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Math. Slovaca 30,1980, No. 4, 379—392 

ASYMPTOTIC BEHAVIOUR OF SOLUTIONS 
OF THE DIFFERENTIAL EQUATION 

OF THE FOURTH ORDER 

JOZEF ROVDER 

1. Introduction 

In this paper we shall consider the equation 

(1) yi,u>+q(t)y' + r(t)y = 09 

where q(t) and r(t) are functions having continuous first derivatives on [a, oo). We 
shall investigate the behaviour of solutions of (1) as f —> oo when the ratios of certain 
powers of q(t) and r(t) are small (improper integrals on [a, oo) exist), unlike in 
other papers (e.g. [1], [2]), where t2q(t) and t3r(t) are supposed to be small, or q(t) 
and r(t) to approach a constant. 

The method of proving our theorems lies in reducing equation (1) to the 
equivalent system of equations to which the following Coddington—Levinson 
theorem ([1], p. 92) will be applied. 

Theorem 1. Let A be a constant matrix with characteric roots Th j = 1, 2, . . . ,n , 
all of which are distinct. Let the matrix V(s) be differentiable and satisfy 

i |V'(s)|ds<oo 

and let V(s)—>0 as s—>oo. Let the matrix R(s) be integrable and 

\R(s)\ ds<oo. i 
Let the roots of det [A + V(s)-rJE] = 0 be denoted by Tj(s), j = 1, 2, ..., n. For a 
given k, let 

Dki(s) = Re [rk(s) - Tj(s)]. 

Suppose all j , l^j^n fall into one of two classes Ix and I2, where 

jeli, if J Dki(s)ds—>oo as f—>oo and 
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\ 2Dki(s)ds>-K (s2^s,^0) 
Js\ 

jєl2, if (2Dki(s)ds<K (a2^s,^0), 
Js\ 

where k is fixed and where K is a constant. Let pk be a characteristic vector of 
A associated with rfc, so that 

Apk = Tkpk. 

Then there is a solution cpk(s) of 

(2) x' = [A + V(s) + R(s)]x 

and a s0, 0 ^ s 0 < ° ° , such that 

lim (pk(s) exp - I тk(ô) dô =pk 

If the hypothesis is satisfied for all k, l^k^n, then q)k(s), k = 1, 2, ...,nform 
a fundamental system of (2). 

The symbol L[a, oo) will refer to the set of all complexvalued functions which are 
Lebesque integrable on [a, oo). 

The following theorem is needed. 

Theorem 2. (Hinton [3]). Let q(s)>0 on [0, oo) and q (s)/q1+l/n(s) be in 
L[0, oo) for n = 1, 2, ..., n. Then 

(i) ql/n(s) is not in L[0, oo) 
(ii) [q'(s)/ql+l/n(s)Y is in L[0, oo) 

(iii) [q'(s)/ql+l/2n(s)]2 isinL[0,«>). 

The system associated with (1) is 

(3) z' = A(t)z, 

where z = [y,y', y", y'"]T and 

A(t) = 

0 1 0 0 
0 0 1 0 
0 0 0 1 

l -r -q 0 0 J 

If in (3) we change the depedent variable z by setting w = 7z, where T(t) is 
a diagonal and nonsingular matrix, and substitute it in (3), we obtain 

(4) 

380 

w' = [r(0A(ř)r_,(t) + T'(t)T~\t)]w. 



The form of (4) depends on the matrix T(t). If q(t)£0, we shall consider T 
= dia[<7, Q2'\ ox'\ 1], and if r(t)±0, then T = dia[|r |3/4, \r\l/2, |r|1/4, 1]. 

2. Theorems 

a.q(t)>0 

Theorem 3. If q"lq43, r2/q713, and r'/q4/3 are in L[a, o°), then there are four 
linearly independent solutions zk, k = 1, 2, 3, 4 of (3) and t0^a such that 

i . vз 
U, T2 = - l , Í ,4 = 

-Ťk)
т,k = 2,3,4. 

k = 2, 3, 4 and T , = 0 , r2 = - [ , í ) , 4 = - + y / , p 1 = ( l , 0 , 0, 0)T , pk = (ik, 1, T*. 

