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OSCILLATION THEOREMS OF COMPARISON 

TYPE OF DELAY DIFFERENTIAL EQUATIONS 

W I T H A NONLINEAR DAMPING T E R M 

S. R. GRACE 

(Communicated by Milan Medved') 

ABSTRACT. In this paper, we study the oscillatory behaviour of the solutions 
of delay differential equations of the form 

x(t) -f /(t , x(t — g), -7T2c(t — h)) — 0 , n is even 
dt aTl_i(t) dt " " dt ai(t) dt* w J v ' v y " dt 

by comparing with certain differential equations of the same or lower order whose 
oscillatory character is known. The obtained results can be applied to the delay 
differential equation 

d ! d 1 d-x(t) 
dt an_i(t) ' ' ' dt ai(t) dt' 

+ q(t)(|x(t - g )p i ) (J ftx{t - h)\m2) sgnx(t - g) = 0 , 

where mi and rri2 are positive constants. 

1. Introduct ion 

We consider the functional differential equation 

Lnx(t) + / ( t , x(t - g), x (t - h)) = 0 , n is even, ( ' = A ) , (E) 

where L^x(t) = x(t), Lkx(t) = ---(Lfe_ix(t)) , k = 1,2, . . . , n , a n = 1, 
Ofe(t) 

OV- [to,oo) —> (0,oo), i = 1,2, . . . ,n - 1, / : [t0,oo) x t 2 —> R = (—00,00) are 
continuous, g and ti are positive constants and h > g. We assume that: 

oc 

(1) J di(s) &s = 00 , i = 1 ,2 , . . . , n — 1, 

AMS Subject Classif icat ion (1991): Primary 34K15. 
Key words: Oscillatory solution, Delay differential equation. 

303 



S. R. GRACE 

(2) there exist a con t inuous function q: [lo,oc) —> (0, oc ) and real con

s tan ts m i and 777,2, I^r > 0 and 777,2 > 0 such t h a t 

f(t,xux2)SSaxl>q(t)(\x1n)(\x2\
m') for ,r, ^ 0 . 

The oscillatory behaviour of functional differential equat ions has been intensively 
s tudied in recent years. Most of the l i tera ture on this subject has been concerned 
with equat ions of type (E) a n d / o r related equat ions, specially when / satisfies 
condit ion (2) with 7712 — 0, see [1], [5], [7] and [8], and the references cited 
therein. It seems tha t very little is known regarding the oscillation of equation 
(E) when / satisfies condi t ion (2) wi th 7772 ^ 0 , see [2]; [4], [10] and [12;. and 
the references cited therein. In this paper , we proceed further in this direction 
to establish some new oscillation results for equat ion (E) . Theorems 1 and 2 
are concerned with the oscillation of equa t ion (E) via comparison with the 
oscillatory behaviour of two equa t ions of order n and n — 1 , and in Theorem M. 
we reduce the problem of the oscillation of equa t ion (E) to the problem of 
the oscillation of a certain set of first order equat ions and the oscillation of all 
bounded solutions of cer tain re ta rded equat ion of order n — 1 . 

T h e domain of Ln D(Ln) is defined to be the set of functions 
x: [Tx,oo) —> 1R such t h a t Ljx(t), j -- 0 , 1 , . . . , n, exist and are cont inuous 
on [71,;, 00) , Tx > to- In what follows, wre consider only the "noncons tant" solu
t ions in D(Ln), of equat ion (E) . A solution of equat ion (E) is called osciUaiory 

if it has a rb i t ra ry large zeros, otherwise, it is called nonoscilUitory. Equation 

(E) is said to be oscillatory if all its solutions are oscillatory. 

2. M a i n r e s u l t s 

We begin by formulating prepara to ry results which are needed in proving our 
main results . 

For functions pi: [l{), oc) —> R, 2 = 1 ,2 , . . . , we define 

Io = 1. 

t 

Ii(t,s\pi,.. .,pi) = / pi(u)Ii-i(u,s;pi-i,. . . , p i ) du. / = 1.2 

It is easy to verify t h a t for i — 1, 2 , . . . , n — 1 

h(t, s:pu. ..,pi) = (-lYLXs. t:Pi.. . . , / n ) 

and 
/ 

Ii(t,s;pi,.. ..pi)= I pi(u)Ii-x(t,u\p{ pi-x) A" • 

The following two lemmas will be needed in the proofs of the main results. 
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LEMMA 1. If x _ D(Ln) . then for t, s _ [t0, oo) and 0 < i < k < n 
fc-i 

(i) Ltx(t) = ]T Ij-i(t,s;ai+u.. . ,aj)Lj(s) 

t 
+ / Ik-i-i(t, u; ai+i,..., ak-i)ak(u)Lkx(u) du . 

s 

k-l 

(ii) _,*_(*) = Y. ( - 0 J " Z i j - i ( s > t;aj,..., ai+i)Ljx(s) 
j=i 

s 

+ (-l)k~l J h-i-i(u, t; a f c _ i , . . . , at+i)ak(u)Lk(u) du . 
t 

This lemma is a generalization of Taylor's formula with remainder encoun
tered in calculus. The proof is immediate. 

