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VALUATIONS AND DISTANCE FUNCTIONS 
ON DIRECTED MULTILATTICES 

JUDITA LlHOVA 

(Communicated by Tibor Katrindk ) 

ABSTRACT. Distance functions corresponding to valuations, isotone and posi
tive valuations on directed mu l t i la t t ices are characterized. As an application, there 
is proved that congruence relations on a directed modu lar multilattice of locally 
finite length form a Boolean algebra. 

By a valuation on a lattice L a real-valued function v defined on L satisfying 

v(a) + v(b) = v(a Ab) + v(a V b) 

is meant (see, e.g., [2]). A valuation is isotone if 

a < b = > v(a) < v(b), 

and positive if 

a < b = > v(a) < v(b). 

The distance function corresponding to a valuation v is defined by 

d(a, b) = v(a V b) - v(a A b). 

The distance function corresponding to a positive (isotone) valuation is a 
metric (pseudometric). Therefore lattices with positive (isotone) valuations are 
called metric (pseudometric) lattices. 

In [5], the notion of a metric multilattice has been introduced. Applying this 
definition to the case of lattices, we obtain another definition of a metric lattice: 

Metric lattice is a lattice with a metric d satisfying: 

LI. a < b < c = > <i(a, c) = d(a, b) + d(b, c), 
L2. d(a,b) = d(a Ab ,a V b). 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 06A99, 06B99. 
K e y w o r d s : directed multilattice, valuation, distance function, congruence relation . 
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Though the latter definition is formally different from the first one, actually 
they are equivalent, as it is shown in [5]. So we have characteristic properties of 
distance functions corresponding to positive valuations. 

The starting-point of this paper is the question about the relation between 
the notions of a metric multilattice ([5]) and of a normed multilattice ([1]) (for 
the definitions see below). In Section 1, there are given characteristic proper
ties of distance functions corresponding to valuations, isotone valuations and 
positive valuations on directed multilattices. Further, there are described dis
tance functions corresponding to valuations on directed modular multilattices 
of locally finite length. As an application of the foregoing results, we prove in 
Section 2 that congruence relations on a directed modular multilattice of locally 
finite length form a Boolean algebra. 

0. Basic notions 

Let M be a partially ordered set, a, b £ M . Denote by [/(a, b) and L(a, b) the 
set of all upper and lower bounds of the set {a, b} in M , respectively. Further, 
let a V b be the set of all minimal elements of the set t7(a, b), a A b the set of all 
maximal elements of L(a, b). For h £ c7(a, b) define (a\/b)h — {t £ aVb : t < h}, 
and for k £ L(a, b) let (a A b)k — {s £ a A b : s > k}. 

0 .1 . DEFINITION, (cf. [1]) A partially ordered set M is said to be a multilattice 
if the sets (a V b)^, (a A b)k are nonempty for all a,b £ M , h £ c7(a, b), 
k £ L(a,b) . If, moreover, M is a directed set, i.e., the sets c7(a,b), L(a,b) are 
nonempty for all a,b £ M, then M is called a directed multilattice. 

A multilattice M is said to be modular if, whenever a, b, c £ M , (a A b) D 
(a Ac) T-:0, (a V b ) H ( a V c ) ^ 0 , b < c, then b = c. 

The set {t £ M : a < t < b} (with a < b) will be denoted by (a, b), and it 
will be referred to as an interval. M is said to have locally finite length provided 
that each its interval contains only finite chains. 

1. Valuations and their distance functions 

In what follows, M will be a directed multilattice, G = (G; +) an abelian 
group. 

1.1. DEFINITION. By a valuation on M a mapping v: M —> G satisfying 

VI. u £ a A b, LO £ a V b = > v(a) + v(b) — v(u) + v(w) 

is meant. 
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This definition corresponds to the definition of a valuation of third degree, 
introduced in [1] for multilattices with G being the additive group of all real 
numbers. 

The simplest example of a valuation is a constant mapping. If M is the 
multilattice shown in Fig. 1, G an arbitrary group, then valuations v: M —• G 
are just the mappings satisfying v(u) = t , v(a) = v(b) = t + g, v(x) = v(y) = 
t + 2g, v(w) = t + 3g for all possible couples of elements t,g G G, as it follows 
from further considerations. 

1.2. LEMMA. Let v: M —* G be a valuation. If u1,u2 G a A b, w^w2 € aV b 
for some a,b € M . then v(ux) = v(u2), v(wx) = v(w2). 

