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EIGENVALUES AND DOMINATION IN GRAPHS 

CLEMENS B R A N D — NORBERT S E I F T E R 

( Communicated by Martin Skoviera ) 

ABSTRACT. Let G be a finite connected simple graph with n vertices. We show 

a close relation between the domination number 7 (C ) and the largest eigenvalue 

An of the Laplacian matr ix of G. If 7(G) > 3 , then An < n - l " 7 ^ ~ 2 ] . If 

7(G) — 1, then An = n . If 7(G) = 2 , no bet ter bound than An < n exists. 

Furthermore we show tha t eigenvectors corresponding to large eigenvalues induce 

dominating sets in G . 

1. Terminology 

By G(V, E) we denote a graph with vertex-set V(G) and edge-set E(G). 
Graphs considered in this paper are finite, undirected and contain neither loops 
nor multiple edges - they are so-called simple graphs. For v G V(G) we denote by 
Nv the neighbourhood of v in G. The valency dv of v is the cardinality of Nv, 
and A = max dv. The complement G of a graph G is given by V(G) = V(G) 

and E(G) = {(v,w) \ v,w G V(G), (v,w) £ E(G)}. A subset D C V(G) is 
called dominating set if every vertex v £ D is adjacent to at least one vertex 
of D. The domination number 7(G) is the cardinality of a smallest dominating 
set. A dominating set D with \D\ = 7(G) is called a minimum dominating set 

By L(G) we denote the Laplacian matrix of G, i.e., L(G) = D(G) — -4(G), 
where ^4(G) is the adjacency matrix of G and D(G) is the diagonal matrix 
with the corresponding valencies in the main diagonal. The eigenvalues of L(G), 
0 -^Aj < A 2 < . . . < A n < n , n = |V(G)| , are simply called eigenvalues of G. 
If necessary, we write Afc(G) to emphasize that we consider the A:-th smallest 
eigenvalue of a particular graph G. 

The usual eigenvector partition with respect to an eigenvector is given as 
follows: Let xk denote an eigenvector of L(G) with respect to Xk 7-- 0. (If G 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 05C50. 
K e y w o r d s : connected simple graph, domination set, domination number, Laplacian matrix, 
eigenvalue. 
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is connected, Xk > 0 for k > 2.) Let V1 C V(G) now denote the set that 
contains all vertices whose corresponding entries in xk are negative, and let V2 

be the set that contains all vertices with entries > 0. Clearly. Vx n V2 = 0 and 
V,UV2 = V(G). 

2. Introduction 

Since F i e d l e r ' s fundamental paper [2] on eigenvalues of the Laplacian ma
trix of graphs appeared, many papers relating eigenvalues to various properties 
of graphs were published (for surveys see, e.g., [3], [4]). But as far as we know, 
the relationship between domination numbers and eigenvalues has not yet been 
studied. 

The main result of this paper shows that there is a close connection between 
the domination number 7(G) of a graph G, |V(G)| = n, and its largest eigen-

• 7 ( G ) - 2 -
value An. We prove that An < n if 7(G) > 3, which is best 

2 
possible. If 7(G) = 1, then An = n , if 7(G) = 2, no better bound than Xn < n 
exists. Roughly spoken this means that large eigenvalues always imply a small 
domination number. If An is large, say An > n — ra for some fixed ra > 0, a 
minimum dominating set can always be found in a polynomial time, simply by 
checking all subsets of V(G) of cardinality less than 2(ra -f 1). On the other 
hand, this result does not supply any information on the domination number if 
the largest eigenvalue of a graph is small, e.g., if An < —. 

Recently (see, e.g., [5], [6] ) eigenvectors corresponding to the second small
est eigenvalue A2 were used to obtain "good" domain decompositions of finite 
element meshes. First results concerning this problem were already shown in 
F i e d 1 e r 's paper [2] mentioned above. 

Motivated by the connection between eigenvalues and domination numbers 
- in particular, by the fact that we involved the second smallest eigenvalue of 
the complement of a graph to prove it - we looked for possibilities to obtain 
dominating sets from eigenvectors. Of course, in general, we cannot expect to 
obtain minimum dominating sets from eigenvectors since the problem of finding 
such sets was shown to be NP-complete - even for subgraphs of grid graphs 
(a grid graph is the cartesian product of two paths). For specific eigenvector 
partitions (in general, however, not for the usual eigenvector partition) it is 
possible to obtain dominating sets. 
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3. The results 

We first prove several lemmas. Then the proof of our main result is an im
mediate consequence of those lemmas. 

LEMMA 3.1 . Let 7(G) = k > 3. For every subset W C V(G) with \W\ = 
m < k there exist at least k — m vertices that are common neighbours in G to 
the vertices of W. 

