Mathematic Slovaca

Olga Nánásiová
Ordering of observables and characterization of conditional expectation

Mathematica Slovaca, Vol. 37 (1987), No. 4, 323--340

Persistent URL: http://dml.cz/dmlcz/129507

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ORDERING OF OBSERVABLES AND CHARACTERIZATION OF CONDITIONAL EXPECTATION

OLGA NÁNÁSIOVÁ

In the first half of this paper we study various ways of the ordering of observables. We analyse the relationship between two different definitions of the ordering of observables. In the second half we analyse properties of "relative conditional expectations" for partially compatible observables on quantum logics. These "relative conditional expectations" have been introduced in [14]. The main result is a characterization of "relative conditional expectations" in the sense of Shu-Ten Chen Moy [19] in a quantum logic.

Preliminaries

Let L be a logic, (= an orthomodular σ-lattice). The elements $a, b \in L$ are orthogonal $(a \perp b)$ if $a \leqslant b^{\perp}$. The elements $a, b \in L$ are compatible $(a \leftrightarrow b)$ if $a=(a \wedge b) \vee\left(a \wedge b^{\perp}\right), b=(a \wedge b) \vee\left(a^{\perp} \wedge b\right)$. A subset $K \subset L$ is compatible if $a \leftrightarrow b$ for any $a, b \in K$ (see [20]).

Definition 1.1. A subset $M \subset L$ is partially compatible with respect to an element $a \in L$ (M is p.c. [a]) if
(i) $M \leftrightarrow a$ (i.e. $b \leftrightarrow a$ for all $b \in M$);
(ii) $M \wedge a=\{b \wedge a \mid b \in M\}$ is a compatible subset of L.

Let $a \in L, a \neq 0$. The set $L_{[0, a]}=\{b \in L \mid b \leqslant a\}$ is a logic with the orthocomplementation defined by $b^{*}=b^{\perp} \wedge a$.

A set $M \wedge a$ is compatible in L iff it is compatible in $L_{[0, a]}$.
If $F=\left\{a_{1}, \ldots, a_{n}\right\} \subset L$, put

$$
\operatorname{com}(F)=\bigvee_{d \in D^{n}} a_{1}^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}}
$$

where $D=\{0,1\}, d=\left(d_{1}, \ldots, d_{n}\right), a^{0}=a^{\perp}, a^{1}=a$. The set F if p.c. $[\operatorname{com}(F)]$. F is compatible iff $\operatorname{com}(F)=1$.

Let $M \subset L$ be any subset. If there is $\wedge\{\operatorname{com}(F) \mid F$ is a finite subset of $M\}$ (briefly $\operatorname{com}(M)$), then the element $\operatorname{com}(M)$ is called the commutator of the set M. If $\operatorname{com}(M)$ exists, then M is p.c. [$\operatorname{com}(M)$] (see [17], [18]).

A mapping $x: L_{1} \rightarrow L_{2}$ between logics L_{1}, L_{2} is called a σ-homomorphism if it satisfies the following conditions: (i) $x\left(1_{L_{1}}\right)=1_{L_{2}}$; (ii) if $a, b \in L_{1}, a \perp b$, then $x(a) \perp x(b)$; (iii) $\left\{a_{i}\right\}_{i=1}^{x} \subset L_{1}$ are mutually orthogonal; then $x\left(\vee a_{i}\right)=\vee x\left(a_{i}\right)$. A σ-homomorphism $x: B(R) \rightarrow L$ is called an observable on $L(B(R)$ is the σ-algebra of Borel sets on the real line). If f is a Borel measurable function on R and x is an observable on L, then $f \circ x$ (for $E \in B(R): f \circ x(E)=x\left(f^{-1}(E)\right.$) is also an observable on L. The range $R(x)=\{x(E) \mid E \in B(R)\}$ is a Boolean-sub-σ-algebra of L. The spectrum $\sigma(x)$ of an observable x is the smallest closed set $C \subset R$ such that $x(C)=1$. The observable x is bounded if $\sigma(x)$ is compact. For any $a \in L$, there is an observable x_{a} such that $\sigma\left(x_{a}\right) \subset\{0,1\}$ and $x_{a}(\{1\})=a$. The observable x_{a} is called a proposition observable.

If x is an observable, and $a \in L$, we write $x \leftrightarrow a$ if $x(E) \leftrightarrow a$ for any $E \in B(R)$. If x, y are observables, then $x \leftrightarrow y$ iff $x(E) \leftrightarrow y(F)$ for all $E, F \in B(R)$. If $x \leftrightarrow a$, then the map $x \wedge a: B(R) \rightarrow L_{[0, a]}(x \wedge a(E)=x(E) \wedge a, E \in B(R))$ is an observable on a logic $L_{[0, a]}$.

Observables x, y are said to be simultaneous $(x \leftrightarrow y)$ if $R(x) \leftrightarrow R(y)$ (i.e. $a \leftrightarrow b$ for any $a \in R(x), b \in R(y))$. Observables x, y are p.c. $[a](a \in L, a \neq 0)$ if $R(x) \cup$ $\cup R(y)$ is p.c. [a].

The mapping $m: L \rightarrow R$ is called a measure on L if (i) $m(0)=0$; (ii) $\left\{b_{i}\right\}_{i=1}^{\infty} \subset$ $\subset L$ are mutually orthogonal elements; then $m\left(\vee b_{i}\right)=\sum_{i} m\left(b_{i}\right)$. If $m: L \rightarrow[0,1]$ and $m(1)=1$, then the measure m is called a state on L. Let m, n be measures on L. If $m(b)=0$ implies $n(b)=0$, then we write $n \ll m$ (n is absolutely continuous to m).

Let x be an observable on L and let m be a state on L. Then $m_{x}: E \mapsto$ $\mapsto m(x(E))$ for $E \in B(R)$ is a probability measure on $B(R)$.

The expectation of x in a state m is defined by the formula

$$
m(x)=\int x \mathrm{~d} m=\int \lambda m_{x}(\mathrm{~d} \lambda)
$$

if the later integral exists. If f is a Borel function, then

$$
m(f(x))=\int f(\lambda) m_{x}(\mathrm{~d} \lambda)
$$

It is obvious that

$$
m(x)=\int_{\sigma(x)} \lambda m_{x}(\mathrm{~d} \lambda)
$$

An observable x on L is called integrable in a state m if $m(x)$ exists and it is finite.

If $\sigma(x) \subseteq[0, \infty)$, then x is called a positive observable (abbr. $x \geqslant 0$). If $m(x([0, \infty)))=1$, then we write $x \geqslant 0[m](m$ is a state on $L)$.

Let M be a set of states on L. The pair (L, M) is called a full system (abbr.f.s.) if $m(a) \leqslant m(b)$ for any $m \in M$ implies $a \leqslant b$. The pair (L, M) is a quite full system (abbr. q.f.s.) if $\{m \in M \mid m(a)=1\} \subset\{m \in M \mid m(b)=1\}$ implies $a \leqslant b$. S. Gudder [6] showed that if (L, M) is a q.f.s., then (L, M) is an $f . s$. with the following property: If $a \neq 0, a \in L$, then there is $m \in M$ such that $m(a)=1$.

Let (L, M) be q.f.s. We say that L has the property U if $m(x)=m(y)$ for all $m \in M$ implies $x=y$, where x, y are bounded observables on L. We say that L has the property E if for any pair x, y of bounded observables there is a unique bounded observable z such that $m(z)=m(x)+m(y)$ for any $m \in M$. The observable z is called the sum of observables x, y and we write $z=x+y$. For details see [3], [6], [4], [16]. A pair (L, M) is called a sum logic if it is q.f.s. and L has the properties U and E.

For bounded summable observables let us define the Segal "product" by putting

$$
x \cdot y=\frac{1}{2}\left((x+y)^{2}-(x-y)^{2}\right)
$$

Note that if $x \leftrightarrow y$, then there are Borel measurable functions f, g and an observable z such that $f \circ z=x, g \circ z=y$ (see [20]). Then we have

$$
x \cdot y=\frac{1}{4}\left((f+g)^{2}-(f-g)^{2}\right) \circ z .
$$

Hence for any $E \in B(R)$, we obtain the equality $x \cdot y(E)=(f \circ z \cdot g \circ z)(E)=$ $=(f \cdot g) \circ z(E)$. Thus we have $x \cdot y=(f \cdot g) \circ z$.

2. Order properties of observables

Recall first that the ordering of observables was considered in [1], [21], [10]. D. Catlin [1] gave the definition of spectral resolution e^{x} such that for each $r \in R$, $e^{r}(r)=x(-\infty, r)$ and $x \leqslant y$ iff $e^{x} \geqslant e^{y}$. S. Gudder and J. Zerbe ([10]) introduced an ordering in the following way. One writes $x \leqslant y$ if for each $r \in R x(r, \infty) \leqslant$ $\leqslant y(r, \infty)$. Moreover, they introduced an ordering of observables "modulo" a state m in the following way: $x \leqslant y[m]$ if $m(x(r, \infty)) \leqslant m(y(r, \infty))$ for all $r \in R$. They proved the following theorem.