P r o o f . Take u1,u2 G a A b, and any w G a V b. Then v(u±) = v(a) + 
v(b) — v(w) = v(u2) by the definition of a valuation. Analogously v(wx) = 
v(a) + v(b) — v(ux) = v(w2) for wx,w2 G a V b. • 

1.3. DEFINITION. The distance function corresponding to a valuation (of a 
valuation) v: M —> G is the mapping d: M x M —» G defined by 

d(a, b) = v(w) — v(u), 

where w G a A b , w G a V b. 

(In view of 1.2, d(a,b) does not depend on the choice o f ^ G a A b , ilJGaVfe.) 

The following two theorems are evident. 

1.4. THEOREM. If v: M —> G is a valuation, then for any t G G the mapping 
vt: M —> G defined by vt(a) = v(a)+t is also a valuation with the same distance 
function as v. 

1.5. THEOREM. If k is a positive integer and ^;1,...,^;fc: M —>• G are valu
ations with distance functions f i x , . . . , dk , then for any integers a ^ , . . . , ak the 
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mapping v — OLXVX-\ \~akvk : M -* G defined by v(a) = a1^;1(a)^ \-akvk(a) 
is a valuation, too. The distance function of v is d — axdx + • • • + ockdk . 

1.6. THEOREM. The distance function d of a valuation v: M —> G satisfies 
the following conditions: 

Ml. a < 6 < c ==> d(a, c) = rf(a, 6) + d(6, c), 
M2. u€aAb, weaWb =-> d(a,6) = d(u,w), 
M3. ueaAb, w;GaV6 => d(u,a) = d(b,w). 

P r o o f . If a < 6 < c, then d(a,c) = v(c)-v(a) = i>(c) — v(b) + v(b) — v(a) — 
d(6, c) + d(a, 6). Let w G a A 6 , w e a\/b. Then d(a, 6) = !?(?/;) - V(TX) = d{u, w), 
d(i6, a) = v(a) — T;(TX) = (v(u) + i>(ut) - v(6)) - v(u) — v(w) - v(b) — d(6, w), 

completing the proof. • 

Obviously, Ml implies that d(a,a) = 0 for each a G M , and M2 implies 
the symmetry of d. We are going to show that the conditions Ml , M2, M3 are 
independent. Let M be as in Fig. 2. Define dvd2,dz: M x M -> R as follows: 

d1(x, x) = 0 for each x £ M , 

d±(u,a) = dx(a,u) = d±(u,b) = d1(6, it) = 1 , 

dx(a,w) = d1(uv,a) = d1(6, iy) = dx(w,b) = 2 , 

dx(u,w) — d±(w,u) = dx(a, 6) = d1(6, a) = 3 ; 

d2(x, x) = 0 for each x £ M , 

d2(u,a) = d2(a,u) = d2(u,b) — d2(b,u) = d2(a,w) 

— d2(w, a) = d2(6, IU) = d2(iO, 6) = 1, 

d2(a, 6) = d2(6, a) = 0 , 

d2(i£, iO) = d2(iO, ix) = 2 ; 

d3(x, y) = 1 for all x, y £ M . 
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It is easy to see that d1, d2 and d3 satisfy all conditions but M3, M2 and 
Ml , respectively. 

Now let us suppose that d is a mapping of M x M to G satisfying Ml , M2, 
M3. We will prove that d is the distance function of a valuation v: M —» G. 
Moreover, we will describe all valuations with the distance function d. Let us 
pick an element x0 of M. Using M3 we get that, if a E M , d(x0, u) is the same 
for every u E a Ax0, and, analogously, d(x0,w) does not depend on the choice 
of w E a V x0. So, if we define v0 : M —> G in such a way that 

v0(a) = d(x0,w) - d ( u , x 0 ) , 

where w G a A x 0 , w £ aV x0, this definition is correct. In view of M3, we have 
also v0(a) = d(x0 , w) — d(a^ w) = d(i£, a) — d(w, x 0 ) . 

1.7. THEOREM. The mapping v0: M —> G defined above is a valuation. 

P r o o f . Let a, b E M, w G a A i ) , w E aV b. We will prove t>0(a) + f0(b) = 
^ o H + uo W • P i c k * e w V x0 , w;a G (a V x 0 ) t , wb E (b V x 0 ) t , r E («V x 0 )^ a . 
We have v0(a) = d(x0,wa) - d (a ,w a ) , i>0(b) = d(x0,wb) - d(b,wb), v0(u) = 
d(x0 , r) — d(ix, r ) , v0(w) = d(x0 , t) — d(w, t). 