Theorem 4. If q"/q4/3 and rlq are in L[a, oo), f/jen there are linearly indepen
dent solutions zk, k = l, 2, 3, 4 of (3) and t0^a such that 

Tziq^-^pi 

Tzfca-1/3exPr-r^\1/3((5)d6]-^p„ k = 2,3,4 

where Tk, pk are the same as in Theorem 3. 

p.q(t)<0 

Theorem 5. If the hypotheses of Theorem 3 hold, then there are linearly 
independent solutions zk, k = 1, 2, 3, 4 of (3) and t0^a such that 

7"'«~'^[{$H-'" 
r«-exp[{[„'^)-Iii|l]d^P., 

fork = 2, 3, 4 and where ^ = 0, r 2 = l , r3,4 = - | ± - ^ / , p, = (1, 0, 0, 0,) r , pk 

= (1, r „ T\, 1 ) T . 
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Theorem 6. 7/ the hypotheses of Theorem 4 hold, then there exist four linearly 
independent solutions zk, k = 1, 2, 3, 4 and t0^a such that 

Tziq~l->pi 

Tzkq-X 3 exp [ т * | qv\ô) ô\^pk, 

where rk, pk are the same as in Theorem 5. 

y.r(t)>0 

Theorem 7. If q'/r34, r"/r54, and q2lr5'4 are in L[a, <»), then there are four 
linearly independent solutions zk, k = 1, 2, 3, 4 of (3) and t0^a such that 

TZkr
3S exp [ - £ [xkr

v\d) + \ ^ rl\ d<5] ->p*, 

k = \, 2, 3, 4, where Tk are the roots of r4+ 1 =0 and pk = (1, rfc, T\, TI)T. 

Theorem 8. If rff/r54 and q/r are in L[a, oo), then there are four linearly 
independent solutions zk, k = 1, 2, 3, 4 of (3) and t0^a such that 

rz*r38exPr-Tfcj r1/4(<5)d<5J->pfc, k = l,2,3,4, 

where Tk and pk are the same as in Theorem 1. 

b.r(t)<0 

Theorem 9. i/ the hypotheses of Theorem 7 hold, then there are four linearly 
independent solutions zk, k = 1, 2, 3, 4 of (3) and t0^a such that 

TZk(-rr exp [ - £ [r,(-r)"4 + i 2 T*] d < 5 ] _ ^ , 

where Tk are the roots of T4 — 1 = 0, and pk = (1, Tk, T\, rfc)
T. 

Theorem 10. If the hypotheses of Theorem 8 hold, then there are four linearly 
independent solutions zk, k = 1, 2, 3, 4 of (3) and t0^a such that 

Tzk(-r)3/8 exp [-Tk f [-r(<5)]1/4 d<5]->pfc, 
J to 

where rk, pk are the same as in Theorem 9. 

3. Corollaries and examples 

Corollary 1. If qfflq43, rlq are in L[a, oo) andqi^O, then there exists a solution 
y(x) of (1) in the form 
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y(x) = U + c2q-^ exp(~[ ^ d<5) +a"2/3 exp ( | £ a"3 dd 

•(c3Cos^[ ' ( ?"3d6 + c 4 s i n ^ £ a " 3 d 6 ] [ l + 0 ( l ) ] . 
'o 

Corollary 2. If r"/r5/4, q/r are in L[a, °°) and r^ 0, fIie/7 fIiere exists a solution 
y(x) of (1) i/i the form 

y(x) = r-"° [exp ( - £ £ r"4do)(c, co s -^ -£ r"4d<5 + 

+ c2 sin ^ f r"4 dfi) + exp ( - - ^ j ' r"4 d<?) • 

• (c, cos ^ f t-"4 do + c4 sin - ^ f r"4 dfi)l[l +o( l ) ] , 

iTr(r)>0, and 

y(jc) = ( - r r 9 / 8 [ c i e x p ( - £ (-r)"4d<5)+c2exp(£ (-r)"4 d<5) + 

+ c3cosf (-r)"4d<5 + c4sin f ( - r )" 4 ddlfl+ o(l)], 
I'o J t0 J 

if r(t)<0, where cu c2, c3, c4 are arbitrary numbers. 
Example 1. Let r(t) be in L[fe, oo) and a be an arbitrary nonzero number. 