Theorem 2.1. (Lemma 3.5., [10]). If $x \leqslant y[m]$ and $m(x)$, $m(y)$ exist, then $m(x) \leqslant m(y)$.

If $x \leqslant y[m]$ in the sense of S. Gudder and J. Zerbe and $x \leftrightarrow y$ and if we put $x=f \circ z, y=g \circ z$, the inequality $f \leqslant g$ a.e. [m_{z}] need not hold as the following example shows.

Example 2.1. Let $\Omega=\{0,1\}, L=2^{\Omega}$ and $f(\omega)=\omega$ for $\omega \in \Omega, g(0)=1$, $g(1)=0$. Let $x=f^{-1}, y=g^{-1}$. It is clear that $x \leftrightarrow y$. Let m be a state determined by putting $m(\{1\})=1 / 3$.

If $r \geqslant 1$, then $m(x(r, \infty))=0=m(y(r, \infty))$. If $r \in[0,1)$, then $m(x(r, \infty))=$ $=m(\{1\})=1 / 3, \quad m(y(r, \infty))=m(\{0\})=2 / 3$. If $r<0$, then $m(x(r, \infty))=$ $=m(y(r, \infty))=1$. Hence $x \leqslant y[m]$ in the sense of S. Gudder and J. Zerbe. On the other hand, $x=f \circ x_{1}, y=g \circ x_{1}$. If $f \leqslant g$ a.e. $\left[m_{x_{1}}\right]$, then $m_{x_{1}}(\{\omega \in \Omega \mid f>g\})=$ $=0$. But $m_{x_{1}}\left(\{\omega \in \Omega \mid f>g)=1 / 3\right.$. Hence $f \leqslant g\left[m_{x_{1}}\right]$.

This example contradicts the remark following Theorem 3.7 in [10], by which $m(x(r, \infty)) \leqslant m(y(r, \infty))$ for all $r \in R(x \leftrightarrow y)$ would imply $y-x \geqslant 0[m]$.

For that reason we define the ordering of observables in the following way:
Definition 2.1. Let L be a logic, x, y be some observables on L. We define \leqslant_{1} for observables as follows:
(i) if m is a state on L, then $x \leqslant_{1} y[m]$ if for each $r \in R$

$$
m(x(-\infty, r) \wedge y(-\infty, r))=m(y(-\infty, r))
$$

(ii) $x \leqslant 1 y$ if $x(-\infty, r) \geqslant y(-\infty, r)$ for all $r \in R$.

It is easy to see that $x \leqslant 1 y$ iff $x \leqslant y$ as defined by D. Catlin [1].
Definition 2.2. Let (L, M) be a sum logic, x, y be summable observables. We define \leqslant_{2} as follows:
(i) if $m \in M$, then $x \leqslant_{2} y[m]$ if $y-x \geqslant 0[m]$;
(ii) $x \leqslant_{2} y$ if $y-x \geqslant 0$.

In what follows the indices 1,2 will be omited if no misunderstanding is likely to arise.

It is easy to see that $x \leqslant_{1} y$ implies $x \leqslant_{1} y[m]$ for any m and $x \leqslant_{2} y$ implies $x \leqslant_{2} y[m]$ for all $m \in M$. Conversely, if (L, M) is $f . s$., then $x \leqslant_{1} y[m]$ for all $m \in M$ iff $x \leqslant 1 y$.

N . Zierler ([21]) proved the following theorem (see also [16]).
Theorem 2.2. Let (L, M) be q.f.s. and $x \leftrightarrow y$. Then $m(x) \leqslant m(y)$ for all $m \in M$ iff whenever f, g are Borel function and z is an observable such that $x=f \circ z$, $y=g \circ z$, then $f \leqslant g$ a.e. $\left[m_{z}\right]$ for all $m \in M$.

Proposition 2.3. Let (L, M) be q.f.s. and x be bounded observable on L. Then $m(x) \geqslant 0$ for any $m \in M$ iff $x \geqslant 0$.

Proof. If $x \geqslant 0$, then $\sigma(x) \subset[0, \infty)$ and so we have

$$
\left.m(x)=\int_{\sigma(x)} \lambda m_{x}(\mathrm{~d} \lambda)=\int_{\left[0 . x_{)}\right)} \lambda m_{x}(\mathrm{~d} \lambda) \geqslant 0 \quad \text { (for all } m \in M\right)
$$

Let $m(x) \geqslant 0$ for any $m \in M$ and $x \neq 0$. Then there is $A \in B(R)$ such that
$A \subset(-\infty, 0)$ and $x(A) \neq 0$. Therefore is a state $m \in M$ such that $m_{x}(A)=1$. We thus obtain

$$
m(x)=\int_{A} \lambda m(x(\mathrm{~d} \lambda))=\int \chi_{A}(\lambda) \cdot \lambda m(x(\mathrm{~d} \lambda))<0 . \quad \text { (Q.E.D.) }
$$

Let us note that Proposition 2.3 also follows from Lemma 3 in [21].
Corollary 2.3.1. Let (L, M) be a sum logic, then
(i) $x \leqslant_{2} y, y \leqslant_{2} x$ implies $x=y$;
(ii) if $x \geqslant 0, y \geqslant 0$, then $x+y \geqslant 0$.

Proposition 2.4. Let (L, M) be q.f.s. and $x \leftrightarrow y$. Then
(i) $x \leqslant_{1} y[m]$ iff $x \leqslant{ }_{2} y[m], m \in M$;
(ii) $x \leqslant_{1} y$ iff $x \leqslant_{2} y$.

Proof. Since $x \leftrightarrow y$, there is an observable z and Borel functions f, g such that $x=f \circ z, y=g \circ z$.
(i) Let $x \leqslant 1 y[m]$. It means that for each $r \in R$

$$
\begin{gathered}
0=m(y(-\infty, r))-m(x(-\infty, r) \wedge y(-\infty, r))= \\
=m(y(-\infty, r) \wedge x[r, \infty))=m_{z}(\{\omega \mid g(\omega)<r, f(\omega) \geqslant r\}),
\end{gathered}
$$

(for all $r \in R$). Hence $0=m_{z}(\{\omega \mid g(\omega)<f(\omega)\})$ (i.e. $f \leqslant g\left[m_{-}\right]$). On the other hand, if $x \leqslant_{2} y[m]$, we have $y-x \geqslant 0[m]$. And then $0=m((y-x)(-\infty, 0))=$ $=m_{z}\left((g-f)^{-1}(-\infty, 0)\right)=m_{z}(\{\omega \mid f(\omega)>g(\omega)\})$ i.e. $f \leqslant g$ a.e. $\left[m_{\mathrm{z}}\right]$.
(ii) $x \leqslant_{1} y[m]$ for all $m \in M$ iff $x \leqslant_{1} y$. Then we have $x \leqslant_{1} y[m]$ for all $m \in M$ iff $x \leqslant 2 y[m]$, for all $m \in M$. Using Proposition 2.3 we have $y-x \geqslant 0$. (Q.E.D.)

Proposition 2.5. Let (L, M) be q.f.s. The following statements as equivalent:
(i) $m\left(x_{0}(r, \infty)\right) \leqslant m(x(r, \infty))$ for all $r \in R$;
(ii) $x_{0} \leqslant 1 x[m]$;
(iii) $x_{0} \leqslant_{2} x[\mathrm{~m}]$;
(iv) $x \geqslant 0[m]$.

Proof. Since we have $x_{0} \leftrightarrow x$, it is obvious that (ii) is equivalent to (iii). Let $x_{0} \leqslant{ }_{2} x[m]$. Then $m\left(\left(x-x_{0}\right)[0, \infty)\right)=1$. But $x_{0}=f \circ x$, where $f(r)=0$ for all $r \in R$. Let g be the identity function on R. Then

$$
\begin{gathered}
1=m\left(\left(x-x_{0}\right)[0, \infty)\right)=m((g \circ x-f \circ x)[0, \infty))= \\
=m_{x}\left((g-f)^{-1}[0, \infty)\right)=m_{x}(\{\omega \mid g(\omega) \in[0, \infty)\})=m(x[0, \infty)) .
\end{gathered}
$$

Then we have $x \geqslant 0[m]$. It means that (iii) implies (iv).
Let us suppose that $x \geqslant 0[m]$. If $r<0$, then we have $m\left(x_{0}(r, \infty)\right)=1$ and $m(x(r, \infty))=1$. If $r \geqslant 0$, then $m\left(x_{0}(r, \infty)\right)=0$. But $m(x(r, \infty)) \geqslant 0$ for all $r \in R$. It means that (iv) implies (i).

