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Math. Slovaca 37, 1987, No. 4, 323—340 

ORDERING OF OBSERVABLES AND 
CHARACTERIZATION OF CONDITIONAL 

EXPECTATION 

OLGA N A N A S I O V A 

In the first half of this paper we study various ways of the ordering of 
observables. We analyse the relationship between two different definitions of the 
ordering of observables. In the second half we analyse properties of "relative 
conditional expectations" for partially compatible observables on quantum 
logics. These "relative conditional expectations" have been introduced in [14]. 
The main result is a characterization of "relative conditional expectations" in 
the sense of Shu-Ten Chen Moy [19] in a quantum logic. 

Preliminaries 

Let L be a logic, (= an orthomodular a-lattice). The elements a, beL are 
orthogonal (aLb) if a ^ b1. The elements a, b eL are compatible (a<-+b) if 
a = (a A b) v (a A b1), b = (a A b) v (a1 A b). A subset K a L is compatible if 
a<-+b for any a, beK (see [20]). 

Definition 1.1. A subset M a L is partially compatible with respect to an 
element aeL (M is p.c. [a]) if 

(i) M<-+a (i.e. b<-+afor all beM); 
(ii) M A a = {b A a\beM} is a compatible subset of L. 

Let aeL, a ^0. The set L[0a] = {beL\b ^ a} is a logic with the orthocomple-
mentation defined by b* = b1 A a. 

A set M A a is compatible in L iff it is compatible in L[0 a]. 
If F={al9 ..., an} czL, put 

com (F)= \/at<A...Aad„" 
deDn 

where D = {0, 1}, d = (dx, ..., dn), a0 = a1, a1 = a. The set F if p.c. [com(F)]. 
F is compatible iff com(F) = 1. 
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Let M cz L be any subset. If there is A {com(F)\F is a finite subset of M} 
(briefly com(M)), then the element com(M) is called the commutator of the 
set M. If com(M) exists, then M is p.c [com(M)] (see [17], [18]). 

A mapping x: Lx -• L2 between logics Ll9 L2 is called a o-homomorphism if it 
satisfies the following conditions: (i) x(\L[) = \Lj; (ii) if a, beL^ a Lb, then 
x(a)_l_x(b); (iii) {a;},x=i <-- Lj are mutually orthogonal; then x(va;) = v x(a,). 
A cr-homomorphism x: B(R) -> L is called an observable on L (B(R) is the 
cr-algebra of Borel sets on the real line). Iff is a Borel measurable function on 
R and x is an observable on L, then fox (for EeB(R): fox(E) = x(f~\E)) is 
also an observable on L. The range R(x) = {x(E)\EeB(R)} is a Boolean-sub-
(j-algebra of L. The spectrum a(x) of an observable x is the smallest closed set 
C cz R such that x(C) = 1. The observable x is bounded if o(x) is compact. For 
any aeL, there is an observable xa such that <j(xa) cz {0, 1} and xa({l}) = a. The 
observable xa is called a proposition observable. 

If x is an observable, and aeL, we write x<->a if x(L)<->a for any EeB(R). 
If x, y are observables, then x<-+>' iff x(E)<->y(F) for all L, FeB(R). If x<->a, 
then the map x A a: i?(i?) -• L[0 a] (x A a(L) = x(E) A a, Le £(/?)) is an observ
able on a logic L[0 a]. 

Observables x, y are said to be simultaneous (x <-• j ) if R(x) <-+ R(y) (i.e. a+-+b 
for any aeI?(x), beR(y)). Observables x, >> are p.c. [a] (aeL, a # 0) if P(x) u 
u R(y) is p.c. [a]. 

The mapping m: L -• R is called a measure on L if (i) m(0) = 0; (ii) {bt}^= { cz 
cz L are mutually orthogonal elements; then m( v b) = ]£m(^,)- If m: L -• [0, 1] 

and m(l) = 1, then the measure m is called a stale on L. Let m, n be measures 
on L. If m(b) = 0 implies rz(b) = 0, then we write n <| m (n is absolutely con
tinuous to m). 

Let x be an observable on L and let m be a state on L. Then mv: E\—• 
i—•m(x(L)) for EeB(R) is a probability measure on B(/?). 

F/ze expectation of x in a state m is defined by the formula 

x ám = Åmx{áX) m(x) = 

if the later integral exists. Iff is a Borel function, then 

m(f(x)) = ^f(X)mx(dX). 

It is obvious that /• 
m(x) = Xmx(dX). 

Ja{x) 

An observable x on L is called integrable in a state m if m(x) exists and it is 
finite. 
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If <J(X) f= [0, oo), then x is called a positive observable (abbr. x ^ 0). If 
m(x([Q, oo))) = 1, then we write x ^ 0 [m] (m is a state on L), 

Let M be a set of states on L. The pair (L, M) is called a fw// system 
(abbr.fs.) if m(a) ^ m(b) for any meMimplies a ^ b. The pair (L, M) is a qw//e 
full system (abbr. q.f.s.) if {raEM|ra(a) = 1} c {meM\m(b) = 1} implies a ^ b. 
S. Gudder [6] showed that if (L, M) is a q.fs., then (L, M) is anfs. with the 
following property: If a ^ 0, aeL, then there is m e M such that m(a) = 1. 