LEMMA 2. Suppose conditions (1) and (2) hold. If x _ D(Ln) is of constant 
sign a fid is not identically zero for all large t. lben lbere exist a tx > to and an 
integer m, 0 < m < n, with n + m even for x(t)Lnx(t) nonnegative, or n-\-rn 
odd for x(t)Lnx(t) nonpositive, and such for every t > tx 

iff > 0 implies x(t)Lkx(t) > 0 (k = 1,2,... , rn ) , 

and 

fff < n - 1 implies (-l)m~kx(t)Lkx(t) > 0 ( k = rn, m + 1,. . ., n ) . 

This lemma generalizes a wrell-known lemma of Kiguradze (see [6]) and can 
he proved similarly. 

Next. for t > T > to, we put 

Ajj[t, T] = / Ii-j(t, s; (ij,..., a i._1)aA( ts)7n_,_1(t, .9; a n _ l 7 . . . , ax + 1) ds 

T 

for i > j , c = 1, 2 and i = 1, 2 , . . . , n — 1 , 

and 
/ 

R[t,T] = f aL(s) ds. 

T 

In the following theorem, we give a sufficient condition for the oscillation of 
the damped equation (E) via comparison with undamped equations of the form 

Lni-iO+d (ai(t - h))m2q(t){\x(t - g)\m^sgnx(t - tj) = 0 (E, ) 
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Mmy(t) + c2(ai(t - h))m2q(t)(\y(t - h)\m^) sgny(t - h) = 0 , (E2) 

Where M0 = y(t), Mky(t) = J^(Mk-iy(t))', k = l , 2 , . . . , m ; m = n - 1. 

'!>fe(v = Uk+i(t), k = 1, 2 , . . . , n — 1 and Ci and c2 are positive constants. 

THEOREM 1. Let conditions (1) and (2) /ioM. / / /O r every a > 0, equation 
(Ei) is oscillatory, and for every c2 > 0. every bounded solution of equation 
(E2) ŝ oscillatory, then equation (E) is oscillatory. 

P r o o f . Let x(t) be a nonoscillatory solution of equation (E). Assume 
oc(t) > 0 and x(t - g) > 0 for t>t0. 

By Lemma 2, there exist a t\ > to and an integer N E {1, 3 , . . . . r? — 1} such 
that 

Lfcx(t) > 0 for t > t i , (fc = 1,2, . . . , i V ) , 
^ . (3> 

(-l)N- f cL f ca:(t) > 0 for t > tx , ( fc = _V, _V + 1,. .. , n ) . 

Suppose that _V > 1. From (3), we see that Lyx(t) is positive and increasing 
for t >ti. There exist a t2 > t± and a constant A > 0 such that 

x(t-h) > Aai{t-h) for t > t2. (4) 

Using (2) and (4) in equation (E), we get 

Lnx(t) + A™2 (ai(t - h))ni2q(t)(\x(t - g)\)mi sgnx(t - a) < 0 for t > t2 . 

But, in view of [3] and [8], it follows that the equation 

Lnx(t) + Am* (a,(t - h))Tn2q(t)(\x(t - g)\)mi sgnx(t - g) = 0 for t> U 

has a positive nonoscillatory solution, a contradiction. 

Next, let N = 1. Since x(t) is an increasing function for t >t\, there exist 
a 1-a > t\ and a constant B > 0 so that 

x(t-g)>B for tj > /3 • (r>) 

Using (2) and (5) in equation (E) we get 

Lnx(t) + Bmiq(t)(x(t - h))m2 < 0 for t > t3 , 
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or 

Lnx(t) + Bm'q(t)(ai(t~h))m2(Llx(t-h))m2 < 0 for t > t3 . 

Setting y(t) = L-\_x(t), t > t3, we have 

Mmy(t) + Bm*q(t)(ai(t - h))m2(y(t - h))m2 < 0. 

Clearly, y(t) is a positive and decreasing function for t > t3. Applying 
[11; Corollary V], we see that the equation 

Mmy(t) + Bm^q(t)(ai(t - h))m2(y(t - h))m2 < 0, for t > t3 

has a bounded, eventually positive and decreasing solution, a contradiction. This 
completes the proof. 