Using Ml we get 

d(u, a) + d(a, wa) = d(u, r) + d(r, wa), (1) 

d(b, ty) + d(iu, i) = d(b, iu6) + d(w6, t) . (2) 

By M3, d(u,a) = d(b,w), so subtracting (1), (2) we obtain 

d(a> wa) - d(Wi l) = d(Ui T) + d(ri Wa) - d(b> Wb) ~ d(Wb' l) ' (3) 

Using again Ml we receive d(wb,t) = d(x0,t) — d(x0,wb), d(r,wa) = 
d(x0,wa) — d(x0,r). Substituting into (3) and arranging we get vQ(a) + v0(b) = 
d(xoi wa)-d(ai wa) + d(xoi wb)~d(bi wb) = d(xo>r)-d(u,r) + d(x0, t)-d(w, t) = 
vo(u)+vo(w)- D 

1.8. LEMMA. If a,b <E M, a <b, then vQ(b) - v0(a) = d(a,b). 

P r o o f . Let a,b E M, a < b, w ebV xQ, w' E (aW xQ)w. Using Ml we get 
v0(b) — v0(a) = d(x0, iu) — d(b, iO) — d(x0, it;7) + d(a, uv7) = d(x0, it;7) + d(w'', iO) — 
d(b, iO) — d(x0 , iO7) + d(a, iO7) = d(a, iO) — d(b, i/j) = d(a, b). • 

1.9. THEOREM. The distance function of the valuation v0 constructed above 
is the starting d. 

P r o o f . Let a,b E M, w E a A b , w E a V b. Using 1.8. and M2 we get 
vQ(w) — f0(?i) = d(iA, w) = d(a, b). • 
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1.10. THEOREM. Let d: M x M -•> G satisfy the conditions Ml , M2, M3. 
Then for each xQ G M and any t G G there exists a valuation v: M —> G such 
that v(x0) = t , and d is its distance function. Two valuations having the same 
distance function differ at most in a constant. 

P r o o f . The valuation v0: M —> G considered above satisfies v0(x0) = 
d(x0,xQ) — d(x0,x0) = 0. Then vt: M —> G defined by vt(a) = v0(a) + t is such 
a valuation as we need (see 1.4). 

To complete the proof, it is sufficient to show that if v is any valuation 
with the distance function d, then v — v0 is a constant mapping. Let a G M, 
w £ a\/ x0. We have (v — v0)(a) = v(a) — v0(a) = v(a) — (d(x0, w) — d(a, w)). 
Since d is the distance function of L>, there is rf(x0, L̂') = t;(it;) — L>(#0), d(a, ii;) = 
v(w) — v(a). Consequently, (v — v0)(a) = v(a) — (v(w) — v(x0) — v(w) + v(a)) = 
v(x0), which is a constant (independent from the choice of a ) . • 

Now let G = (G; + , <) be a partially ordered abelian group. We will define 
isotone and positive valuations v: M —> G, and the aim is to characterize their 
distance functions. 

1.11. DEFINITION. Let v: M —> G be a valuation. Consider the following 
conditions: 

V2. a < 6 = » v(a) <v(b), 
V3. a < 6 ==--> v(a) < v(6). 

If v satisfies V2, it is said to be an isotone valuation. We say that v is a positive 
valuation if V3 holds. 

1.12. THEOREM. A valuation v: M —• G is isotone if and only if its distance 

function d satisfies the conditions Ml , M2, M3 and 

M4. a, b€ M =-> d(a,b) > 0 . 

In £/iis case, d is a pseudometric on M. 

A valuation v: M —» G is positive if and only if its distance function d 
satisfies Ml , M2, M3 and 

M5. a,b€M, a^b => d(a,b)>0. 

In this case, d is a metric on M. 

P r o o f . Let a, 6 G M. Then d(a,b) = v(w) — v(u), where u G a A b, î; G 
a V 6. If L> is an isotone valuation, then v(u) < v(w), which implies d(a, 6) > 0. 
Assuming that v is positive and a / fe, we get u < w, v(u) < v(w), so that 
d(a,6) > 0. 

Now, let us suppose that d fulfils M4. Then a < b implies v(b) — v(a) = 
d(a,b) > 0, hence v(a) < v(b). If d satisfies M5, then a < b yields v(b) — v(a) = 
d(a,b) > 0, which is equivalent to v(a) < v(b). 
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To complete the proof, it is sufficient to show that the triangle inequality fol
lows from the conditions Ml , M2, M3, M4. Let a^b^c G M. Let us pick elements 
wx G a V c, w2 G bV c, w G w1 V ^ 2 , w3 G (a Vb)?i;, y G ( ^ A^O2)C, and, dually, 
u1 G aAc, Â2 G bAc, u G ̂ A w 2 , u3 G (aAb)w, x G (^V?i 2 ) c . Using M2 and M l 
we obtain d(a, c)+d(b , c) = ci(^1^1)+ri( ix2 , iu2) = rf(?x1,a)+d(a, uv1)+d(^2 , b) + 
d(b, ^O2). By M3, Ml and M4, d(a, it^) = d(uvc) = d(uvx)+d(x, c) > d(ux,x) = 
<i(^,u2), and, analogously, c?(b, w2) > d(u,u^). Consequently, d(a,c) + d(b,c) > 
d(ux,a) + d(u, u2) + d(u2, b) + d(u, ux) = d(u, a) + d(u, b) > d(u3, a) + d(u3, b) = 
d(u3,a) + d(a,w3) = d(u3,w3) = d(a, 6), again by Ml, M4, M3 and M2, as 
desired. • 