Let (L, M) be q.f.s. We say that L has the property U if m(x) = m(y) for all 
A77 G M implies x = y, where x, y are bounded observables on L. We say that L 
has the property E if for any pair x, y of bounded observables there is a unique 
bounded observable z such that m(z) = m(x) + m(y) for any meM. The observ
able z is called the sum of observables x, y and we write z = x -\- y. For details 
see [3], [6], [4], [16]. A pair (L, M) is called a sum logic if it is q.fs. and L has 
the properties U and L. 

For bounded summable observables let us define the Segal "product" by 
putting 

x.y = ±((x + y)2-(x-y)2). 
2 

Note that if x «-»>>, then there are Borel measurable functions f g and an 
observable z such thatfoz = x, goz = y (see [20]). Then we have 

x-y = -((f+g)2-(f-g)2)oz. 
4 

Hence for any EeB(R), we obtain the equality xy(E) = (fozgoz)(E) = 
= (f'g)°z(E). Thus we have x-y = (f-g)°z. 

2. Order properties of observables 

Recall first that the ordering of observables was considered in [1], [21], [10]. 
D. Catlin [1] gave the definition of spectral resolution ex such that for each re R, 
ex(r) = x( — cc,r) and x ^ yiffex ^ e}. S. Gudder and J. Zerbe([ 10]) introduced 
an ordering in the following way. One writes x ^ y if for each reR x(r, oo) ^ 
^ y(r, oo). Moreover, they introduced an ordering of observables "modulo" a 
state m in the following way: x ^ y [m] if m(x(r, oo)) ^ m(y(r, oo)) for all reR. 
They proved the following theorem. 

Theorem 2.1. (Lemma 3.5., [10]). If x ^ y [m] and m(x), m(y) exist, then 
m(x) ^ m(y). 

If x ^ y [m] in the sense of S. Gudder and J. Zerbe and x<-> >> and if we put 
x = foz, y = goz, the inequalityf^ g a.e. [m:] need not hold as the following 
example shows. 
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Example 2.1. Let Q={Q, 1}, L = 2Q and f(co) = co for coeQ, g(0) = 1, 
g( 1) = 0. Let x = f~], y = g ~]. It is clear that x <-> y. Let m be a state determined 
by putting m({l}) =1 /3 . 

If r ^ 1, then m(x(r, GO)) = 0 = m(y(r, oo)). If re[0, 1), then m(x(r, oo)) = 
= m({\})= 1/3, m(y(r, oo)) = m({0}) = 2/3. If r < 0, then m(x(r, oo)) = 
= m(y(r, oo)) = 1. Hence x ^ y [m] in the sense of S. Gudder and J. Zerbe. On 
the other hand, x = foXuy = gox]. Iff^ ga.e. [mVj], then mx^({coe Q\f > g}) = 
= 0. But mXx({cosQ\f> g) = 1/3. Hencef^ g [mj . 

This example contradicts the remark following Theorem 3.7 in [10], by which 
m(x(r, oo)) ^ m(y(r, oo)) for all reR (x<->y) would imply y — x ^ 0 [m]. 

For that reason we define the ordering of observables in the following way: 

Definition 2.1. Let L be a logic, x, y be some observables on L. We define ^ , 
for observables as follows: 

(i) if m is a state on L, then x ^ , y [m] if for each reR 
m(x(-co, r) A y(-oo, r)) = m(y(-cc, r)); 

(ii) x ^ ! y if x( — oo, r) ^ y(—oo, r) for all reR. 
It is easy to see that x ^ xy iff x ^ y as defined by D. Catlin [1]. 

Definition 2.2. Let (L, M) be a sum logic, x, y be summable observables. We 
define ^2 as follows: 

(/) ifmeM, then x ^2y [m] if y — x ^ 0 [m]; 
(ii) x ^2y ify-x^ 0. 
In what follows the indices 1, 2 will be omited if no misunderstanding is likely 

to arise. 
It is easy to see that x ^,j> implies x ^,>' [m] for any m and x ^2y implies 

x ^2y t m ] for all meM. Conversely, if (L, M)isfs., then* ^iy[m] for all me M 
iff x ^ ! y . 

N. Zierler ([21]) proved the following theorem (see also [16]). 

Theorem 2.2. Let (L, M) be q.f.s. andx +-+y. Then m(x) ^ m(y)for all meM 
iff whenever f g are Borel function and z is an observable such that x =fo z, 
y = g o z, then f^g a.e. [m J for all meM. 

Proposition 2.3. Let (L, M) be q.f.s. and x be bounded observable on L. Then 
m(x) ^ Ofor any meM iff x ^ 0. 

Proof. If x ^ 0, then a(x) cz [0, oo) and so we have 

m(x)=\ AmY(dA)= lmx(dX) ^ 0 (for all meM). 
Jaix) J[0. x ) 

Let m(x) ^ 0 for any meM and x ^ 0. Then there is AeB(R) such that 

326 



A c: (— oo, 0) and x(A) ^ 0. Therefore is a state meMsuch that mx(A) = 1. We 
thus obtain 

m(x) = Am(;c(dA)) = ^(A).Am(jc(dA)) < 0. (Q.E.D.) 

Let us note that Proposition 2.3 also follows from Lemma 3 in [21]. 

Corollary 2.3.1. Let (L, M) be a sum logic, then 
(i) x ^2y> y ^ 2 x implies x = y; 

(ii) ifx ^ 0, y ^ 0, then x + y ^ 0. 