Then the differential equation 

y(iv) + a4y' + r(t)y = 0 

satisfies the assumptions of Corollary 1, and therefore its solution is 

y(x) = L + c2e~a' + c3e^ cos ^ at + cAe* sin ^ at! • [1 + o(\)]. 

Example 2. If taq is in L[6, oo), a <4, and a is an arbitrary nonzero number, 
then equation 

yav) + q(t)y'+f;y = 0 

satisfies the assumptions of Corollary 2, and therefore its solution is in the form of 
the above Corollary. 
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4. Proofs of theorems 

We begin the proofs of theorems with two lemas. 

Lemal . Let q(t)>0 on [a, » ) and J a13 dt = oo. Fef T(t) = dia [g(t), r/2 3(t), 

g1 3( t ) , 1]. / / we make the change of variable s = co(t) = J ql 3(6) dd in (4), then 

it leads to 

(5) * ' ( , ) = [A0 + A , / ( , ) + A2øO)J>(s) . 

where x(s) = w(a(s)), f(s) = r(a(s))/qi\a(s)), g(s) = q'(a(s))/q43(a(s)), 
a(s) is an inverse function of s = a>(t) and 

A„ = 

0 1 0 0 
0 0 1 0 
0 0 0 1 
0 - 1 0 0 

A , = 

r o o o o 
0 0 0 0 
0 0 0 0 

- 1 0 0 0 

1 0 0 0 
0 2 3 0 0 
0 0 1/3 0 

l 0 0 0 0 J 

Proof. First at all we see that if we put F = dia [q,q23,ql 3, 1] in (4), we obtain 

TAT'l = 

0 
0 
0 

l -щ~ 

<тrv rŢ~~' 

0 
0 

У 
0 

0 

?,/3 

0 
0 

0 
0 

lì/: 

0 

= A0q
vз + AlГ/q 

qq ' U 0 
0 (2/3)q'q-1 0 
0 0 ( l / 3 ) a V 
0 0 0 

0 
0 
0 
0 J 

= A2q'q~ 

and the equation (4) will have the form 

(6) W ' ( 0 = ( A O 9

1 , 3 ( 0 + A 1 ^ + A 2 ^ ) I V ( 0 . 

The function s=o)(t)= \ q1/3(d) dd has a derivative co'(0 = ^ 1 / 3 ( t ) > 0 , hence it 

increases on [a, oo). This means that s=co(t) has an inverse function t = a(s) 

defined on [0, oo), since J ql/3(t) dt = oo. Putting t = a(s) into (6) we get 

w Ч„(.)) ł 7-(„( s)) = [Aвî«»(„(,)) + A , ^ + A2^]н-(a(.)). 

Consequently, if the last equation is divided by q1/3(a(s)), we obtain (5). 
Similarly we can prove the following lema 
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Lema2. Let r(t)>0 on [a, « ) and ( r1/4(t) dt = ™. Let T(t) = dia fr3/4(t), 
Ja 

r1 2(l), r 1 4 ( t), 1]. Then making the change of the variable s =o)(t) = \ r]/4(6) dd 
Ja 

in (4), we get 

(7) x'(s) = [B0 + BMs) + B2k(s)]x(s), 

where x(s) = w(a(s)), h(s) = q/r3/4(a(s)), k(s) = r'/r5/4(a(s)), a(s) is an 
inverse function of s = u>(t) and 