In the following result, we replace equation (E2) in Theorem 1 by the equa
tion 

Mmw(t) + (ai(t - h))m2 (R[t - g, T]jmiq(t)(\w(t - g)r+m>) sgnw(t - 9) = 0 , 

(E 3 ) 
where Mm is defined as in equation ( E 3 ) . 

THEOREM 2. Let conditions (1) and (2) hold. If, for all c\ > 0. the equation 
(Ei) is oscillatory and for all large T with t > T + g all bounded solution of 
equation (E3) are oscillatory, then equation (E) is oscillatory. 

P r o o f . Let x(t) be a nonoscillatory solution of equation (E), say x(t) > 0 
and x(t— g) > 0 for t > t0. As in the proof of Theorem 1, there exist a t\ > t() 

and an integer jV E {1, 3 , . . . , n — 1} such that (3) holds. Next, we consider the 
two cases: TV > 1 and N = 1. The proof of the first case is similar to that of 
Theorem 1 and hence is omitted. Now, we consider the case N = 1. From (3) 
we see that the function L\x is decreasing on [t±, 00). Next, for t >t\ we have 

лit)-x(h)= ÏЩí(а)ds 

/ Oi (s) ds L\x(t) - / í a2(s) \ a\(u) áu\L<ix(s) ds 

M / ti ti 

> Rlt.t^L^t) for t>t±. 
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T h e r e exists a t2 > t\ so t h a t 

x(t - g)> R[t - g, ri]Fix-(l - g) for t > t2 . (iY) 

Using (6) in equat ion (E) and t h e fact t h a t Lix(t) is a decreasing function on 

|Ib, oo) and h > g, we obta in 

Lnx(t) + (R[t - g, t,])'"1 (ai(t - h))'"2 (LlX(t - g))""+W2 < 0 for t > t, . 

Next, we set v(t) = L\x(t), t > t2\ we get 

Mmv(t) + (R[t - g, t1]),ni (ai(t - h))m2 (v(t - g))"']+"'2 < 0 . 

T h e res t of the proof is similar to that of T h e o r e m 1 ( the case N = 1 ) and hence 

is omi t ted . 

In the following theorem, we replace equa t ion ( E i ) by a set of first order 

equat ions 

y(t) + Qi[t,T](\y(t - O)|mi+m2) sgnH(f - g) = 0 . T is large. [K {: i, 

where Qt[t,T} = (ai(t - h))m* (A1A[t - g,T})mi(A2jM - h,T})""2 . / - 3. 5. . . . 

. . . , n — 1, and obta in t h e following oscillation criterion for equat ion ( E ) . 

T H E O R E M 3 . Let conditions (1) and (2) bO/Ji. If for all large T with t > T+g . 

the equations (E4; i), i = 3, 5 , . . . , n— 1 arc oscillatory and all bounded solution* 

of equation (E3) (or equation ( E 2 ) . O2 > 0 ) are oscillatory, then equation (E) 

is oscillatory. 

P r o o f. Let J ; ^ ) be a nonoscil latory solution of equat ion ( E ) . say ./•(/) > 0 

and x(t — g) > 0 for i > /,0 . As in t h e proof of T h e o r e m 1, there exist a /} > /,. 

and an in teger N G {1,3, . . . , n — 1} so t h a t (3) holds. We consider t h e two 

cases: N = 1 and N > 1. T h e proof of t h e case N = I is similar to that of 

T h e o r e m 1 (or T h e o r e m 2) and hence is omi t ted . Next, we consider the case 

N > 1. From L e m m a 1 ( i i ) , we get 

LNx(s)= J2 ( - i ) J - A I j , v (I-, s: a:i.. . . , a./V +.{)L-.x(t \ 

j = N 

( - l ) " - л ' " 1 I i т,_л--9(w,.s:a ř f._ 2 a. v irì)ntì 

ibr / 
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lTsing (3) and the fact that Ln_i.T is decreasing function on [l 1,oo), we obtain 

LNx(s) > / Tn-N-2(u, s; a n _ 2 , . . . , aN+i)an-1(u) Au J Ln-ix(t) 

LNx(s) > In-N-i(t,s\an-U . .. ,aN+1)Ln_lX(t), t>s>ti 

On the other hand, from Lemma 1 (i), we have 

7 V - 1 

.7=0 

•r(t) = ] P Ij(t, i i ; a i , . . . , a3)Ljx(ti) 

i 

+ / IN-i(t, s; au . . . , aN-1)aN(s)LNx(s) d.s 

(7) 

•K0 > / IN-i(t,s;au...1aN__i)aN(s)Lyx(s) ds , t > tx . 
h 

Combining (7) and (8) we get 

x(t) > AhN[t,t1]Ln-1x(t) for t > t, . 