Proposition 2.4. Let (L, M) be q.f.s. and x<-+y. Then 
(i) x ^ , y [m] /#*.* ^ 2 y N , weJif; 

00 x^ly#x^2y-
Proof. Since x<->y, there is an observable z and Borel functions/, g such 

that A: =f°z, y = g°z. 
(i) Let x ^ jy [m]. It means that for each reR 

0 = m(y(—oo, r)) — m(x(—oo, r) A y( — oo, r)) = 

= m(y(-oo, r) A x[r, GO)) = m:({co\g(co) < r,f(co) ^ r}), 

(for all reR). Hence 0 = m:({co\g(co) <f(co)}) ( i . e . /^ g [m:]). On the other hand, 
if x ^ 2 y M> w e have y — x ^ 0 [m]. And then 0 = m((y — x)(—oo, 0)) = 
= m:((g -f)~l(-cc, 0)) = m:({co\f(co) > g(co)}) i.e.f^ g a.e. [m:]. 

(ii) x ^ - y [m] for all m e M iff x ^ , .y. Then we have x ^ , y [m] for all m e M 
iffx ^ 2 y M> f° r all meM. Using Proposition 2.3 we have j — x ^ 0. (Q.E.D.) 

Proposition 2.5. Let (L, M) be q.f.s. The following statements as equivalent: 
(i) m(x0(r, oo)) ^ m(x(r, oo)) for all reR; 

(ii) x0 ^ , x [m]; 
(Hi) x0^2x[m]; 
(iv) x^0 [m]. 
Proof. Since we have x0<-+x, it is obvious that (ii) is equivalent to (Hi). 

Let x0^2x M- Then m((x — x0)[0, oo)) = 1. But x0 =f°x, where/(r) = 0 for 
all reR. Let g be the identity function on R. Then 

1 = m((x - Xo)[0, oo)) = m((gox-foX)[0, oo)) = 

- mx((g -f)~'[0, oo)) = mx({co\g(co)e[0, oo)}) = m(x[0, oo)). 

Then we have x ^ 0 [m]. It means that (Hi) implies (iv). 
Let us suppose that x ^ 0 [m]. If r < 0, then we have m(x0(r, oo)) = 1 and 

m(x(r, oo)) = 1. If r ^ 0, then m(.x0(r, oo)) = 0. But m(x(r, oo)) ^ 0 for all reR. 
It means that (w) implies (i). 
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Let m(x0(r, oo)) = m(x(r, oo)) for all reR. Let rne R be taken such that 
rne(— 1/2", — 1/2"+ '). We obtain xQ(rn, oo) = 1 for all n and therefore m(x(rn, 
oo)) = 1 for all n. Hence for any n mx( — oo, rn) = 0. Now we have lim mv 

n -» x 

( — oo, r„) = mv( — oo, 0) = 0 and m(x[0, oo)) = 1. It means x ^ 0 [m] and so (/) 
implies (//'/). (Q.E.D.) 

Note that ^ , [m], ^ , , < 2 [m], ^ 2 are reflexive and ^ 2 , ^ , are transitive. If 
x, y are observables on L such that x ^ , y and y ^ , x, then x = y. In fact, let 
x ^ i y > y ^ i x ; then for each reR, x(— oo, r) = y(— oo, r). Hence for rx,r2eR: 
r, < r2. we have x([r,, r2)) = y([ri, r2))- But if two observables are equal on all 
generators for Borel sets, then they are indentical (see e.g. D. Catlin [1]). Since 
a sum logic has the property U, we have x ^ 2 y , y ^ 2 x iff x = y. 

Proposition 2.6. If x, y are observables on L, and if there is r0eR such that 
a(x) c: ( - o o , r0), a(y) c [r0, GO), then x^xy. 

The proof is obvious. 
From Proposition 2.6 it follows that x^iy does not imply .Y«->V. It is 

sufficient to take the observables x<n-> v, <J(X) C ( — oc, t), cr(i>) cz [t, cc) (teR). 
From Theorem 2.1 it is obvious that x ^ xy implies x ^ 2 y on a sum logic. If 

(L, M) is f.s., then x ^ y [m] for all meM in the sense of S. Gudder and 
J. Zerbe iff* ^ , y. 

E x a m p l e 2.2. Let L = {0, 1, a1, a, b1, b], where a*+>b and a A b = 
= b A a1 = b1 A a = b1 A a1 = 0. Let us choose states m, (/ = 1, ..., 4) as 
follows: mx(a) = 0 mx(b) = 0.1 

m2(a)= 1 m2(b) = 0.1 
m3(a) = 0.9 m3(b) = 0 
m4(a) = 0.9 m4(b)= 1. 

Then (L, M) is q.f.s. for M = {m„ ..., m4}. Let x({0}) = a, x({2}) = a1, y({\}) = 
= b9 y({3}) = b1. Obviously x^xy. Now we have m(x) = 2m(aL), m(y) = 
= m(b) + 3m(bx). Hence m,(x) = 2 ^ mx(y) = 2.9; m2(x) = 0 ^ m2(y) = 2.9; 
m3(x) = 0.2 ^ m3(>') = 3 ; m4(x) = 0.2 ^ m4(y) = 1. We can conclude that 
m(x) ^ m(y) for all meM but x ^ i y . 

S. Gudder [6], [9] showed that if (L, M) is q.fs., x, y are bounded observables 
and the spectrum of x has at most one limit point, then 

m(x) = m(y) for any meM implies x = y. 