B0 = 

0 1 0 0 
0 0 1 0 
0 0 0 1 

1-1 0 0 0 J 

B,= 

0 0 0 0 
0 0 0 0 
0 0 0 0 

L o —i o o J 
в2 = 

3/4 0 0 0 1 
0 1/2 0 0 
0 0 1/4 0 
0 0 0 0 

Proof of T h e o r e m 3. We show that all hypotheses of Theorem 1 are fulfilled 
for the equation (5). The characteristic equation of A() is r 4 + r = 0 so the 

1 V3 
characteristic roots TX = 0, r 2 = — 1, r3,4 = ~ ± ~j~ i of A0 are distinct. The vectors 

px = (1, 0, 0, 0 ) r , pk = (tk, 1, rk, tk)
T, k = 2, 3, 4 are characteristic vectors of A() 

coresponding to r*. 
Denote V(s) = A,/(s) + A2g(s), i.e. R(s) = 0 in Theorem 1, In order to be 

J \V'(s)\ ds<oo it is sufficient to prove that I \f'(s)\ ds<oo and f | ^ ; ( s ) | d s < 
Jo Jo J0 

oo. In both integrals we put a(s) = t. Then from the definition of the functions f(s) 
and g(s) there follows 

C\f (s)\ ds = f\[r(a(s))/q4/\a(s))\\ ds^ 
Jo Jo . 

s£ C\[r'(a(s))q4'3(a(s))a'(s)]/[q4'3(a(s))T\ds + 
Jo 

+ ^[\[q"3(a(s))q'(a(s))r(a(s))a'(s)]/[q^(a(s))f\ & = 

= [\r'(t)lq4,3(t)\ dt + \[\[r(t)q'(t)]lq™(t)\ dt. 

The first integral is in L[a, oo) by hypothesis. By applying the Cauchy inequality 
to the second integral we get 

f:\[r(t)q'(t)]/q7'3(t)\ dt = [\r(t)/q7,6\ • \q'(t)/q7/6(t)\ df-S 
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~[\r2(t)/q7/3(t)\ dt[2-[[\q\t)/q7/\t)\2dt[\ 

From Theorem 2 it follows that if q"lq43 is in L[a, oo), then [q'/q7/6]2 is in L[a, oo) 

and hence both above integrals are in L[a, oo). Therefore ( |/ '(s)| ds<oo. 
Jo 

Similarly, from Theorem 2 it follows that [q'/q43]' is in L[a, oo) and so 

J |g'(s)| ds<oo. Consequently I |V(s) |ds<oo. 

From Theorem 2 we also get 

f
( \f2(s)\ds=j^ \[r(a(s))lq*,i(a(s))\2ds = £\r2(t)lq1'\t)\dt-

and 

[\g2(s)\ ds =[\[q'(t)lq4\t)]W\t)\ dt = 

= [\[q'(t)/q7'6(t)]2\df 

' < 0 0 

ŕ < o o . 

Since g'(s) and g2(s) are in L[0, oo), then g(s)-*0 as s—>oo. Similarly we obtain 
f(s)—>0 as s—>oo9 and therefore V(s)—>0 as s—>oo. 

Let us calculate the characteristic roots of 

A„+V(s) = 

g(s) 1 0 0 
0 (2/3)g(s) 1 0 
0 0 (l/3)g(s) 1 

[ -f(s) -1 0 0 J 

The characteristic equation of A„+ V(s) is 

1 1 2 2 . •/. 2 
(9) P(т) = т4-2flr3 + y a 2 r 2 + ( l - | ű

3 ) г + / - ű = 0. 