P r o o f . By induction. If we start with Wm = W, then Wm is too small to 
be a dominating set in G. Thus there exists some v ^ Wm not adjacent to any 
vertex of W„„ . Let W^,, = Wm U {U} and iterate until Wu is obtained. The 

in Tn~\~ L TIL *- J K 

k — m vertices in Wk \ VVm are not adjacent to any vertex of Wm. D 
LEMMA 3.2. Let 7(G) = k > 3, and let V^V2 ^ 0. \\ n V2 = 0, V1 U V2 = 
V(G) denote a partition of V(G) = V(G). Then every w G Vx is not adjacent 

r k — 2 1 to at least j = —-— vertices in V2, or, symmetrically, every w G V2 is not 

adjacent to at least j vertices in Vx. 

P r o o f . Suppose there is a w G V1 that has only m < j neighbours in 
G belonging to V2. By Lemma 3.1, any pair of vertices (iv,U), v G V2, has at 
least k — 2 common neighbours in G. This implies that ciny v G V2 has at least 
k — 2 — m > j neighbours in G that are contained in F ^ D 

To fix terminology, we emphasize that for a vertex v we denote the corre
sponding component in f by xv, while for vertices vi we simply write xi. 

LEMMA 3.3. Let V1, V2 denote the usual partition of V(G) with respect to 
an eigenvector x = (x1,..., xn)

J , L(G)x = Xx. Let \Nyj D VJ = r > 1, where 
VJ G V0 satisfies x„„ = max x„ . Then X > r. 

1 W v£V2
 V 

P r o o f . We assume that Nyj D Vx = {yx,..., vr} and Nw D V2 = {U r+1,... 
• • •, vr+s}' s — 0 • By x~, 1 < j ' < T + s, we denote the corresponding entries of 
x. Then, in the equation L(G)x = Xx', the row corresponding to w is 

w w 1 r r-f-1 r-\-s 

= (Xw ~ Xl) + * * ' + (xw - Xr) + ( ^ - Xr+l) + ' - + (xw- Xr+s) = A*™ • 

Since x^ — xm > xw for 1 < m < r and xw — xr+l > 0 for 1 < / < s, our result 
follows immediately. D 

We observe that an analogous result can be shown if IJV̂  ^V2\ = r > 1, 
where w G Vx satisfies xw = min xv. But, in this case, equality can occur, i.e., 

A > T, since w may be adjacent only to vertices v G V2 with xv = 0 . However, 
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if A is a maximal eigenvalue, then a vertex satisfying x = min x must be 
v ev1 

adjacent to at least one vertex u with xu > 0 . Thus, for a maximum eigenvalue 

strict inequality, i.e., A > r , always holds. 

THEOREM 3.4. Let G be a connected graph with \V(G)\ = n . If j(G) = k > 3. 
fc-2 1 . If 7(G) = 1, then Xn = n , if j(G) = 2, no better then \ < n , n n I Z 

bound than Xn < n exists. 

P r o o f . If 7(G) = 1, then G contains a vertex of degree n — 1. This means 
that G contains a subgraph isomorphic to the star on n vertices. Clearly, An = n 
holds for that star, and the interlacing theorem (see, e.g., [3]) completes the 
proof. 

Complete bipartite graphs have domination number 2 and An = n . Thus, in 
the case 7(G) = 2, no better bound than An < n exists. 

Let k > 3 . Perform the usual eigenvector partition Vx, V2 of V(G) with 
respect to an eigenvector x and the corresponding eigenvalue A. Let v G Vx and 
w G V2 be the vertices corresponding to a minimum and a maximum component 
in x, respectively. 

k-2 Lemma 3.2 states that v is not adjacent to at least 

k-2 
л vertices in Vn 

or that w is not adjacent to at least 

that the second clause holds 

2 I v ~ — > ^ '2> 

vertices in Vx. We may assume 

r k — 21 — 
Thus, there are at least — - — edges in the complement G between w 

and Vx. Moreover, x is an eigenvector of G with eigenvalue n — A. Lemma 3.3 
— \ k 

applied to G ensures that n — X > — 
2 

2 
If we consider v G Vx, then these conclusions - according to the remarks 

following Lemma 3.3 - only hold if A is a maximal eigenvalue, which is still 
sufficient for this proof. • 

We observe that the bound given in Theorem 3.4 is best possible. Examples 
of graphs G with 7(G) = 3 and largest eigenvalue less than but arbitrarily close 
to n — 1 are given below (similar constructions are possible for 7(G) = 4 ) : 

Take a complete graph on the vertices {vx,..., v 2 m + 1 } . Add three new ver
tices v2rn+2, v2rn+3 and v 2 m + 4 . Let v2m+2 be adjacent to vx,... ,vm, v2m+3 

t o V m + l > ' - - > V 2 m > a i l d V 2m+3 t o V2rn+1 ' T h e Vector X = (a, . . . , a, -a, • . . 