Under the same assumption the implication 

m(x) < m(y) for any meM=>x ^xy 

does not hold, as Example 2.2, shows. 
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Proposition 2.7. Let (L, M) be q.f.s. and o(x) = {tx, t2}, a(y) *= {rl9 r2} 
(f, < t2, r, < r2). I/f2 ^ r, 0r ', = r,, then x ^ , y iffm(x) ^ m(y)for any meM. 

Proof. Let us put *({*,}) = a, y({r.}) = 6. If f2 ^ r, we can use Proposi
tion 2.6 for r0 = ri. 

Now consider /, = r,. Then 

m(x) = /, + (t2 - tx)m(a% m(y) = tx + (r2 - tx)m(bL). 

From the assumption we have 

(t2-t])m(a1)^(r2-t])m(b1). 

Let neM be such that /2(b) = 1. Obviously, ^(a1) = 0. Hence n(b) = 1 implies 
n(a) = 1. We conclude that a^b. 

Let meM be such that m ^ 1 ) = 1. Since b1 ^ a1, we have m(bx) = 1. It 
follows that t2^r2. Hence x ^ , y . The converse implication follows from 
Theorem 2.1. (Q.E.D.) 

If (L, M) is afs. and x, y are proposition observables, then we have x ^ xy 
iff m(x) ^ m(y) for any meM and moreover x ^,j> implies x<->y and x0 ^ 
^ x ^ x, for all proposition observables x. 

Let (L, M) be q.f.s. Put i(x) = inf{reR\reo>(x)}. s(x) = sup{reR\reo(x)}. It 
is clear that m(x) ^ m(y) for all meM implies i(x) ^ i(y) and s(x) ^ s(y). If 
x ^ 0 and JC -$,y, then j> ^ 0. If aiy) = {t} and m(x) ^ m(y) for all meM, then 
x ^ , y . Analogically, if m(x) ^ m(y) for all meM, then y ^ , x. 

Let x, y be such observables that x has a point spectrum and y({i(y)}) A 
A 6 7- 0 for b 6 R(x) n {0}c. Then m(x) ^ m(y) for all m e M iff x ^ , y. Indeed, 
put <x(x) = {/;},*!• Because y({/(y)}) A x({l7}) ^ 0 for each j , there is a state 
m7eM such that mj(y({i(y)}) A *({(,))) = 1. Now we have mj(y) = i(y), my(x) = 
= tj. From the assumption it follows that i(y) ^ tj for allj Now we use Proposi
tion 2.3 for r0 = i(y). 

Now we consider a sum logic (L, M) and aeL, a =t 0 such that, for any 
summable observables x, y on L, the following conditions are satisfied: 

a) if x<r+a, y<r+a, then x + y+-*a; 
P) if R(x) u R(y) is p.c. [a], then (x + y)/\a = x/\a + a/\y. 

For instance, Hilbert space logic L(H) fulfils a), /?). 

Proposition 2.9. Let (L, M) be a sum logic and aeL, (a # 0) such that a), P) 
are fulfilled. Let meM be such that m(a) = 1. Then for any pair observables 
x, y on L, with R(x) u R(y) p.c. [a] there holds x ^xy [m] iff x ^2y [m]. 

Proof. Since x A a+-+y A a, we have x A a ^ , y A a [m] iff x A a ^2y A a 
[m]. But m(x(E) A y(F)) = m(x(E) A a A y(F) A a) and m(y(E)) = m(y(E) A 
A a), for any E, Fe B(R): As ( - 00, r) e B(R) for each reR,v/e have x ^ , y [m] 
iff x^2y[m]. (Q.E.D.) 
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Corollary. 2.9.1. Let x, y be p.c. [a], m(a) = 1 and let x ^ 0 [m], y ^ 0 [m]. 

Then 
(i) x + y ^ 0 [m]; 
(ii) x-y ^ 0 [ra]; 

(Hi) if x A a = fo z, y A a = g o z, where f g are Borel functions and z is an 
observable on L[0 a], then x ^ y [m] ijff^ g a.e. [m.]. 

3. Properties of functional representation for p.c. observables 

In what follows we shall assume (L, M) to be a sum logic with a), /?). Let 
Q cz L be a sublogic of L which is p.c. [a] for some aeL (a ̂  0). From the 
properties of partial compatibility it follows that Q A a is a Boolean cr-algebra. 
Let raeM be such that m(a) = 1. Denote by X(Q) the set of all bounded 
observables with R(x) cz Q and suppose that x, y e X(Q); then x + y e X(Q). Let 
us fix a measurable space (Q, 3F), and a cr-homomorphism h from #" onto 
Q A a, which exists by the Loomis-Sikorsky theorem (see [13], [22]). To any 
observable x on Q there is an J^-measurable function fx: Q -> R such that 
x A a =fx°h [20]. We shall write x ~ fv . 

Definition 3.1. Lel x, yeX(Q). We shall say that x ~ y [m] (x is equal to y 
modulo m) if for any EeB(R) 

m(x(E)Ay(E)) = 0, 

where aAb = (a A b1) v (a1 A b) (a, beL). 

Lemma 3.1. Let x, yeX(Q). Then x ~ y [m], y -̂  z[m] imply x ~ z [m]. 
Proof . We have m(x(E) Ay(E)) = m(x(E) A aAy(E) A a). But R(x A 

A a) u R(y A a) u R(z A a) cz Q A a. The statements follows from the proper
ties of the symmetric difference on a Boolean-cr-algebra. (Q.E.D.) 