Since/(s), ^(5)—>0 as s-->oo9 we get that P(r)—>r4 + r as s--->oo. Hence the roots 
of (9) converge to the roots of r 4 + r = 0. Thus we may write for s e[0, 00) 

(Ю) т(s) = т + ô(s), 

where 6(s)—>0 as s—>oo. 
In order to find whether the hypothesis of Theorem 1 is fulfilled we show that the 

function 6(s) may be written as a sum 

6(S) = P(S) + Y(S), 

386 



where fi(s) and y(.s)—»0 as s—>oo and Y(S) is in L[0, oo). Substituting T(S) 
= T + (3(S) + Y(S) into (9), we get 

P[T + P(s) + y(s)} = 

= Y< + [4(T + t3)-2g}Y3+[6(T + l3)2-6g(T + p) + ^g2y + 

+ [4(T + l3)3-6g(T + l3)2 + fg2(T + fS) + (l-\g^Y + P(r + P), 

( n ) P(T + l3) = (34 + (4T-2g)l33 + 

+ (6T2-6gT + ̂ g2y + (4T3-6gT2 + ̂ g2T+l-\g3y-2gT3 + 

+ liťr2-lg3T + f-g. 

Then the equation (9) may be written as 

(12) r{y3 + [4(T + l3)-2g]Y2+[6(T + l3)2-6g(T + (i) + ̂ -g2^Y + 

+ 4(T + (S)3-6g(T + p)2 + ̂ g2(T + (S) + (\-\g3^} = -P(T + (S). 

Let us denote the expression in the complex bracket as A (s). Since /, g, /?, y —>0 as 
s—>oo, then 

HmA(s) = 4 r 3 + l 

Thus for every e > 0 there is a number s' e [0, oo) such that 

| A ( s ) - ( 4 r 3 + l ) | < £ forse[s ' oo), 

from which it follows that \A(s)\ > | 4 r 2 + 1 | -e^ 1 -e. (If r, = 0, then 
| 4 r 3 +l | = l, for other values of Tk there is | 4 T * + 1 | = 3.) For £ = 1/2 we have 
\A(s)^\l2 on[j',oo). 

From (12) it follows that 

|P(r + £ )= |yA( s )>± |y ( s ) | 

and then 

(13) |y(s) |^2|P(r + £(s))|, 

from which we get that y(s) is in L[0, oo) if P(r + /?(s)) is in L[0, oo). 
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Choose (3 in (11) such that 

4r3/3 + / 3 -2g r 3 + / - g = 0 , 

i.e. 

(14) ^ ) = Msill±^(slzi(£). 

Then we obtain 

(15) P(T + P) = t34 + [4T-2g]p3+[6T2-6gT + ̂ g2h2 + 

[ , 3 22 2 2 3-|„ 11 2 2 2 , 
+ [-6^fr3 + y ^ 2 r - - ^ 3 J / 3 + y . g 2 r 2 - - ^ 3 r . 

Substituting 0(s) from (14) into (15) we get that each term of P(T + (3) contains 
f2 or g2 or fg. Since /2 and g2 are in L[0, oo), then /# is in L[0, oo) too and 
consequently P(r + /3) is in L[0, oo). Hence from (13) it follows that y(s) is in 
L[0, oo). 
From the above we get that the roots Tk(s) of P(r) = 0 may be written as 

MM r f c ^ - r , 2g(s)T3
k + g(s)-f(s) 

1 V.3 
where r, = 0, r2 = - 1 , r3,4 = x ± ~y- /, the second term in (16) converges to zero as 

s—>oo and y*(s) is L[0, oo), y*(s)—>0 as s->oo. 
Then Djk(s) = Re [r ,(s)-r f c(s)] for all /, k = 1, 2, 3, 4 may have the following 

forms 
a) Dik(s) = G(s) 
b) Dik(s) = c+F(s) + G(s) 
c) D;/c(s) = - c + F ( s ) + G(s), 

where c > 0 , F(s) , G(s) are functions such that F(s)—>0, G(s)—>0 as s—>oo and 
G(s) is in L[0, oo). 

a) In this case j e J2, because from the hypotheses stating that G(s) is continuous 
on [0, oo) and G(s) is L[0, oo) it follows that there exists K>0 such that 

í D,*( s )d s<K for all s2^s,^0. 