Let $m\left(x_{0}(r, \infty)\right)=m(x(r, \infty))$ for all $r \in R$. Let $r_{n} \in R$ be taken such that $r_{n} \in\left(-1 / 2^{n},-1 / 2^{n+1}\right)$. We obtain $x_{0}\left(r_{n}, \infty\right)=1$ for all n and therefore $m\left(x\left(r_{n}\right.\right.$, $\infty)$) $=1$ for all n. Hence for any $n m_{x}\left(-\infty, r_{n}\right)=0$. Now we have $\lim _{n \rightarrow \infty} m_{r}$ $\left(-\infty, r_{n}\right)=m_{x}(-\infty, 0)=0$ and $m(x[0, \infty))=1$. It means $x \geqslant 0[m]$ and so (i) implies (iii). (Q.E.D.)

Note that $\leqslant_{1}[m], \leqslant_{1}, \leqslant_{2}[m], \leqslant_{2}$ are reflexive and $\leqslant_{2}, \leqslant_{1}$ are transitive. If x, y are observables on L such that $x \leqslant_{1} y$ and $y \leqslant_{1} x$, then $x=y$. In fact, let $x \leqslant_{1} y, y \leqslant_{1} x$; then for each $r \in R, x(-\infty, r)=y(-\infty, r)$. Hence for $r_{1}, r_{2} \in R$: $r_{1}<r_{2}$. we have $x\left(\left[r_{1}, r_{2}\right)\right)=y\left(\left[r_{1}, r_{2}\right)\right)$. But if two observables are equal on all generators for Borel sets, then they are indentical (see e.g. D. Catlin [1]). Since a sum logic has the property U, we have $x \leqslant_{2} y, y \leqslant_{2} x$ iff $x=y$.

Proposition 2.6. If x, y are observables on L, and if there is $r_{0} \in R$ such that $\sigma(x) \subset\left(-\infty, r_{0}\right), \sigma(y) \subset\left[r_{0}, \infty\right)$, then $x \leqslant_{1} y$.

The proof is obvious.
From Proposition 2.6 it follows that $x \leqslant 1 y$ does not imply $x \leftrightarrow y$. It is sufficient to take the observables $x \leftrightarrow y, \sigma(x) \subset(-x, t), \sigma(y) \subset[t, \infty)(t \in R)$.

From Theorem 2.1 it is obvious that $x \leqslant 1 y$ implies $x \leqslant_{2} y$ on a sum logic. If (L, M) is f.s., then $x \leqslant y[m]$ for all $m \in M$ in the sense of S . Gudder and J. Zerbe iff $x \leqslant 1 y$.

Example 2.2. Let $L=\left\{0,1, a^{\perp}, a, b^{\perp}, b\right\}$, where $a \leftrightarrow b$ and $a \wedge b=$ $=b \wedge a^{\perp}=b^{\perp} \wedge a=b^{\perp} \wedge a^{\perp}=0$. Let us choose states $m_{i}(i=1, \ldots, 4)$ as follows: $m_{1}(a)=0 \quad m_{1}(b)=0.1$
$m_{2}(a)=1 \quad m_{2}(b)=0.1$
$m_{3}(a)=0.9 \quad m_{3}(b)=0$
$m_{4}(a)=0.9 \quad m_{4}(b)=1$.
Then (L, M) is q.f.s. for $M=\left\{m_{1}, \ldots, m_{4}\right\}$. Let $x(\{0\})=a, x(\{2\})=a^{\perp}, y(\{1\})=$ $=b, y(\{3\})=b^{\perp}$. Obviously $x \not{ }_{1} y$. Now we have $m(x)=2 m\left(a^{\perp}\right), m(y)=$ $=m(b)+3 m\left(b^{\perp}\right)$. Hence $m_{1}(x)=2 \leqslant m_{1}(y)=2.9 ; m_{2}(x)=0 \leqslant m_{2}(y)=2.9$; $m_{3}(x)=0.2 \leqslant m_{3}(y)=3 ; m_{4}(x)=0.2 \leqslant m_{4}(y)=1$. We can conclude that $m(x) \leqslant m(y)$ for all $m \in M$ but $x \leqslant_{1} y$.
S. Gudder [6], [9] showed that if (L, M) is $q . f . s ., x, y$ are bounded observables and the spectrum of x has at most one limit point, then

$$
m(x)=m(y) \quad \text { for any } \quad m \in M \quad \text { implies } \quad x=y .
$$

Under the same assumption the implication

$$
m(x) \leqslant m(y) \text { for any } \quad m \in M \Rightarrow x \leqslant 1 y
$$

does not hold, as Example 2.2, shows.

Proposition 2.7. Let (L, M) be q.f.s. and $\sigma(x)=\left\{t_{1}, t_{2}\right\}, \sigma(y)=\left\{r_{1}, r_{2}\right\}$ $\left(t_{1}<t_{2}, r_{1}<r_{2}\right)$. If $t_{2} \leqslant r_{1}$ or $t_{1}=r_{1}$, then $x \leqslant 1 y$ iff $m(x) \leqslant m(y)$ for any $m \in M$.

Proof. Let us put $x\left(\left\{t_{1}\right\}\right)=a, y\left(\left\{r_{1}\right\}\right)=b$. If $t_{2} \leqslant r_{1}$ we can use Proposition 2.6 for $r_{0}=r_{1}$.

Now consider $t_{1}=r_{1}$. Then

$$
m(x)=t_{1}+\left(t_{2}-t_{1}\right) m\left(a^{\perp}\right), \quad m(y)=t_{1}+\left(r_{2}-t_{1}\right) m\left(b^{\perp}\right)
$$

From the assumption we have

$$
\left(t_{2}-t_{1}\right) m\left(a^{\perp}\right) \leqslant\left(r_{2}-t_{1}\right) m\left(b^{\perp}\right)
$$

Let $n \in M$ be such that $n(b)=1$. Obviously, $n\left(a^{\perp}\right)=0$. Hence $n(b)=1$ implies $n(a)=1$. We conclude that $a \geqslant b$.

Let $m \in M$ be such that $m\left(a^{\perp}\right)=1$. Since $b^{\perp} \leqslant a^{\perp}$, we have $m\left(b^{\perp}\right)=1$. It follows that $t_{2} \leqslant r_{2}$. Hence $x \leqslant 1 y$. The converse implication follows from Theorem 2.1. (Q.E.D.)

If (L, M) is a $f . s$. and x, y are proposition observables, then we have $x \leqslant_{1} y$ iff $m(x) \leqslant m(y)$ for any $m \in M$ and moreover $x \leqslant 1 y$ implies $x \leftrightarrow y$ and $x_{0} \leqslant$ $\leqslant x \leqslant x_{1}$ for all proposition observables x.

Let (L, M) be q.f.s. Put $i(x)=\inf \{r \in R \mid r \in \sigma(x)\} . s(x)=\sup \{r \in R \mid r \in \sigma(x)\}$. It is clear that $m(x) \leqslant m(y)$ for all $m \in M$ implies $i(x) \leqslant i(y)$ and $s(x) \leqslant s(y)$. If $x \geqslant 0$ and $x \leqslant 1 y$, then $y \geqslant 0$. If $\sigma(y)=\{t\}$ and $m(x) \leqslant m(y)$ for all $m \in M$, then $x \leqslant 1 y$. Analogically, if $m(x) \geqslant m(y)$ for all $m \in M$, then $y \leqslant_{1} x$.

Let x, y be such observables that x has a point spectrum and $y(\{i(y)\}) \wedge$ $\wedge b \neq 0$ for $b \in R(x) \cap\{0\}^{c}$. Then $m(x) \leqslant m(y)$ for all $m \in M$ iff $x \leqslant 1 y$. Indeed, put $\sigma(x)=\left\{t_{i}\right\}_{i=1}^{x}$. Because $y(\{i(y)\}) \wedge x\left(\left\{t_{j}\right\}\right) \neq 0$ for each j, there is a state $m_{j} \in M$ such that $m_{j}\left(y(\{i(y)\}) \wedge x\left(\left\{t_{j}\right\}\right)\right)=1$. Now we have $m_{j}(y)=i(y), m_{j}(x)=$ $=t_{j}$. From the assumption it follows that $i(y) \geqslant t_{j}$ for all j. Now we use Proposition 2.3 for $r_{0}=i(y)$.