Lemma 3.2. For x, yeX(Q), x ~ y [m] ifffx =fy a.e. [mh], (where mh(E) = 
= m(h(E))Jor all Ee3F). 

Proof . We have 

m(x(E) Ay(E)) = m(x(E) A aAy(E) A a) = 

= m(h(f-\E))Ah(f~\E))) = mh(f:\E)Af;\E)). 

It was shown by S. Gudder and J. Zerbe [10] thatf, =fy a.e. [mh] iffmh(f-\E) A 
Af~\E)) = 0 for all EeB(R). (Q.E.D.) 

Lemma 3.3. Let x, yeX(Q) and g be any Borel real function. Then 
(/) h({coen\fx + y=fK+fy})=l; 

(«) h{{coer2|j; x(ta) = gtfAa))}) = 1; 
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(I/O h({coeQ\fxv(co) =fx((o).fy(co)}) = 1. 
Proof. (0 We have fx + yh(E) = (x + y) A a(E) = (x A a + y A a)(E) = 

= fxoh(E) +fyoh(E) = (fx +fy)oh(E) for any EeB(R). It means that 

h({coeQ\fx + y(co) =fx((o) +fy(a>)}) = 1. 

(ii)fgoxoh(E) = gox(E) A a = x(g~\E)) A a = fxoh(g~\E))) = gofxoh(E) 
for any EeB(R). 

(Hi) follows from (/) and (ii). (Q.E.D.) 
Let x be an observable on Q such that \m(x)\ < oo. For be Q let us denote by 

the symbol x dm the following integral 

x dm = rm(x(dr) A b). 

The integral on the right side exists, because m(x(E) A b) = m(x(E) A b A a) = 
= m(x A a(E) A b A a) = mh(f~\E) n B), where h(B) = b A a, ^ e f . There
fore 

-Í rm(x(dr) A Í ) = rmh(fx\dr) r\B) = fx(r)mh(dr). 

Especially for b = 1, x dm = rm(x(dr)). 

Lemma 3.4. For any xeX(Q) and be Q 

\ x dm = x-xz, dm = rm(x-xh(dr)). 

Proof. We have 

\ x dm = J fx dmh = I XB'/X dmh. 

We have XB°h({\}) = h(B) = b A a = xb A a({\}) and *W<({0}) = h(Bc) = 
= b1 A a = xb A a({0}). Then xb ~ ^fl. From this we obtain 

XB-fx dmh = tmh((fx-XB)~X (dt)) = I tm((x-xh) A a(dt)) = 

= \xxhdm. (Q.E.D.) 
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Lemma 3.5. Let n be a finite measure on Q. If n <̂  m, there is an observ-
ables y on L, >><-•£, for any beQ, such that R(x) A a cz Q A a and for any 

xGX(Q), \ x dn = x-y dm. 

Proof. Let xeX(Q). We have 

x d/i = j m(x(dř)) = j tnh(f-\dt)\ 

where nh(B) = n(h(B)), Be^ (h(B) = b A a, feefi). If m/;(B) = 0, then 
m(h(B)) = 0 implies n(h(£)) = 0. But rz(/z(B)) = nh(B) and from wA <̂  mh. By the 
Radon-Nikodym theorem there is a function g: Q^> R, J^-measurable, such 

that nh(B) = g dnh. Put y = goh v x0 A a1. Then j is an observable on L 

and R(y) A a = R(g°h) a Q A a. Moreover, y<->x for any xeX(Q). Now we 
have 

Jдгd.-.JЛ dw A = g-fxdmh í- >- dm. (Q.E.D.) 

Let {x„}x
=, cz AX0). We say that x„ -»• * a.e. [m] if 

\n=\k = n J 

for all s > 0. We say that x„ -• x in L^-mean (xn -* JC) if m(\xn — x\p) -> 0 [8]. 

Lemma 3.6. Lel {x„}*=,, x c: X(Q). 
(0 x„ -• x a.e. [m] l^/Vw ->/v a.e. [mA]; 

(//) x„ -• x (^/Vn ->/v in Lp(Q &9 mh). 
Proof. (/) We have 

m ( V A f e " x)[-e9 €]) = m ( V /\(xk A a - x A a)[-£, e]j = 
i * = ./ = 1 k = i 

=m„ i u n (4 - f r ! [-«, «i = M u n {'140 -̂ cf> < ^ 
vi = 1 it = 1 / \ i = 1 k = 1 

The last expression equals 1 iff/v ->fx a.e. [mh]. 

(H) 

-Í ш ( K - x | " ) = řw(K-x|Чdř)) = |í|p/łi((jc„ л Ű - Л : л ö)(dř)) = 
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= I \t\pmh((fXn -/)"»(dt)) = \tmh((\fn - / I T 1 (dt)) = 

\fXn{t)-fx(t)\
pmh(dt). 

The last expression equals 0 iff/v ->/v in Lp(Q, J% mh). (Q.E.D.) 

4. Conditional expectation 

Let P c: Q be a sublogic. We define a conditional expectation with respect 
to P as follows. 

Definition 4.1. Let xeX(Q). We say that an observable y on Q is a conditional 
expectation of x with respect to P if 

(/) R(y) A a cz P A a; 

(//) x dm = y dm for all be P. 
Jb Jb 

Any observable y, which satisfies (/), (//) is called a version of conditional 
expectation. The case of a = 1 (i.e. Q and P are Boolean-cr-algebras) was studied 
in [12]. For any xeX(Q) this definition is a restriction on Q of the definition of 
a conditional expectation of x with respect to P relativized by a in the state m 
(Em(x/P9 a)), which has been studied in [14]. Because we have a fixed m and a, 
we write E(x/P) in the sequel. 