Also, from Lemma 1 (i), we have 

• l v - i 

T. Ji + .- n~ „ \ T „(T x(t) 
L 3 = 1 

5 ^ Ij-i(t,tľ,a2,... ,aj)Ljx(t. 

i 

Ь / ІN-ч(t,s\a2,. .. ,aN_{)aN(s)LNx(s) ds « i ( 0 

(«) 

•Ң0 > a i ( ' 0 / /лl-2('L «*>'; a-2, • • • , aN-i)aN(s)LNx(s) ds , f í>) 
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Combining (7) and (9) we obtain 

x(t) > ai(t)A2^N[t,ti)Ln-ix(t) for t > li . 

There exists a t2 > t\ so that 

x(t-g) > Ai,N[t-g,tx)Ln-ix(t - g) for t > t2 (10) 

and 

x(t — h) > a\(t — h)A2^N[t — h,ti)Ln-\x(t — h) for t > t2 . 

Using the fact that Ln-\x is a decreasing function on [£i,oo) and h > g. we 
have 

x(t-h)> <n{t - h)A2,N[t - hit^Ln-ixit - g) for t > t2 . (11) 

Now, using (10) and (11) in equation (E), we get 

Lnx(t) = -f(tJx(t-g),x(t -h)) 

<-q(t)(x(t-g))m\x(t-h))m> 

< - O ( r ) ( ^ i , I v [ r - g , t i ] ) m i ( a i ( / - / I ) ) m 2 . 

• (A2,N[t ~ K t i ] ) m 2 (L n _ ix ( t - g))mi+m2 for t > U . 

Setting y(t) =- Ln-ix(t) yields 

lj(t) + q(t)(ax(t - h))m2 (AhN[t - 9, ll])mi {A2,N[t ~ h, h})m2 • 

•(y(t-g))mi+m2<0 for t>U. 

But in view of [11; Corollary 1], each of the equations (E4; IV), IV = 3, 5 . . . . 
. . . , n — 1, has an eventually positive and decreasing solution, w^hich is a contra
diction. This completes the proof. 

The following results are immediate consequences of Theorem 3. The Corol
laries below follow readily from results in [1], [7] and [9]. 

For all large T > r0 with t > T -f g, we put 

Q1[t,T\ = (ai(t-h))m*{R[t-g,T))miq(t). 
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COROLLARY 1. Let conditions (1) and (2) hold and rai+ra2 < 1 . Moreover, 
suppose that for all large T with t > T + g 

QN[s,T]ds = oo, for N = 3, 5 , . . . , n - 1, (12; N) 

and, 
t 

liminf / In-2(s,s - g;an-i,. . . ,a2)Qi[s,T] ds > 0 . (13) 
t—+OC J 

t~9 

Then equation (E) is oscillatory. 

COROLLARY 2. Let conditions (1) and (2) hold and mi + ra2 = 1. In addi
tion, we assume that for all large T with t > T + g 

t 

lim inf / QN[s,T] ds > - for N = 3, 5 , . . . , n - 1, (14; N) 
t •—> oc- J e 

and for some i = 0 ,1 , , . . . , n — 2 

/ 

lim sup / In-i-2(s,t -g;an-i,.. .,ai+2)Ii(t - g,s -g-,ai+1,.. . , a 2 ) -
/— oc J 

*--9 

•Qi[s,T] ds>l. 
(15) 

77/.cn equation (E) is oscillatory. 

R e in a r k 1 . From the known oscillation criteria for undamped equations 
of type (E) (i.e., equation (E) with ra2 = 0) in [1] and [7] and the references 
cited therein, we see that Theorem 1 applies to equation (E) with mi > 0 and 
^ > >l'2 <. 1 while Theorems 2 and 3 are applicable to (E) with 0 < rn\ + m2 

< 1 . 