Now we consider a sum logic (L, M) and $a \in L, a \neq 0$ such that, for any summable observables x, y on L, the following conditions are satisfied:
$\alpha)$ if $x \leftrightarrow a, y \leftrightarrow a$, then $x+y \leftrightarrow a$;
β) if $R(x) \cup R(y)$ is p.c. $[a]$, then $(x+y) \wedge a=x \wedge a+a \wedge y$.
For instance, Hilbert space logic $L(H)$ fulfils α), β).
Proposition 2.9. Let (L, M) be a sum logic and $a \in L,(a \neq 0)$ such that $\alpha), \beta)$ are fulfilled. Let $m \in M$ be such that $m(a)=1$. Then for any pair observables x, y on L, with $R(x) \cup R(y)$ p.c. [a] there holds $x \leqslant_{1} y[m]$ iff $x \leqslant_{2} y[m]$.

Proof. Since $x \wedge a \leftrightarrow y \wedge a$, we have $x \wedge a \leqslant 1 y \wedge a[m]$ iff $x \wedge a \leqslant_{2} y \wedge a$ [m]. But $m(x(E) \wedge y(F))=m(x(E) \wedge a \wedge y(F) \wedge a)$ and $m(y(E))=m(y(E) \wedge$ $\wedge a$), for any $E, F \in B(R):$ As $(-\infty, r) \in B(R)$ for each $r \in R$, we have $x \leqslant_{1} y[m]$ iff $x \leqslant_{2} y[m]$. (Q.E.D.)

Corollary. 2.9.1. Let x, y be p.c. $[a], m(a)=1$ and let $x \geqslant 0[m], y \geqslant 0[m]$. Then
(i) $x+y \geqslant 0[m]$;
(ii) $x \cdot y \geqslant 0[m]$;
(iii) if $x \wedge a=f \circ z, y \wedge a=g \circ z$, where f, g are Borel functions and z is an observable on $L_{[0, a]}$, then $x \leqslant y[m]$ iff $f \leqslant g$ a.e. $\left[m_{-}\right]$.

3. Properties of functional representation for p.c. observables

In what follows we shall assume (L, M) to be a sum logic with α), β). Let $Q \subset L$ be a sublogic of L which is p.c. [a] for some $a \in L(a \neq 0)$. From the properties of partial compatibility it follows that $Q \wedge a$ is a Boolean σ-algebra. Let $m \in M$ be such that $m(a)=1$. Denote by $X(Q)$ the set of all bounded observables with $R(x) \subset Q$ and suppose that $x, y \in X(Q)$; then $x+y \in X(Q)$. Let us fix a measurable space (Ω, \mathscr{F}), and a σ-homomorphism h from \mathscr{F} onto $Q \wedge a$, which exists by the Loomis-Sikorsky theorem (see [13], [22]). To any observable x on Q there is an \mathscr{F}-measurable function $f_{\mathrm{r}}: \Omega \rightarrow R$ such that $x \wedge a=f_{x} \circ h$ [20]. We shall write $x \sim f_{x}$.

Definition 3.1. Let $x, y \in X(Q)$. We shall say that $x \simeq y[m](x$ is equal to y modulo m) if for any $E \in B(R)$

$$
m(x(E) \Delta y(E))=0
$$

where $a \Delta b=\left(a \wedge b^{\perp}\right) \vee\left(a^{\perp} \wedge b\right)(a, b \in L)$.
Lemma 3.1. Let $x, y \in X(Q)$. Then $x \simeq y[m], y \simeq z[m]$ imply $x \simeq z[m]$.
Proof. We have $m(x(E) \Delta y(E))=m(x(E) \wedge a \Delta y(E) \wedge a)$. But $R(x \wedge$ $\wedge a) \cup R(y \wedge a) \cup R(z \wedge a) \subset Q \wedge a$. The statements follows from the properties of the symmetric difference on a Boolean- σ-algebra. (Q.E.D.)

Lemma 3.2. For $x, y \in X(Q), x \simeq y[m]$ iff $f_{x}=f_{y}$ a.e. $\left[m_{h}\right]$, (where $m_{h}(E)=$ $=m(h(E))$, for all $E \in \mathscr{F})$.

Proof. We have

$$
\begin{aligned}
& m(x(E) \Delta y(E))=m(x(E) \wedge a \Delta y(E) \wedge a)= \\
= & m\left(h\left(f_{x}^{-1}(E)\right) \Delta h\left(f_{y}^{-1}(E)\right)\right)=m_{h}\left(f_{x}^{-1}(E) \Delta f_{y}^{-1}(E)\right)
\end{aligned}
$$

It was shown by S . Gudder and J . Zerbe [10] that $f_{x}=f_{y}$ a.e. [$\left.m_{h}\right]$ iff $m_{h}\left(f_{\mathrm{r}}^{-1}(E) \Delta\right.$ $\left.\Delta f_{y}^{-1}(E)\right)=0$ for all $E \in B(R)$. (Q.E.D.)

Lemma 3.3. Let $x, y \in X(Q)$ and g be any Borel real function. Then
(i) $h\left(\left\{\omega \in \Omega \mid f_{x+y}=f_{x}+f_{y}\right\}\right)=1$;
(ii) $h\left(\left\{\omega \in \Omega \mid f_{g x}(\omega)=g\left(f_{x}(\omega)\right)\right\}\right)=1$;
(iii) $h\left(\left\{\omega \in \Omega \mid f_{x \cdot y}(\omega)=f_{x}(\omega) \cdot f_{y}(\omega)\right\}\right)=1$.

Proof. (i) We have $f_{x+y} h(E)=(x+y) \wedge a(E)=(x \wedge a+y \wedge a)(E)=$ $=f_{x} \circ h(E)+f_{y} \circ h(E)=\left(f_{x}+f_{y}\right) \circ h(E)$ for any $E \in B(R)$. It means that

$$
h\left(\left\{\omega \in \Omega \mid f_{x+y}(\omega)=f_{x}(\omega)+f_{y}(\omega)\right\}\right)=1 .
$$

(ii) $\left.f_{g \circ x} \circ h(E)=g \circ x(E) \wedge a=x\left(g^{-1}(E)\right) \wedge a=f_{x} \circ h\left(g^{-1}(E)\right)\right)=g \circ f_{x} \circ h(E)$ for any $E \in B(R)$.
(iii) follows from (i) and (ii). (Q.E.D.)

Let x be an observable on Q such that $|m(x)|<\infty$. For $b \in Q$ let us denote by the symbol $\int_{b} x \mathrm{~d} m$ the following integral

$$
\int_{b} x \mathrm{~d} m=\int r m(x(\mathrm{~d} r) \wedge b)
$$

The integral on the right side exists, because $m(x(E) \wedge b)=m(x(E) \wedge b \wedge a)=$ $=m(x \wedge a(E) \wedge b \wedge a)=m_{h}\left(f_{x}^{-1}(E) \cap B\right)$, where $h(B)=b \wedge a, B \in \mathscr{F}$. Therefore

$$
\int r m(x(\mathrm{~d} r) \wedge b)=\int r m_{h}\left(f_{x}^{-1}(\mathrm{~d} r) \cap B\right)=\int_{B} f_{x}(r) m_{h}(\mathrm{~d} r)
$$

Especially for $b=1, \int x \mathrm{~d} m=\int r m(x(\mathrm{~d} r))$.
Lemma 3.4. For any $x \in X(Q)$ and $b \in Q$

$$
\int_{b} x \mathrm{~d} m=\int x \cdot x_{b} \mathrm{~d} m=\int r m\left(x \cdot x_{b}(\mathrm{~d} r)\right)
$$

Proof. We have

$$
\int_{b} x \mathrm{~d} m=\int_{B} f_{x} \mathrm{~d} m_{h}=\int \chi_{B} \cdot f_{x} \mathrm{~d} m_{h} .
$$

We have $\chi_{B} \circ h(\{1\})=h(B)=b \wedge a=x_{b} \wedge a(\{1\})$ and $\chi_{B} \circ h(\{0\})=h\left(B^{c}\right)=$ $=b^{\perp} \wedge a=x_{b} \wedge a(\{0\})$. Then $x_{b} \sim \chi_{B}$. From this we obtain

$$
\begin{gather*}
\int \chi_{B} \cdot f_{x} \mathrm{~d} m_{h}=\int t m_{h}\left(\left(f_{x} \cdot \chi_{B}\right)^{-1}(\mathrm{~d} t)\right)=\int \operatorname{tm}\left(\left(x \cdot x_{b}\right) \wedge a(\mathrm{~d} t)\right)= \\
=\int x \cdot x_{b} \mathrm{~d} m . \quad \text { (Q.E.D.) } \tag{Q.E.D.}
\end{gather*}
$$

Lemma 3.5. Let n be a finite measure on Q. If $n \ll m$, there is an observables y on $L, y \leftrightarrow b$, for any $b \in Q$, such that $R(x) \wedge a \subset Q \wedge a$ and for any $x \in X(Q), \int x \mathrm{~d} n=\int x \cdot y \mathrm{~d} m$.