Theorem 4.1. To any x e X(Q) there is a version of conditional expectation, then 
y ~ z [m]. 

Proof. Since xeX(Q) then x A a is bounded on L{0a]. T h e n / is boun
ded. Put F0 = {Be&\h(B)eP A a). Since F0 is a sub-a-algebra of & then there 
is a F0-measurable function g: E(fx/F0) which is bounded [2]. Put y = goh v 
v a1 A x0. R(y) A a c P A a and y is a bounded observable. Let beP and 
/?£ ^ be such that h(B) = b A a, clearly -#eF0. Now we have 

X dm = / dm = g dm = y dm. 
JЬ JB ' Jв JЬ 

If y, z are versions of conditional expectation E(x/P), then their functional 
representations / , / are versions of E(fx/F0). This implies fy=f2 [mh] and 
therefore y ~ z [m]. (Q.E.D.) 

Corollary 4.1.1. (/) If aeQ, xeX(Q), then there is a version of conditional 
expectation of x which belongs to X(Q); 

(//) IfaeP, xeX(Q); then there is a version of conditional expectation of x 
which belongs to X(P). 
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In what follows we shall write x = y if x ~ y [m]; i.e. fx =f a.e. [mh]. Then 
for example, xa = xx if ae Q. From Proposition 2.9 it follows that if x, y eX(Q), 
then x < i y [m] iff x ^2y [m]. In the following we shall write x ^ y. From 
Corollary 2.9.1 it is obvious that x ^ y iff/, <^fy a.e. [mh]. 

Theorem 4.2. A conditional expectation has the following properties: 
1) IfaeR, then E(ax/P) = aE(x/P). 
2) Ifx, yeX(Q), then E(x + y/P) = E(x/P) + E(y/P). 
3)Ifx^ y, then E(x/P) ^ E(y/P). 
4) Ifx, yeX(Q) and R(x) A a cz P A a, then E(xy/P) = x-E(y/P). 
5) If x, ^ x2 ^ ..., x belong to X(Q) and xn-+x a.e. [m], then E(xn/P) -> 

-> E(x/P) a.e. [m]. 
6) Ifp>\9 then \E(x/P)\p ^ E(\x\p/P) (xeX(Q)). 

p P 

7) If xu x2, ..., xeX(Q) and xn -> x, then E(xn/P) -> E(x/P). 
Proof. Follows from the fact that x ~fx9 E(x/P) ~ E(fx/F0) and from the 

properties of £(./F0) ([12], [14], [19]) (Q.E.D.) 

5. Characterization of conditional expectation 

In what follows we shall suppose that ae Q. Let Y(Q) be subset of X(Q) such 
that xe Y(Q) if x ^ 0. Due to Corollary 2.9.1, it is clear that Y(Q) is closed 
under the formulation of the product and the sum of observables. It is easy to 
see that x ^ 0 iff/ ^ 0 [mh]. 

Let T be a transformation of Y(Q) into Y(Q) satisfying the following con
ditions: 

T\) For x,ye Y(Q), a>0,p>0 T(ax + Py) = aT(x) + pT(y). 
T2) For x,ye Y(Q) T(x- T(y)) = T(x)-T(y). 
T3) Ifxx, x2, ..., xe Y(Q), xn-+x a.e. [m], xn ^ xn+lfor each n, then T(xn) -> 

-> T(x) a.e. [m]. 
By Theorem 4.2 and Corollary 4.1.1 the transformation which transfers x to 
E(x/P) is a transformation of Y(Q) into Y(Q) satisfying T\), T2), T3). 

Lemma 5.1. Ifx,ye Y(Q) and x^y, then T(x) ^ T(y). 
Proof. We have x ^ y iff/ ^ fy a.e. [mh]. The transformation T induces a 

transformation Th of the set of all bounded ^-measurable functions/^ 0 a.e. 
K ] on (Q, &) into itself. Indeed, for any element xe Y(Q) there is/v such that 
x ~ fx, where/ ^ 0 a.e. [mh]. Let T(x) = y. We put Th(fx) =fy. By this definition 
T(x) > T(y) iff Th(fx) > Th(fy) a.e. K ] . Now we have x^y iff/, >fy a.e. K ] . 
But Th(fx) = Th(fy + (fx - / , ) ) = Th(fy) + Th(fx -fy) = Th(fy), because/, - / , ^ 
^ 0 a.e. K ] and then Th(fx -fy) ^ 0 a.e. [mh]. Then we have T(x) ^ T(y). On 
the other hand, to any bounded J^-measurable function/5* 0 a.e. K ] there is 
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an observable xeY(Q) such that x~f. In fact, put x = f o h v a1 A x0. 
(Q.E.D.) 

Lemma 5.2. Denote byZ = {xe Y(Q)\ T(y)-x = T(x-y)for all ye Y(Q)}. Then 
the following statements are true. 

1) If x, yeZ9 then x + yeZ9 x>yeZ and if x ^ y9 then x — yeZ. 
2) For a > 0, x e Z, we have ax e Z. 
3) If{xX9 xl9 ...} cz Z such that xn ^ xn+lfor all n andxn - • x a.e. [m], where 

xeY(Q)9 then xeZ. 
4) If {xX9 x29 ...} cz Z arzd there is ye Y(Q) such that xn ^ y for all n and9 

moreover, if xn-+ x a.e. [m], then xeZ. 
Proof . Let $ be the set of all bounded immeasurable functionsf^ 0 a.e. 