1 1 A \ • • . r n ± y/n2 + 8n — 32 mi 
. , . , —a, 1, —1,0) is an eigenvector for a = —r . The corre-

An o sponding eigenvalues are X12 = (3n — 8 ± \Jn2 + 8n — 32) /4. For n —> CXD, 

\ = n — 1 — h Oi—-5-). All other eigenvalues, which can be found by 
1 n \nz / 

exploiting symmetry and equitable partitions, are smaller than Xx. 
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The knowledge of this close relationship between the domination number 
and the largest eigenvalue of a graph suggests to exploit it algorithmically. The 
following considerations show that there is also a close relationship between 
eigenvector partitions and dominating sets. Unfortunately, the dominating sets 
we obtain by eigenvector partitions are in general far away from minimum dom
inating sets, although we obtain minimum sets in some special cases. 

The eigenvector partition we have described in the introduction in general 
gives no partition into dominating sets. To prove that for certain eigenvalues 
we always obtain a corresponding eigenvector partition into dominating sets, we 
first describe one of the possible eigenvector partitions which lead to dominating 
sets: 

Let x be an eigenvector of G, x ^ ( 1 , . . . , 1 ) T . Then D_\ = {v G V(G) \ 
xv > 0}, D°_ = {v e V(G) | xv < 0} and D% = {v G V(G) \ xv = ()}. For 
i > 0 we now define: 

L>;+1 = D\ U {v G Dl
0 | (v,w) G E(G) for some w G D__}, 

DtlY = Di \ D*1, 

Di+1 = Di_ u ^ v £ £>(<+!)' I (vw) e £ ( G ) for S Q m e w e JJJH-1 j ^ 

Dl+1 = L#+1)' \ Dl_ . 

The recursive definition of these sets stops whenever D™ = 0 for some m > 0. 
For convenience, we set L>+ == D™ and D_ = D™. 

PROPOSITION 3.5. Let L(G)x = Ax, where A > A . Then the sets L>+ and 
D _ corresponding to x are dominating sets. 

P r o o f . Assume first that v € D[\. Then, since 

d x — > x = \x 
V V / j w ' ^ v 

(v,w)£E(G) 
and A > A > dv , at least one xw in the above sum must be negative. Hence, 
every vertex of L)^_ is adjacent to a vertex of D_. 

Analogously, we show that every v G D_ is adjacent to at least one w G D®_. 
Let v G D0. If v is adjacent to at least one w G D_\, then the above equation 

implies that it is also adjacent to a vertex of D°_. 
Hence, if D0 = 0, the sets D°_ and D0^ are already dominating sets. If 

D0 ^ 0, then the fact that every vertex v £ D0 which is adjacent to a vertex 
of D_\ is also adjacent to a vertex of D°_ immediately implies that the above 
defined sets D_ and D , are always dominating sets. • 

We observe that graphs with D0 ^ 0 exist - even if x is an eigenvector 
corresponding to the largest eigenvalue. Hence, the usual eigenvector partition 
will not always lead to dominating sets. 
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Also, an alternative partition of V(G) into two dominating sets can be found 
as follows: 

We define D_ , D{]_ and D^ as above with respect to an eigenvector whose 
corresponding eigenvalue satisfies the assumptions of Proposition 3.5. Then, we 
take all connected subgraphs of G which are induced by D\]. For each of these 
graphs we determine an eigenvalue which satisfies the assumptions of Proposi
tion 3.5 and a corresponding eigenvector y. Then join the vertices with positive 
entries in y to D+ and those with negative entries to D_ . If there are st ill some 
vertices neither in D_ nor in D°, , we repeat this procedure until we obtain a 
partition. Because of the adjacencies we have proven above, this final partition 
of V(G) is again a partition into two dominating sets. 

Graphs G for which at least the partition with respect to an eigenvector 
corresponding to the largest eigenvalue gives a minimum dominating set are the 
following: 

G is bipartite, and the bipartition is given by D and V(G) \ D, where D is 
a minimum dominating set. 

To see that the algorithm determines a minimal dominating set for these 
graphs, we consider the Rayleigh quotient of the Laplacian L(G). For the largest 

eigenvalue A we know that A = max — . For bipartite graphs this maxi-
y£Rn y1y 

mum is attained for a vector x, where the entries of x corresponding to one 
of the sets of the bipartition all have the same sign. Hence, if one of these sets 
corresponds to a minimum dominating set, the algorithm returns this set. 
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