b) Since F(s)—>0 as s-»oo, then there exists a number s' e[0, oo) such that for 

every number s >s' there is c+F(s) + G(s) ^ c/2 + G(s). Then \ DJk(s) ds = 
Jo 

= I [ c + F ( s ) + G(s)]ds = oo since f [c/2 + G(s)] ds = oo, and | 2 D . * ( s ) d s > 
Jo Jo JSl 

-K for all s2^s,^0 and K>0, i.e. ye I ! . 
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c) Similarly as in case b) it follows from the condition F(s)—>0 as s—>oo that 
there is a number s"e[0, <*>) such that -c + F(s) + G(s) < -c/2 + G(s) on 

[s'\ oo), from which it follows that f Dik(s) ds = \ [-c+F(s) + G(s)]ds 
Jo Jo 

= -co and J [-c+F(s) + G(s)] ds < K for some 1C>0 and every s2>s1>0, i.e. 
Js. 

jel2. 
Thus all assumptions of Theorem 1 are fulfilled. Then, because of it, there are 

four linearly independent solutions xk(s), k = 1, 2, 3, 4 of (5) such that 

xk(s) exp - I rk(d) d<5 \->pk. 

Substituting rk(s) from (16) into the last expression we have 

xl(s)exp[-jjg(d)-f(6) + yl(6)]dd]^pl9 

and after substituting f(6) and g(5) we get 

If we denote yi(<5)d<5=K and put a(6) = ̂ , i.e. <5 = c0(£), where c0(£) 
J.V() 

= I ql/3($) d#, into the preceding formula, we get 

*,M0] • K • exp [ - £ < ? ' ( ^y )
( g ) <z1/3W da]->P,. 

Dividing the fraction under the integral sign into two parts we finally have 

>Pi, 
LJfo 4 V ^ 7 J 

where Tzi = wl(t) = xl[co(t)]et°e~K. 
Similarly for k = 2, 3, 4 we have 

Du,-«p[-j[[M"(a)+Ijai]«]-ft. 

Proof of Theorem 4. Let us denote in the equation (5) V(s) = A2g(s), 
R(s) = Axf(s) and now apply Theorem 1. 

The matrix A0 is the same as in Theorem 3, so its characteristic equation has 
distinct roots. Further V'(s) is in L[0, °o) if and only if g'(s) is in L[0, °°). From 
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the proof of Theorem 3 it follows that q"/q4/* in L[0, oo) is sufficient, which is 
fulfilled by hypothesis. Similarly 

í>5'iHI;rt>rid' < 0 0 

and so V(s)—>0 as s—>oo. From this hypothesis it also follows that 

r(t)\ Í^ЧMw) d t < æ . 

The characteristic equation of 

A„+V(s) = 

f(s) 1 0 0 
0 (2/3)g(s) 1 0 
0 0 O lЗ)ø( í ) 1 
0 -1 0 0 

1S 

(17) P(т) = т 4 - 2 ö r 3 + y ű V + ( l - - f l , ) r - a = 0 . 

By the same consideration as in Theorem 3 we get that the roots of (17) may be 
written as 

Tk(s) = Tk+^^g(s) + Yk(s), fc=l,2,3,4, 

e.i. Tx(s) = g(s) + Y\(s), Tk(s) = Tk+-g(s) + Yk(s), k = 2, 3, 4 and yfc(s) is in 

L[0, oo). Then, by Theorem 1, we obtain that there are four linearly independent 
solutions Zk(t) of (3) such that 

гт-. - 1 / 3 

Tzkq exp 

Tzia '->pi 

xA t7I/3(ó)d5l-»pt, * = 2,3,4. 