[mh] for which Th(f-g) = / • Th(g) for any immeasurable bounded function g ^ 0 
a.e. [mh]. By repeating the arguments Shu-Ten Chen Moy — if we restrict our 
considerations to bounded functions only — we can prove that the following 
statements hold: 

1') If g\ - gi e <?, then g, + g2 e <? and g, • g2 e <f, and if g, ^ g2 a.e. [mj, then 
g2-gxeS. 

T) If a > 0, geS9 then ageS. 
3') If {gl9 g2, ...} cz <f, g„ s g a.e. [/wj (where g is bounded), then ge<?. 
4') If {g1? g2, ...} cz $9 gn -»g a.e. [mh] and there is a bounded function k for 

which gn ^ k a.e. [mj for any rz, then ge<f. 

If we pass from functional representation to observables, we obtain 1), 2), 
3), 4). (Q.E.D.) 

Lemma 5.2. Ifxe Y(Q), then T(x)eZ. 
Proof . Follows from T2). (Q.E.D.) 

Lemma 5.3. Define P = {deL\xdeZ}. Then P is a sublogic of Q. 

Proof . If xxeZ9 then l e P . Let deP. Then xd± = xx — xdeZ. This im
plies by Lemma 5.2.1 that d1eP. 

Let d, beP\ then xd9 xbeZ and xd~ %D, xb~ XB> where D9 BetF and 
h(B) = b A a9h(D) = d A a. Then^-x^, - XB'XD = *BnD and ; ^ n D ~ xdAb. But 
xd-xbeZ according to Lemma 5.2.1; then d A beP. Then also dA be P. By 

n 

induction it can be proved that {dl9 ..., dn} cz P implies \J dteP. 
i= 1 

Without loss of generality we can assume that {dl9 d2, ...,} cz P are mutually 
orthogonal elements. Denote by yn = xd{ v v d for all n. It is sufficient to prove 
that yn -* xv</ a.e. [m], (y„ ^ >>„ +, for all n). Put x = xyd. Because dn<-*dm for 

all ri, m there is an observable z such that {dl9 d2, ...} cz R(z). Suppose {B]9 Bl9 
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...} <= B(R), z(B„) = d„ and Z>„ = J Bh D = IJ B„ = \J Dn. Put /„ = XD 
/ = 1 n rc 

f= */>• We obtain x =f°z, j„ = f„°z. Hence 

m (lim (x - y„) [ - £, £]) = m. (lim (f - f„)~' [ - s, e\). 

Consider £ ^ 1. Then 

m2(lim (f-fny
l[-£, £]) = m,_(R) = 1. 

Further, if £ < 1, then 

m.(lim (f-fn)-'[-£, £]) = m,(\im ^ . ( { O } ) ) = 

= mz(lim {t\xD-Dn(0 = 0}) = m_.(lim DcvDn)mz(R) = 1. 

Then x e Z . Thus \Jd„eP. (Q.E.D.) 
n 

Corollary 5.3.1. (i) For all xe Y(Q) we have R(T(x)) A a cz P A a. 
(ii) Since xa = x] and 1 e P, we have aeP. 

Theorem 5.5. Let T be a transformation of the set Y(Q) into Y(Q) satisfying 
Fl), P2), P3); then T is of the form T(x) = E(xy/P), where y ^ 0 such that 

Proof. Define /?: dv T(xd) dm, de Q. Then B is a measure on Q by 

Tl), T2), T3), and if m(b) = 0 (beQ), then x„ = x0. And 

T(xb) dm = T(x0) dm = T(x0 xx) dm = x0- T(x^) dm = 0. 

so that P <^m. Moreover (3(a) = /3(\). By Lemma 3.5, there is an observable y, 
y ^ 0 and y<^Q such that for xe Y(Q) 

xdß= x-y dm. 

Let {au ..., an} cz R (a, ^ 0 for all i), {£,, ..., Bn} cz &, BtnBj = 0, for i ^j 
n 

and A (-8,) = bt A a, ({bu ..., b„} cz Q). If we p u t / = X! a.ZB,, then/oh v a1 A 
л x 0 є Y ( ö ) a n d 

J Г ( £ <*.*_,,) dm = £ aŕ j * Г(xft/) dm = £ a, 7i(j„) dmA = 

n Ç n Ç n 

= £ a,- -T(*d A a) dm = £ a, -T(*6 J dm = £ a,£(b, A a). 
/ = î J / = î J / = i 
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As 

P(bt A a) = j Xhi A . dp, and p(ax) = 0, 

X". xb,,adp= £ a, | xA.d/J, 

i.e. r ( Z <*.*»,) d w = ( X a.x*,) d!3- s i n c e any -̂ "-measurable function / 

can be described as a limit of a nondecreasing sequence of a simple functions, 
we have for all xeX(Q) 

J T(x) dw = I T(fx°h v ax A X0) dw = | fx°h v ax A X0 d>3 = 

= xdj3= x - j dw. 

Let deP; then 

T(x) dw = xd- T(x) dm = T(xd-x) dm = xd-x->>dw = x->> dw. 