Proof. Let $x \in X(Q)$. We have

$$
\int x \mathrm{~d} n=\int \operatorname{tn}(x(\mathrm{~d} t))=\int \operatorname{tn}_{h}\left(f_{x}^{-1}(\mathrm{~d} t)\right)
$$

where $n_{h}(B)=n(h(B)), \quad B \in \mathscr{F} \quad(h(B)=b \wedge a, \quad b \in Q)$. If $m_{h}(B)=0$, then $m(h(B))=0$ implies $n(h(B))=0$. But $n(h(B))=n_{h}(B)$ and from $n_{h} \ll m_{h}$. By the Radon-Nikodým theorem there is a function $g: \Omega \rightarrow R, \mathscr{F}$-measurable, such that $n_{h}(B)=\int g \mathrm{~d} n_{h}$. Put $y=g \circ h \vee x_{0} \wedge a^{\perp}$. Then y is an observable on L and $R(y) \wedge a=R(g \circ h) \subset Q \wedge a$. Moreover, $y \leftrightarrow x$ for any $x \in X(Q)$. Now we have

$$
\int x \mathrm{~d} n=\int f_{x} \mathrm{~d} n_{h}=\int g \cdot f_{x} \mathrm{~d} m_{h}=\int x \cdot y \mathrm{~d} m
$$

Let $\left\{x_{n}\right\}_{n=1}^{x} \subset X(Q)$. We say that $x_{n} \rightarrow x$ a.e. $[m]$ if

$$
m\left(\bigvee_{n=1}^{x} \bigwedge_{k=n}^{x}\left(x_{n}-x\right)[-\varepsilon, \varepsilon]\right)=1
$$

for all $\varepsilon>0$. We say that $x_{n} \rightarrow x$ in L_{p}-mean $\left(x_{n} \xrightarrow{p} x\right)$ if $m\left(\left|x_{n}-x\right|^{p}\right) \rightarrow 0$ [8].
Lemma 3.6. Let $\left\{x_{n}\right\}_{n=1}^{x}, x \subset X(Q)$.
(i) $x_{n} \rightarrow x$ a.e. $[m]$ iff $f_{x_{n}} \rightarrow f_{x}$ a.e. $\left[m_{h}\right]$;
(ii) $x_{n} \xrightarrow{p} x$ iff $f_{x_{n}} \xrightarrow{p} f_{x}$ in $L_{p}\left(\Omega, \mathscr{F}, m_{h}\right)$.

Proof. (i) We have

$$
\begin{aligned}
& m\left(\bigvee_{i=1}^{x} \bigcap_{k=i}^{x}\left(x_{k}-x\right)[-\varepsilon, \varepsilon]\right)=m\left(\bigvee_{i=1}^{x} \bigwedge_{k=i}^{x}\left(x_{k} \wedge a-x \wedge a\right)[-\varepsilon, \varepsilon]\right)= \\
= & m_{h}\left(\bigcup_{i=1}^{x} \bigcap_{k=1}^{x}\left(f_{x_{k}}-f_{x}\right)^{-1}[-\varepsilon, \varepsilon]\right)=m_{h}\left(\bigcup_{i=1}^{x} \bigcap_{k=1}^{x}\left\{t \mid f_{v_{k}}(t)-f_{x}(f)<\varepsilon\right\}\right) .
\end{aligned}
$$

The last expression equals 1 iff $f_{x_{n}} \rightarrow f_{x}$ a.e. $\left[m_{h}\right]$.
(ii)

$$
m\left(\left|x_{n}-x\right|^{p}\right)=\int t m\left(\left|x_{n}-x\right|^{p}(\mathrm{~d} t)\right)=\int|t|^{p} m\left(\left(x_{n} \wedge a-x \wedge a\right)(\mathrm{d} t)\right)=
$$

$$
\begin{gathered}
=\int|t|^{p} m_{h}\left(\left(f_{x_{n}}-f_{x}\right)^{-1}(\mathrm{~d} t)\right)=\int t m_{h}\left(\left(\left|f_{x_{n}}-f_{x}\right|^{p}\right)^{-1}(\mathrm{~d} t)\right)= \\
=\int\left|f_{x_{n}}(t)-f_{x}(t)\right|^{p} m_{h}(\mathrm{~d} t) .
\end{gathered}
$$

The last expression equals 0 iff $f_{x_{n}} \rightarrow f_{x}$ in $L_{p}\left(\Omega, \mathscr{F}, m_{h}\right)$. (Q.E.D.)

4. Conditional expectation

Let $P \subset Q$ be a sublogic. We define a conditional expectation with respect to P as follows.

Definition 4.1. Let $x \in X(Q)$. We say that an observable y on Q is a conditional expectation of x with respect to P if
(i) $R(y) \wedge a \subset P \wedge a$;
(ii) $\int_{b} x \mathrm{~d} m=\int_{b} y \mathrm{~d} m$ for all $b \in P$.

Any observable y, which satisfies (i), (ii) is called a version of conditional expectation. The case of $a=1$ (i.e. Q and P are Boolean- σ-algebras) was studied in [12]. For any $x \in X(Q)$ this definition is a restriction on Q of the definition of a conditional expectation of x with respect to P relativized by a in the state m $\left(E_{m}(x / P, a)\right)$, which has been studied in [14]. Because we have a fixed m and a, we write $E(x / P)$ in the sequel.

Theorem 4.1. To any $x \in X(Q)$ there is a version of conditional expectation, then $y \simeq z[m]$.

Proof. Since $x \in X(Q)$ then $x \wedge a$ is bounded on $L_{[0, a]}$. Then f_{x} is bounded. Put $\mathbf{F}_{0}=\{B \in \mathscr{F} \mid h(B) \in P \wedge a\}$. Since \mathbf{F}_{0} is a sub- σ-algebra of \mathscr{F} then there is a \mathbf{F}_{0}-measurable function $g: E\left(f_{x} / \mathbf{F}_{0}\right)$ which is bounded [2]. Put $y=g \circ h \vee$ $\vee a^{\perp} \wedge x_{0} . R(y) \wedge a \subset P \wedge a$ and y is a bounded observable. Let $b \in P$ and $B \in \mathscr{F}$ be such that $h(B)=b \wedge a$, clearly $B \in \mathbf{F}_{\mathbf{0}}$. Now we have

$$
\int_{b} x \mathrm{~d} m=\int_{B} f_{x} \mathrm{~d} m=\int_{B} g \mathrm{~d} m=\int_{b} y \mathrm{~d} m
$$

If y, z are versions of conditional expectation $E(x / P)$, then their functional representations f_{y}, f_{z} are versions of $E\left(f_{x} / \mathbf{F}_{0}\right)$. This implies $f_{y}=f_{z}\left[m_{h}\right]$ and therefore $y \simeq z[m]$. (Q.E.D.)

Corollary 4.1.1. (i) If $a \in Q, x \in X(Q)$, then there is a version of conditional expectation of x which belongs to $X(Q)$;
(ii) If $a \in P, x \in X(Q)$; then there is a version of conditional expectation of x which belongs to $X(P)$.

In what follows we shall write $x=y$ if $x \simeq y[m]$; i.e. $f_{x}=f_{y}$ a.e. $\left[m_{h}\right]$. Then for example, $x_{a}=x_{1}$ if $a \in Q$. From Proposition 2.9 it follows that if $x, y \in X(Q)$, then $x \leqslant_{1} y[m]$ iff $x \leqslant_{2} y[m]$. In the following we shall write $x \leqslant y$. From Corollary 2.9 .1 it is obvious that $x \leqslant y$ iff $f_{x} \leqslant f_{y}$ a.e. [m_{h}].

Theorem 4.2. A conditional expectation has the following properties:

1) If $\alpha \in R$, then $E(\alpha x / P)=\alpha E(x / P)$.
2) If $x, y \in X(Q)$, then $E(x+y / P)=E(x / P)+E(y / P)$.
3) If $x \leqslant y$, then $E(x / P) \leqslant E(y / P)$.
4) If $x, y \in X(Q)$ and $R(x) \wedge a \subset P \wedge a$, then $E(x \cdot y / P)=x \cdot E(y / P)$.
5) If $x_{1} \leqslant x_{2} \leqslant \ldots, x$ belong to $X(Q)$ and $x_{n} \rightarrow x$ a.e. $[m]$, then $E\left(x_{n} / P\right) \rightarrow$ $\rightarrow E(x / P)$ a.e. $[m]$.
6) If $p \geqslant 1$, then $|E(x / P)|^{p} \leqslant E\left(|x|^{p} / P\right)(x \in X(Q))$.
7) If $x_{1}, x_{2}, \ldots, x \in X(Q)$ and $x_{n} \xrightarrow{p} x$, then $E\left(x_{n} / P\right) \xrightarrow{p} E(x / P)$.