The following example is illustrative: 

E x a m p i e 1. Consider the fourth order differential equation 

(KK7 i w)T) , +¥^ l : ! / 2^" / i ) 1 / 2)m 4 ( i-- 9 )"m 3 / 2- (E^ 
• (\x(t - g)\mi)(\x(t - t0|m2) sgnx(< - h) = 0 , t>g, 

:5ll 
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where a, h, rn-n j = 1 ,2 ,3 ,4 are real cons tants . ni\ > 0 , m2 > 0 and g n 
> 0 . It is easy to check the following: 

(i) when rn2 — 0 , m^ - m^ > 3 and /Oj > 1, equat ion (Er,) is oscillatory 

by [1; Theorems 2 and 4] and [7; Theorems 3.2 and u . l j ; 

(ii) when rri2 > 0 and | ( 1 3 — rn,\ + rn^ 4- 2rrL2) < !H i 4- !/;_> < I . 

equat ion (E5) is oscillatory by Theorems 2 and 3; 

(iii) when rri2 = 772.4 > 0 and m i — ?rT; > 0 , 

equat ion (E 5 ) has a nonoscillatory solution x(t) -- tl ~. 

Thus , we conclude t h a t the damping term which appeared in equat ion (K.-
(i.e., equat ion (E5) with rn2 7̂  0 ) plays impor t an t role in preserving or d isrupt
ing the oscillatory character of undamped equat ion (Er,) (i.e.. equat ion ( E.-. ' 
wi th ni2 = 0 ) . 

Theorems 1-3 applied to the special equat ion 

(~^(ij * ( t ) ) ' + f{L x{t ~g}- *{t ~ ̂  = ° !!';,;! 

(i.e., equat ion (E) with n — 2) yields the following corollary. 

COROLLARY 3 . Let conditions (1) and (2) hold. If for all largi T ( r< ry 
bounded, solution of the equation 

y it) + Q,[t, T) (\y(t - g)\m' + '"2) s g n y(t - U) = <> ( K:> 

is oscillatory, or for all large T and every c > 0 . all bounded solutions of th< 

equation 

i(t) + c(a[(t - h))m2
q(t)(\v(t - /i)! '"2) s g n r ( / - h) = 0 . ( K o 

are oscillatory, then equation ( E G ) is oscillatory. 

R e m a r k 2 . In view of Corollaries 1 and 2, one can easily see that Com -

lary 3 is an extension of our results in [4] and some of the results in ;12 . 

R e in a r k 3 . From the proof of Theorem 3, we see tha t Theorem 3 reinain> 

valid when the cons tant rn2 in condition (2) is identically zero. i.e.. / >ati>lit> 

f(t.Xi,x2)Hgnxi > q(t)\x[\
n>[ , m{ > 0 and x, -± 0 . ; lh • 

where q is detined as in condit ion (2) . 

In this case, we establish a criterion for the oscillation oi <-({nation : 14 which 
improves our ^ariicr result in >h 

Now we s ta te \ his resuii bv noinuj <!wu lor / • / 
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T H E O R E M 4 . Let conditions (1) and (16) hold. If for all large T and N = 
1.3 // — 1 , the equations 

y(t) + d[t, T\(\y(t - . 9 ) | " " ) sgnj / ( . - .9) = 0 (17; _V) 

Ore oscillatory, then equation (E) is oscillatory. 

V r o o f. It follows from the proof of Theorem 3. and hence is omi t ted . 

Theorems 1-3 seems to be new even when specialized to the equat ion 

x(n)(t) + f(t,x(t - g), x(t - / / ) ) = 0 , n is even , (IV) 

for which condition (2) is satisfied. So, we s t a t e them below as corollaries by 

noting that in this case for / > s 

(t-s)n"1 

/ - , ; - i ( / - , . s ; a J ? ttn-i) = I/,_i(f,«s;ar?_i,...,aJ) = — -— . 
(//. - I ) ! 

Next. for all large T. p7, 0 < p.,: < 1 , i = .1, 3 , . . . . n — 1 such t h a t 

when ' 

B = ()/ - l ) m , + (n - 2 ) m 2 , 

and 

*'" " (//^~l7^ " 

COROLLARY 4 . Suppose that condition (2) //O//is. / / / O r eTcny p,; , 0 < /;,- < 1 , 
/ 1 . 3 . . . . , n — 1 , the equations 

1,(1) -f ^ , | / .y , , ] ( jy( / - . 9 ) | ' " I + W 2 ) s g n y ( / - g) = 0 , / o r . = 3, 5 n - 1 . 

(18; A') 

an oscillatory and every bounded solution of cither 

ir{"-[) + Qi \t.Pl\(\w(t - .< / ) | m i + *" 2 ) s g n _.'(/ - </) - 0 (19) 

O! 

r"'" ! ; ( / ) +eq(l}(\c(f ••- / / ) | m 2 ) s g n c ( / - /?.) = 0 . for every c > 0 . (20) 

/̂  osciliaiot-y. then equation (Et> ] Ls oscillatory 

\l e in a r k V One can draw more corollaries from rI 'heorcms 1 V similar 

t«> tiio^e driven above. Here we omil the details. 
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