Because R(T(x) A a c f> A a we have E(x-y/P) = T(x). (Q.E.D.) 
Let us consider a transformation s of X(Q) into AXQ) with the following 

properties: 
si) a, PeR S(ax + Py) = aS(x) + pS(y)for x, yeX(Q). 
52) S(x-S(y)) = S(x)-S(y)for x, yeX(Q). 
53) Ifx„ ± x, then S(x„) ± S(x), ({x„}»= „ x c X(Q)). 
s4) w(|s(x)|) < w(|x|), (xe X(Q)). 

AS before, x„ -• x means that w(|x„ - x|) -> 0. Moreover, x„ -• x iff/^ -+fx in 
L, (£2, <F, mh), i.e. f \fa -fx\ dmh - 0. 

Lemma 6.1. Let K = {ye X(Q)\S(xy) = y-S(x),for all xe X(Q)}. Then the 
following holds: 

(0 # > , , yi^K then ayt + Py2eK(a, peR). 
00 yuy2eK implies yry2

eK-
("0 If {yX= i^Ky„±y(ye X(Q)), then yeK. 
Proof. Statements (/), (it) follow immediately from si), s2). To prove 

(Hi) let us observe that for any W,B-i . y, x from X(Q), y„-*y; then x-y„±-

-^x-y. Indeed, y„^y \Sfyn~*fy i n --i(A ^ , »»,,). This implies fyn-fx-+fy-fx in 
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LX(Q, 3F, mh), and then x-yn-*x-y. Now, let {y„}?=] cz K and yn->y. Then 

S(x>yn) -^ S(x-y) by S3). Hence S(x-y) for any xeX(Q), i.e. yeK. (Q.E.D.) 

Lemma 6.2. Define V = {deL\xde K}. Then V is a sublogic of L. 
P r o o f . Similarly, as in Lemma 5.3 we prove that if de V, then dLe V and 

if {dl9 ..., dn} a V, then vd ,e V. Suppose now that {dl5 d2, ...} cz Vare mutually 
orthogonal elements. We have 

m(\Xvdn ~ xb)) = mh(\xD„D)), 

where XD°^ = xvdnA a, XD„° h = xhn A a,bn = \J d; (i.e. h(D) = (v dn) A a = 
/ = i \ 

= h(uDn), h(Dn) = \/dlAa\ But lim mh(\xD.Dn\) = mh(\Xo\) = 0- Then 
, = i / 

vd„eV. (Q.E.D.) 

Corollary 6.2.1. Fol all xeX(Q) we have R(S(x)) A a cz V A a. 

Lemma 6.3. IfyeX(Q) and R(y)e V, then yeK 
P r o o f . If y = xb, then xbeK. Linear combinations of proposition ob-

servables are in K. Any bounded observable can be written as a limit in Lx of 
a sequence of linear combinations of proposition observables, which implies 
that yeK. (Q.E.D.) 

Theorem 6.4. IfS is a transformation on X(Q) into X(Q) satisfying SI)—S4) 
and S(xx) = JC„ then S(x) = E(x/V) for all xeX(Q). 

P r o o f . Put t](d) = m(S(xd)) (deQ). Then 7/(1) = J * , dm = 1. Let 
{6,},°°= i c 2 , be mutually orthogonal. Put b = v b,. Then 

n , » / n \ 

Z *A, "> Z ^ = *v/>. K = V M ' 
i = l /= 1 \ /= 1 / 

1 
which implies S(xCn) -• S0O- Therefore r/( vb„) = v 1/(b„). Then r/ is a cr-add-
itive function on Q. Further |//(b)| = \m(S(xb))\ < m(\S(xb)\) ^ mflxjj) = mh(xB), 
where h(b) = b A a. Now we have mh(xB) = m(b). Then m(b) ^ |1/(b)| ^ l/(b), 
for all beQ. If m(b) > r/(b) and ^ ( b 1 ) ^ //(b1), then 1 = m(b) + m(bL) > 
> //(b) + //(b1) = 1. Then m(b) = r/(b) for all beQ. This fact implies 7/(b) = 
= m(x^) for all beQ. 

If {«!, ..., a j cz K, {b,, ,.., bj cz Q, then 

ш 
5 ( І «.**,)) = î яMЅÍ**)) = ( І a.**,) • 
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Let beV\ then 

S(x) dm = S(x)-xb dm = S(x-xb) dm = x-xh dm = \ x dm, 

l.Є. 

s(x) = E(x/V). (Q.E.D.) 

We note that the sublogic V (resp. P) is not uniquely defined. In fact, if P,, 
P2 are sublogics of Q such that Px A a = P2 A a, then the conditional expecta
tions with respect to P! and P2 are equal to m for any x e X(Q). Also, if a $ Q, we 
put Q0 = {b A a v c A aL\b, ceQ}. Then Q0 is a sublogic of L, ae Q0, and for 
any xe X(Q), the functional representation fv depends only on Q A a = Q0 A a. 
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УПОРЯДОЧЕНИЕ НАБЛЮДАЕМЫХ И ХАРАКТЕРИСТИКА УСЛОВНОГО 
МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ 

ОГ§а ^ п а з ш у а 

Резюме 

В первой части этой статьи рассматриваются два способа упорядочения наблюдаемых и 
исследуются отношения «релативных условных ожиданий» для частично компатибильных 
наблюдаемых на квантовой логике. Эти «релативные ожидания» были определены в [14]. 
Главный результат — характеристика «релативных условных ожиданий» в смысле Шу-Тен 
Хен Мой [19] на квантовой логике. 
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