_{9}\right)
$$

for which condition (2) is satisfied. So, we state them below as corollaries by noting that in this case for $t \geq s$

$$
I_{n-1}\left(t, s ; a_{1}, \ldots a_{n-1}\right)=I_{n-1}\left(t, s ; a_{n-1}, \ldots, a_{1}\right)=\frac{(t-s)^{n-1}}{(n-1)!}
$$

Next. For all large $T, p_{i}, 0<p_{i}<1, i=1,3, \ldots n-1$ such that

$$
\begin{aligned}
Q_{1}\left[t, p_{1}\right] & =p_{1} t^{m_{1}} q(t) \\
Q_{i}\left[t, p_{i}\right] & =p_{i} K_{i} t^{B} q(t)
\end{aligned}
$$

where

$$
B=(n-1) m_{1}+(n-2) m_{2},
$$

and

$$
\boldsymbol{K}_{i}=\frac{1}{(n-1)^{m_{1}}(n-2)^{m_{2}}((i-1)!)^{m_{1}}((i-2)!)^{m_{2}}((n-i-1)!)^{m_{1}+m_{2}}} .
$$

Corollary 4. Suppose that condition (2) holds. If for every $p_{i}, 0<p_{i}<1$, ; 1.3.....n-1, the equations

$$
\begin{equation*}
!(1)+Q_{i}\left[t \cdot p_{i}\right]\left(|y(t-g)|^{m_{1}+m_{2}}\right) \operatorname{sgn} y(t-g)=0, \quad \text { for } \quad i=3,5, \ldots n-1 \text {. } \tag{18;N}
\end{equation*}
$$

(1): oscillatory and every bounded solution of either

$$
\begin{equation*}
u^{(\prime \prime-1)}+Q_{1}\left[t, p_{1}\right]\left(|w(t-g)|^{m_{1}+m_{2}}\right) \operatorname{sgn} w^{\prime}(t-g)=0 \tag{1.9}
\end{equation*}
$$

(1)

$$
\begin{equation*}
v^{\prime \prime}(t)+c q(t)\left(|v(t-h)|^{m_{2}}\right) \operatorname{sgn} v(t-h)=0 . \quad \text { for cucry } c>0 \tag{20}
\end{equation*}
$$

- asellatory. then equation (En) is oscilintory
firmark 1. One can daw more comolaries from Theorems 1 A smian to thene wime above. Hew we omit the detaik.

REFERENCES

1] GRACE, S. R.: Oscillation criteria for forced functional differential equations with deviating arguments, J. Math. Anal. Appl. 145 (1990), 63-88.
|2] GRACE, S. R.: On the oscillatory and asymptotic behaviour of even order nonlinta" differential equations with retarded arguments, J. Math. Anal. Appl. 137 (1989). 528-540.
[3] GRACE, S. R.: Comparison theorems for forced functional differential equations. J. Math. Anal. Appl. 144 (1989), 168-182.
[4] GRACE, S. R.-LALLI, B. S.: An oscillation criterion for certain second order strongl:d sublinear differential equations, J. Math. Anal. Appl. 123 (1987), 584-586.
[5] GRACE, S. R.-LALLI, B. S.: Oscillatory and asymptotic behaviour of solutions of differential equations with deviating arguments, J. Math. Anal. Appl. 104 (1984). 7994.
[6] KIGURADZE, I. T.: On oscillation of solutions of the equation $\frac{\mathrm{d}^{m} u}{\mathrm{~d} t^{n}}+\left.a(t) u\right|^{n} \operatorname{sign} u=0$ (Russian), Mat. Sb. 65 (1964), 172-187.
[7] KITAMURA, Y.: Oscillation of functional differential equations with general deviatiu! arguments, Hiroshima Math. J. 15 (1985), 445-491.
[8] KUSANO, T.-NAITO, M.: Comparison theorems for functional differential equation.s with deviating arguments, J. Math. Soc. Japan. 33 (1981), 509-532.
9] LADAS, G.--STAVROULAKIS, I. P.: Oscillations caused by several retarded and advanced arguments, J. Differential Equations 44 (1982), 134-152.
[10] LALLI, B. S.-GRACE, S. R.: Some oscillation criteria for delay differential equation of even order, J. Math. Anal. Appl. 119 (1986), 164-170.
[11] PHILOS, CH. G.: On the existence of nonoscillatory solutions tending to zero at \propto for differential equations with positive delays, Arch. Math. (Basel) $\mathbf{3 6}$ (1981), 168-178.
[12] WONG, J. S. W.-BURTON, T. A: Some properties of $\neq \prime \quad+a(t) f(u) g\left(u^{\prime}\right)=0$. Monatsh. Math. 69 (1965), 364-374.

Received April 30, 1992
Revised February 19, 1993

Department of Engineering Mathematic,
Faculty of Engineering
Cairo University
Orman, Giza 12000
A.R. of Egypt