Proof. Follows from the fact that $x \sim f_{x}, E(x / P) \sim E\left(f_{x} / F_{0}\right)$ and from the properties of $E\left(\cdot / \mathbf{F}_{0}\right)$ ([12], [14], [19]) (Q.E.D.)

5. Characterization of conditional expectation

In what follows we shall suppose that $a \in Q$. Let $Y(Q)$ be subset of $X(Q)$ such that $x \in Y(Q)$ if $x \geqslant 0$. Due to Corollary 2.9.1, it is clear that $Y(Q)$ is closed under the formulation of the product and the sum of observables. It is easy to see that $x \geqslant 0$ iff $f_{x} \geqslant 0\left[m_{h}\right]$.

Let T be a transformation of $Y(Q)$ into $Y(Q)$ satisfying the following conditions:

T1) For $x, y \in Y(Q), \alpha>0, \beta>0 T(\alpha x+\beta y)=\alpha T(x)+\beta T(y)$.
T2) For $x, y \in Y(Q) T(x \cdot T(y))=T(x) \cdot T(y)$.
T3) If $x_{1}, x_{2}, \ldots, x \in Y(Q), x_{n} \rightarrow x$ a.e. $[m], x_{n} \leqslant x_{n+1}$ for each n, then $T\left(x_{n}\right) \rightarrow$ $\rightarrow T(x)$ a.e. $[m]$.
By Theorem 4.2 and Corollary 4.1.1 the transformation which transfers x to $E(x / P)$ is a transformation of $Y(Q)$ into $Y(Q)$ satisfying $T 1), T 2), T 3$).

Lemma 5.1. If $x, y \in Y(Q)$ and $x \geqslant y$, then $T(x) \geqslant T(y)$.
Proof. We have $x \geqslant y$ iff $f_{x} \geqslant f_{y}$ a.e. [m_{h}]. The transformation T induces a transformation T_{h} of the set of all bounded \mathscr{F}-measurable functions $f \geqslant 0$ a.e. [m_{h}] on (Ω, \mathscr{F}) into itself. Indeed, for any element $x \in Y(Q)$ there is f_{x} such that $x \sim f_{x}$, where $f_{x} \geqslant 0$ a.e. [$\left.m_{h}\right]$. Let $T(x)=y$. We put $T_{h}\left(f_{x}\right)=f_{y}$. By this definition $T(x) \geqslant T(y)$ iff $T_{h}\left(f_{x}\right) \geqslant T_{h}\left(f_{y}\right)$ a.e. [m_{h}]. Now we have $x \geqslant y$ iff $f_{x} \geqslant f_{y}$ a.e. [m_{h}]. But $T_{h}\left(f_{x}\right)=T_{h}\left(f_{y}+\left(f_{x}-f_{y}\right)\right)=T_{h}\left(f_{y}\right)+T_{h}\left(f_{x}-f_{y}\right)=T_{h}\left(f_{y}\right)$, because $f_{x}-f_{y} \geqslant$ $\geqslant 0$ a.e. [m_{h}] and then $T_{h}\left(f_{x}-f_{y}\right) \geqslant 0$ a.e. [m_{h}]. Then we have $T(x) \geqslant T(y)$. On the other hand, to any bounded \mathscr{F}-measurable function $f \geqslant 0$ a.e. [m_{h}] there is
an observable $x \in Y(Q)$ such that $x \sim f$. In fact, put $x=f \circ h \vee a^{\perp} \wedge x_{0}$. (Q.E.D.)

Lemma 5.2. Denote by $Z=\{x \in Y(Q) \mid T(y) \cdot x=T(x \cdot y)$ for all $y \in Y(Q)\}$. Then the following statements are true.

1) If $x, y \in Z$, then $x+y \in Z, x \cdot y \in Z$ and if $x \geqslant y$, then $x-y \in Z$.
2) For $\alpha>0, x \in Z$, we have $\alpha x \in Z$.
3) If $\left\{x_{1}, x_{2}, \ldots\right\} \subset Z$ such that $x_{n} \leqslant x_{n+1}$ for all n and $x_{n} \rightarrow x$ a.e. $[m]$, where $x \in Y(Q)$, then $x \in Z$.
4) If $\left\{x_{1}, x_{2}, \ldots\right\} \subset Z$ and there is $y \in Y(Q)$ such that $x_{n} \leqslant y$ for all n and, moreover, if $x_{n} \rightarrow x$ a.e. $[m]$, then $x \in Z$.
Proof. Let \mathscr{E} be the set of all bounded \mathscr{F}-measurable functions $f \geqslant 0$ a.e. [m_{h}] for which $T_{h}(f \cdot g)=f \cdot T_{h}(g)$ for any \mathscr{F}-measurable bounded function $g \geqslant 0$ a.e. $\left[m_{h}\right]$. By repeating the arguments Shu-Ten Chen Moy - if we restrict our considerations to bounded functions only - we can prove that the following statements hold:
1^{\prime}) If $g_{1}, g_{2} \in \mathscr{E}$, then $g_{1}+g_{2} \in \mathscr{E}$ and $g_{1} \cdot g_{2} \in \mathscr{E}$, and if $g_{1} \leqslant g_{2}$ a.e. [$\left.m_{h}\right]$, then $g_{2}-g_{1} \in \mathscr{E}$.
2') If $\alpha>0, g \in \mathscr{E}$, then $\alpha g \in \mathscr{E}$.
$\left.3^{\prime}\right)$ If $\left\{g_{1}, g_{2}, \ldots\right\} \subset \mathscr{E}, g_{n} \nearrow g$ a.e. $\left[m_{h}\right]$ (where g is bounded), then $g \in \mathscr{E}$.
4^{\prime}) If $\left\{g_{1}, g_{2}, \ldots\right\} \subset \mathscr{E}, g_{n} \rightarrow g$ a.e. [m_{h}] and there is a bounded function k for which $g_{n} \leqslant k$ a.e. $\left[m_{h}\right]$ for any n, then $g \in \mathscr{E}$.
If we pass from functional representation to observables, we obtain 1), 2), 3), 4). (Q.E.D.)

Lemma 5.2. If $x \in Y(Q)$, then $T(x) \in Z$.
Proof. Follows from T2). (Q.E.D.)
Lemma 5.3. Define $P=\left\{d \in L \mid x_{d} \in Z\right\}$. Then P is a sublogic of Q.
Proof. If $x_{1} \in Z$, then $1 \in P$. Let $d \in P$. Then $x_{d^{\perp}}=x_{1}-x_{d} \in Z$. This implies by Lemma 5.2.1 that $d^{\perp} \in P$.

Let $d, b \in P$; then $x_{d}, x_{b} \in Z$ and $x_{d} \sim \chi_{D}, x_{b} \sim \chi_{B}$, where $D, B \in \mathscr{F}$ and $h(B)=b \wedge a, h(D)=d \wedge a$. Then $x_{d} \cdot x_{b} \sim \chi_{B} \cdot \chi_{D}=\chi_{B \cap D}$ and $\chi_{B \cap D} \sim x_{d \wedge b}$. But $x_{d} \cdot x_{b} \in Z$ according to Lemma 5.2.1; then $d \wedge b \in P$. Then also $d \wedge b \in P$. By induction it can be proved that $\left\{d_{1}, \ldots, d_{n}\right\} \subset P$ implies $\bigvee_{i=1}^{n} d_{i} \in P$.

Without loss of generality we can assume that $\left\{d_{1}, d_{2}, \ldots,\right\} \subset P$ are mutually orthogonal elements. Denote by $y_{n}=x_{d_{1} \vee \ldots \vee d_{n}}$ for all n. It is sufficient to prove that $y_{n} \rightarrow x_{\bigvee d_{n}}$ a.e. $[m],\left(y_{n} \leqslant y_{n+1}\right.$ for all $\left.n\right)$. Put $x=x_{\bigvee_{n} d_{n}}$. Because $d_{n} \leftrightarrow d_{m}$ for all n, m there is an observable z such that $\left\{d_{1}, d_{2}, \ldots\right\} \subset R(z)$. Suppose $\left\{B_{1}, B_{2}\right.$,
$\ldots\} \subset B(R), z\left(B_{n}\right)=d_{n}$ and $D_{n}=\bigcup_{i=1}^{n} B_{i}, D=\bigcup_{n} B_{n}=\bigcup_{n} D_{n}$. Put $f_{n}=\chi_{D_{n}}$, $f=\chi_{D}$. We obtain $x=f \circ z, y_{n}=f_{n} \circ z$. Hence

$$
m\left(\lim \left(x-y_{n}\right)[-\varepsilon, \varepsilon]\right)=m_{z}\left(\lim \left(f-f_{n}\right)^{-1}[-\varepsilon, \varepsilon]\right)
$$

Consider $\varepsilon \geqslant 1$. Then

$$
m_{z}\left(\lim \left(f-f_{n}\right)^{-1}[-\varepsilon, \varepsilon]\right)=m_{z}(R)=1
$$

Further, if $\varepsilon<1$, then

$$
\begin{gathered}
m_{z}\left(\lim \left(f-f_{n}\right)^{-1}[-\varepsilon, \varepsilon]\right)=m_{z}\left(\lim \chi_{D-D_{n}}^{-1}(\{0\})\right)= \\
=m_{z}\left(\lim \left\{t \mid \chi_{D-D_{n}}(t)=0\right\}\right)=m_{z}\left(\lim D^{c} \cup D_{n}\right) m_{z}(R)=1 .
\end{gathered}
$$

Then $x \in Z$. Thus $\bigvee_{n} d_{n} \in P$. (Q.E.D.)
Corollary 5.3.1. (i) For all $x \in Y(Q)$ we have $R(T(x)) \wedge a \subset P \wedge a$.
(ii) Since $x_{a}=x_{1}$ and $1 \in P$, we have $a \in P$.