Proof of T h e o r e m 5. If q(t)<0 instead of (1), we shall consider the equa-

tion yK q(t)y' + r(t)y=0, where q(t) = -q(t)>0. Hence Lema 1 and 
Theorem 3 will remain if we replace A0(aik) by A(,(|aifc|), q(t) by —q(t), charac
teristic roots of A0 by characteristic roots of A0, which are T, = 0, T 2 = 1 , 

1 V3 
TX4= -~±— i, characteristic vectors of A0 by characteristic vectors of A0 which 

are pi = ( l , 0, 0, 0), pk = (1, Tk, T\, 1), k = 2, 3, 4, characteristic vectors of A0 

390 



+ f(s)Ax + g(s)A2 by characteristic vectors of A0 + f(s)Ax + g(s)A2, which 
may be written as 

where 

Tk(s)=Tk + 2M^ikd^M+Yk(s^ 

jhs K«fr)) , M «'(<*(S)) 
ns)-qM(a(s)Y 9{S)-f'\a(s)Y 

Therefore there is a fundamental system xk(s) of 

x' = (A0 + f(s)Ax + g(s)A2)x 

such that 

xk(s)exp - I rfc(<5)d<5 ->pk. 

Substituting a(<5) = § and putting —q=q into the last expression we get the 
conclusion of the Theorem. 

Proof of Theorem 6 is analogous to the proof of Theorem 4. 
Proof of T h e o r e m 7. Denote V(s) = Bxh(s) + B2k(s). Since 

^\h'(s)\ds = ^\[q(a(s))/r3'\a(s))]'\ds^j"\q'(t)/r3,4(t)\ út 

+ jj~\[q(ty(t)]/r7,4(t)\ át^~\q'(t)lr3'\t)\ d/ + 

+ | [[[q(tVr5m(t)f dt]V2 • [j"[r'(t)/r9"(t)]2 dř] 

+ 

I 1/2 

< o o . 

Likewise k'(s), k2(s), h2(s) are in L[0, oo), and so V'C?) is i n L[0, oo) and 
V(s)->0 as s-^oo. 

The characteristic equation of B0+ V(s) is 

0. (19) P(T) = T4 + ̂ kT3 + ̂ k2T2+(h-^k3)T~^hk+l = 

Similarly as in Theorem 3 the roots of (19) may be written as 

(20) Tk(s) = Tk-^k(s) + ^h(s)T2
k + yk(s), 

where Tk are the roots of r 4 + 1 = 0 and yk(s) are in L[0, oo) The functions Djk(s) 
are equal to c or c + G(s), where c + 0 and G(s) is in L[0, oo). Thus / eIu resp. 
/" el2 for all k. All hypotheses of Theorem 1 are fulfilled and hence there is 
a fundamental system xk(s) of (7) such that 
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xk(s)exp - I rk(d)dd\^>pk. 

After substituting s = <x>(t) = I r,/4(<3) d(5 we get the conclusion of this Theorem. 
J'o 

The proofs of the Theorems 8, 9, 10 are analogous to the proofs of the 
Theorems 4, 5, 6. 

Proof of Coro l l a ry \. Since F = dia fa, q2 \ ql'\ 1], zk = [y*, yi,y£\yi'T> 
then from Theorem 4 it follows that dia fa, g 2 \ ql/3, 1] • [yi, yl, yi', y!'T ' Q J —* 
(1, 0, 0, 0 ) r , i.e. y,—>1 and so v, = 1 + o( l ) . 

Similarly for k = 2, 3, 4 we get 

ylc = -TŽ<7 2 , , e x p ( T ^ ' a " 3 d ó ) ( l + o ( l ) ) . 

If we take Re y3 and Im y4, we get the assertion of the Corollary. This assertion is 
valid for q(t)<0 too. 

The proof of Corollary 2 is analogous. 
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АСИМПТОТИЧЕСКОЕ ПОВЕДЕНИЕ РЕШЕНИИ ДИФФЕРЕНЦИАЛЬНОГО 
УРАВНЕНИЯ ЧЕТВЕРТОГО ПОР1ДКА 

Йосеф Р о в д с р 

В работе рассматриваются асимптотические поведения решений уравнения (1) при г—>°°, если 
несобственные интегралы из некоторых дробей функций а и г являются конечными. 
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