Theorem 5.5. Let T be a transformation of the set $Y(Q)$ into $Y(Q)$ satisfying $T 1), T 2), T 3)$; then T is of the form $T(x)=E(x \cdot y / P)$, where $y \geqslant 0$ such that $y \leftrightarrow Q$.

Proof. Define $\beta: d \mapsto \int T\left(x_{d}\right) \mathrm{d} m, d \in Q$. Then β is a measure on Q by $T 1), T 2), T 3)$, and if $m(b)=0(b \in Q)$, then $x_{b}=x_{0}$. And

$$
\beta(b)=\int T\left(x_{b}\right) \mathrm{d} m=\int T\left(x_{0}\right) \mathrm{d} m=\int T\left(x_{0} \cdot x_{1}\right) \mathrm{d} m=\int x_{0} \cdot T\left(x_{1}\right) \mathrm{d} m=0
$$

so that $\beta \ll m$. Moreover $\beta(a)=\beta(1)$. By Lemma 3.5 , there is an observable y, $y \geqslant 0$ and $y \leftrightarrow Q$ such that for $x \in Y(Q)$

$$
\int x \mathrm{~d} \beta=\int x \cdot y \mathrm{~d} m
$$

Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset R\left(\alpha_{i} \geqslant 0\right.$ for all $\left.i\right),\left\{B_{1}, \ldots, B_{n}\right\} \subset \mathscr{F}, B_{i} \cap B_{j}=\emptyset$, for $i \neq j$ and $h\left(B_{i}\right)=b_{1} \wedge a,\left(\left\{b_{1}, \ldots, b_{n}\right\} \subset Q\right)$. If we put $f=\sum_{i=1}^{n} \alpha_{i} \chi_{B_{i}}$, then $f \circ h \vee a^{\perp} \wedge$ $\wedge x_{0} \in Y(Q)$ and

$$
\begin{aligned}
& \int T\left(\sum_{i=1}^{n} \alpha_{i} x_{b_{i}}\right) \mathrm{d} m=\sum_{i=1}^{n} \alpha_{i} \int T\left(x_{b_{i}}\right) \mathrm{d} m=\sum_{i=1}^{n} \alpha_{i} \int T_{h}\left(\chi_{B_{i}}\right) \mathrm{d} m_{h}= \\
& =\sum_{i=1}^{n} \alpha_{i} \int T\left(x_{b_{i}} \wedge a\right) \mathrm{d} m=\sum_{i=1}^{n} \alpha_{i} \int T\left(x_{b_{i} \wedge a}\right) \mathrm{d} m=\sum_{i=1}^{n} \alpha_{i} \beta\left(b_{i} \wedge a\right) .
\end{aligned}
$$

As

$$
\begin{gathered}
\beta\left(b_{i} \wedge a\right)=\int x_{b_{i} \wedge a} \mathrm{~d} \beta, \quad \text { and } \quad \beta\left(a^{\perp}\right)=0 \\
\sum_{i=1}^{n} \alpha_{i} \int x_{b_{i} \wedge a} \mathrm{~d} \beta=\sum_{i=1}^{n} \alpha_{i} \int x_{b_{i}} \mathrm{~d} \beta
\end{gathered}
$$

i.e. $\int T\left(\sum_{i=1}^{n} \alpha_{i} x_{b_{i}}\right) \mathrm{d} m=\int\left(\sum_{i=1}^{n} \alpha_{i} x_{b_{i}}\right) \mathrm{d} \beta$. Since any \mathscr{F}-measurable function f can be described as a limit of a nondecreasing sequence of a simple functions, we have for all $x \in X(Q)$

$$
\begin{aligned}
\int T(x) \mathrm{d} m & =\int T\left(f_{x} \circ h \vee a^{\perp} \wedge x_{0}\right) \mathrm{d} m=\int f_{x} \circ h \vee a^{\perp} \wedge x_{0} \mathrm{~d} \beta= \\
& =\int x \mathrm{~d} \beta=\int x \cdot y \mathrm{~d} m
\end{aligned}
$$

Let $d \in P$; then

$$
\int_{d} T(x) \mathrm{d} m=\int x_{d} \cdot T(x) \mathrm{d} m=\int T\left(x_{d} \cdot x\right) \mathrm{d} m=\int x_{d} \cdot x \cdot y \mathrm{~d} m=\int_{d} x \cdot y \mathrm{~d} m
$$

Because $R(T(x) \wedge a \subset P \wedge a$ we have $E(x \cdot y / P)=T(x)$. (Q.E.D.)
Let us consider a transformation S of $X(Q)$ into $X(Q)$ with the following properties:

S1) $\alpha, \beta \in R S(\alpha x+\beta y)=\alpha S(x)+\beta S(y)$ for $x, y \in X(Q)$.
S2) $S(x \cdot S(y))=S(x) \cdot S(y)$ for $x, y \in X(Q)$.
S3) If $x_{n} \xrightarrow{1} x$, then $S\left(x_{n}\right) \xrightarrow{1} S(x),\left(\left\{x_{n}\right\}_{n=1}^{\infty}, x \subset X(Q)\right)$.
S4) $m(|S(x)|) \leqslant m(|x|),(x \in X(Q))$.
As before, $x_{n} \xrightarrow{1} x$ means that $m\left(\left|x_{n}-x\right|\right) \rightarrow 0$. Moreover, $x_{n} \xrightarrow{1} x$ iff $f_{x_{n}} \rightarrow f_{x}$ in $L_{1}\left(\Omega, \mathscr{F}, m_{h}\right)$, i.e. $\int\left|f_{x_{n}}-f_{x}\right| \mathrm{d} m_{h} \rightarrow 0$.

Lemma 6.1. Let $K=\{y \in X(Q) \mid S(x \cdot y)=y \cdot S(x)$, for all $x \in X(Q)\}$. Then the following holds:
(i) If $y_{1}, y_{2} \in K$, then $\alpha y_{1}+\beta y_{2} \in K(\alpha, \beta \in R)$.
(ii) $y_{1}, y_{2} \in K$ implies $y_{1} \cdot y_{2} \in K$.
(iii) If $\left\{y_{n}\right\}_{n=1}^{\infty} \subset K$ $y_{n} \xrightarrow{1} y(y \in X(Q))$, then $y \in K$.

Proof. Statements (i), (ii) follow immediately from $S 1$), $S 2$). To prove (iii) let us observe that for any $\left\{y_{n}\right\}_{n=1}^{\infty}, y, x$ from $X(Q), y_{n} \xrightarrow{1} y$; then $x \cdot y_{n} \xrightarrow{1}$ $\xrightarrow{1} x \cdot y$. Indeed, $y_{n} \xrightarrow{1} y$ iff $f_{y_{n}} \rightarrow f_{y}$ in $L_{1}\left(\Omega, \mathscr{F}, m_{h}\right)$. This implies $f_{y_{n}} \cdot f_{x} \rightarrow f_{y} \cdot f_{x}$ in
$L_{1}\left(\Omega, \mathscr{F}, m_{h}\right)$, and then $x \cdot y_{n} \xrightarrow{1} x \cdot y$. Now, let $\left\{y_{n}\right\}_{n=1}^{x} \subset K$ and $y_{n} \xrightarrow{1} y$. Then $S\left(x \cdot y_{n}\right) \xrightarrow{1} S(x \cdot y)$ by $S 3$). Hence $S(x \cdot y)$ for any $x \in X(Q)$, i.e. $y \in K$. (Q.E.D.)

Lemma 6.2. Define $V=\left\{d \in L \mid x_{d} \in K\right\}$. Then V is a sublogic of L.
Proof. Similarly, as in Lemma 5.3 we prove that if $d \in V$, then $d^{\perp} \in V$ and if $\left\{d_{1}, \ldots, d_{n}\right\} \subset V$, then $\vee d_{i} \in V$. Suppose now that $\left\{d_{1}, d_{2}, \ldots\right\} \subset V$ are mutually orthogonal elements. We have

$$
m\left(\left|x_{\vee d_{n}}-x_{b_{r}}\right|\right)=m_{h}\left(\left|\chi_{D-D_{r}}\right|\right)
$$

where $\chi_{D} \circ h=x_{\vee d_{n}} \wedge a, \chi_{D_{n}} \circ h=x_{b_{n}} \wedge a, b_{n}=\bigvee_{i=1}^{n} d_{i}\left(\right.$ i.e. $h(D)=\left(\vee d_{n}\right) \wedge a=$ $\left.=h\left(\cup D_{n}\right), \quad h\left(D_{n}\right)=\bigvee_{i=1}^{n} d_{i} \wedge a\right)$. But $\lim _{n \rightarrow r} m_{h}\left(\left|\chi_{D-D_{n}}\right|\right)=m_{h}\left(\left|\chi_{0}\right|\right)=0$. Then $\vee d_{n} \in V$. (Q.E.D.)

Corollary 6.2.1. Fol all $x \in X(Q)$ we have $R(S(x)) \wedge a \subset V \wedge a$.
Lemma 6.3. If $y \in X(Q)$ and $R(y) \in V$, then $y \in K$.
Proof. If $y=x_{b}$, then $x_{b} \in K$. Linear combinations of proposition observables are in K. Any bounded observable can be written as a limit in L_{1} of a sequence of linear combinations of proposition observables, which implies that $y \in K$. (Q.E.D.)

Theorem 6.4. If S is a transformation on $X(Q)$ into $X(Q)$ satisfying $S 1)-S 4)$ and $S\left(x_{1}\right)=x_{1}$, then $S(x)=E(x / V)$ for all $x \in X(Q)$.

Proof. Put $\eta(d)=m\left(S\left(x_{d}\right)\right) \quad(d \in Q)$. Then $\quad \eta(1)=\int x_{1} \mathrm{~d} m=1$. Let $\left\{b_{i}\right\}_{i=1}^{\infty} \subset Q$, be mutually orthogonal. Put $b=\vee b_{i}$. Then

$$
x_{c_{n}}=\sum_{i=1}^{n} x_{b_{i}} \xrightarrow{1} \sum_{i=1}^{\infty} x_{b_{i}}=x_{\vee b_{i}}\left(c_{n}=\bigvee_{i=1}^{n} b_{l}\right),
$$

which implies $S\left(x_{c_{n}}\right) \xrightarrow{1} S\left(x_{b}\right)$. Therefore $\eta\left(\vee b_{n}\right)=\vee \eta\left(b_{n}\right)$. Then η is a σ-additive function on Q. Further $|\eta(b)|=\left|m\left(S\left(x_{b}\right)\right)\right| \leqslant m\left(\left|S\left(x_{b}\right)\right|\right) \leqslant m\left(\left|x_{b}\right|\right)=m_{h}\left(\chi_{B}\right)$, where $h(b)=b \wedge a$. Now we have $m_{h}\left(\chi_{B}\right)=m(b)$. Then $m(b) \geqslant|\eta(b)| \geqslant \eta(b)$, for all $b \in Q$. If $m(b)>\eta(b)$ and $m\left(b^{\perp}\right) \geqslant \eta\left(b^{\perp}\right)$, then $1=m(b)+m\left(b^{\perp}\right)>$ $>\eta(b)+\eta\left(b^{\perp}\right)=1$. Then $m(b)=\eta(b)$ for all $b \in Q$. This fact implies $\eta(b)=$ $=m\left(x_{b}\right)$ for all $b \in Q$.

If $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset R,\left\{b_{1}, \ldots, b_{n}\right\} \subset Q$, then

$$
m\left(S\left(\sum_{i=1}^{n} \alpha_{i} x_{b_{i}}\right)\right)=\sum_{i=1}^{n} \alpha_{i} m\left(S\left(x_{b_{i}}\right)\right)=\left(\sum_{l=1}^{n} \alpha_{i} x_{b_{i}}\right)
$$

Let $b \in V$; then

$$
\int_{b} S(x) \mathrm{d} m=\int S(x) \cdot x_{b} \mathrm{~d} m=\int S\left(x \cdot x_{b}\right) \mathrm{d} m=\int x \cdot x_{b} \mathrm{~d} m=\int_{b} x \mathrm{~d} m
$$

i.e.

$$
S(x)=E(x / V) . \quad \text { (Q.E.D.) }
$$

We note that the sublogic V (resp. P) is not uniquely defined. In fact, if P_{1}, P_{2} are sublogics of Q such that $P_{1} \wedge a=P_{2} \wedge a$, then the conditional expectations with respect to P_{1} and P_{2} are equal to m for any $x \in X(Q)$. Also, if $a \notin Q$, we put $Q_{0}=\left\{b \wedge a \vee c \wedge a^{\perp} \mid b, c \in Q\right\}$. Then Q_{0} is a sublogic of $L, a \in Q_{0}$, and for any $x \in X(Q)$, the functional representation f_{x} depends only on $Q \wedge a=Q_{0} \wedge a$.

Acknowledgement. The author is very indebted to Dr. S. Pulmannová, DrSc. for her interest in this work.

REFERENCES

[1] CATLIN D. E., Spectral theory in quantum logics. Int. J. of Theor. Physics, 1, 1968, 3-16.
[2] DOOB J. L., Stochastic Processes. London, 1953.
[3] DVUREČENSKIJ A., PULMANNOVÁ, S., On the sum of observables in a logic. Math. Slovaca 30, 1980, 393-399.
[4] GUDDER S. P., Hilbert space, independence, and generalized probability. J. of Math. Analysis and Applications 20, 1961, 48-61.
[5] GUDDER S. P., Spectral methods for a generalized probability theory. Trans. AMS 119, 1965, 428-442.
[6] GUDDER S. P., Uniqueness and existence properties of bounded observables. Pac. J. of Math. 19, 1966, 81-93, 588-590.
[7] GUDDER S. P., Generalized measure theory. Found. Physics 3, 1973, 399-411.
[8] GUDDER S. P., MULLIKIN H.C., Measure theoretic convergences of observables and operators. J. Math. Phys. 14, 1973, 234-242.
[9] GUDDER S. P., Expectation and transition probability. Int. J. of Theor. Physics 20, 1981, 383-395.
[10] GUDDER S. P., ZERBE J., Generalized monotone convergence and Radon-Nikodym theorems. J. Math. Phys. 22, 1981, 2553-2561.
[11] HALMOS P. R.. Measure Theory. New York, 1950.
[12] HARMAN B., RIEČAN B., Martingale convergence in q.m. logic. Trans. 9th Prague Conf. on Inf. Theory, Prague 1983.
[13] LOOMIS S., On the representation of σ-complete Boolean algebras. Bull. AMS. 53, 1947, 757-760.
[14] NÁNÁSIOVÁ O., PULMANNOVÁ, S., Relative conditional expectations on a logic. Aplikace matematiky 30, 1985, 332-350.
[15] NEUBRUNN T., RIEČAN B., Miera a integral. VEDA, Bratislava, 1981.
[16] PTÁK, P., Spaces of observables. Czechoslovak Math. Journal 34, 1984, 552-561.
[17] PULMANNOVÁ S., Compatibility and partial compatibility in quantum logics. Ann. Inst. H. Poincaré 34, 1981, 391-403.
[18] NEUBRUNN T.. PULMANNOVÁ S., On compatibility in quantum logic. Acta Math. Univ. Comenian XLII-XLIII, 1984, 153-168.
[19] SHU-TEN CHEN MOY, Characterization of conditional expectation as a transformation space. Pacif. J. Math. 4, 1954, 47-64.
[20] VARADARAJAN V., Geometry of quantum theory 1. Von Nonstrand 1968.
[21] ZIERLER N., Order'properties of bounded observables. Proc. AMS 14, 1963, 346-351.
[22] SIKORSKI R., Boolean Algebras. New York, Springer-Verlag. 1969.
Received November 7, 1984
Matematický ústav SAV
Obrancov mieru 49
84173 Bratislava

УПОРЯДОЧЕНИЕ НАБЛЮДАЕМЫХ И ХАРАКТЕРИСТИКА УСЛОВНОГО МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ

Olga Nánásiová

Резюме
В первой части этой статьи рассматриваются два способа упорядочения наблюдаемых и исследуются отношения "релативных условных ожиданий» для частично компатибильных наблюдаемых на квантовой логике. Эти «релативные ожидания» были определены в [14]. Главный результат - характеристика «релативных условных ожиданий» в смысле Шу-Тен Хен Мой [19] на квантовой логике.