1.13. LEMMA. Let d: M x M —>• G be a pseudometric (metric) on a directed 
multilattice M satisfying Ml and M2. Then M3 holds, too. 

P r o o f . Let a, b G M, n G a A b, w G a V b. We want to prove d(u, a) = 
d(b,w). Using the triangle inequality and Ml , M2 we get d(u,b) + d(b,w) = 
d(u,w) = d(a,b) < d(a,u) + d(u,b), d(u,a) + d(a,w) = d(u,w) = <i(a, b) < 
d(a,w) + d(w,b), which yields d(b,w) < d(a,u) and also d(u,a) < d(w,b). 
Hence d(u, a) = d(b, w). • 

In [5], we introduced the notion of a metric multilattice as a multilattice with 
a metric d fulfilling Ml and M2. In [1], a multilattice with a positive valuation 
(of third degree) is said to be a normed multilattice. In view of 1.12 and 1.13, in 
the case of directed multilattices, these two notions are equivalent. Analogously, 
we can define a pseudometric directed multilattice by any of the following three 
ways: 

a) as a directed multilattice with an isotone valuation v: M —+ G; 
b) as a directed multilattice with a pseudometric d: M x M —* G satisfying 

Ml and M2; 
c) as a directed multilattice with a mapping d: M x M —> G + satisfying 

Ml , M2 and M3 (G+ = {x G G : x> 0}). 

The problem of describing valuations v: M —• G is equivalent to that of 
describing mappings d: M x M —> G satisfying Ml, M2, M3. Consider the set 
Int M of all (nonempty) intervals of M. 

Two intervals (a,b), (c,d) are said to be transposed if either a G b A c, 
c i G b V c or c G a A d , b G a V d. The intervals I, J are projective if there is a 
finite sequence of intervals I = J0, Ix,..., In = J such that all adjoining intervals 
^k' ^k+i a r e transposed. It is easy to see that the relation of projectivity is an 
equivalence relation on Int M, so it determines a decomposition of Int M. 

We will say that a class T of this decomposition is the sum of classes Tx, T2 

if T contains an interval (a, b) such that there is (a, c) ^Tx^ (c, b) G T2 for some 
c G (a, b), c y£ a, c 7̂  b. The distance function of a valuation coordinates to each 
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interval of a class the same value. Consequently, our problem can be formulated 
as follows: to describe mappings of the system of all classes of projective intervals 
to G, assigning to each class T, which is a sum of some classes, the sum of theirs 
values. All such mappings can be extended to mappings M x M —> G defining 
d(a, b) for a, b noncomparable in accordance with M2. Distance functions of 
isotone valuations assign to every class of projective intervals a nonnegative 
value, distance functions of positive valuations assign to classes of one-element 
intervals the value 0, to the others positive values. 

We are going to apply this method to directed modular multilattices of locally 
finite length. 

The following theorems (cf. [5]) will be useful: 

1.14. THEOREM. Let M be a modular multilattice of locally finite length, 

a,b G M, a < b. Then all maximal chains in the interval (a,b) have the same 

length. 

Under the assumptions of the foregoing theorem, the common length of all 

maximal chains in (a, b), which is also the length of (a, b), will be denoted by 

/(a, 6). 

1.15. THEOREM. Let M be a modular multilattice of locally finite length, 

a, b, Li, u> G M, u G a A b. w G a V b. Then l(u, a) = /(b, w). 

Consider the classes of prime intervals (an interval (a, b) is said to be prime 
if /(a, b) = 1) and pick one prime interval from each of them. Let P be the set 
of all chosen prime intervals. Assign to each p G P an element A G G. Now, if 
a, b G M, a < b put 

( 0 if a = b; 

Xp if (a, b) is a prime interval projective 

d(a,Ъ) = d(b,a) = < with p G P ; 

E ^ i - i ^ i ) if a = x 0 < x x < ••• < x n = b, 

(xi-iixi) are prime intervals. 
i = l 

1.16. THEOREM. The value d(a, b) does not depend on the choice of a maximal 
chain in the interval (a, b). 

P r o o f . We will prove, by induction on /(a, b), that for any p G P the 
number of prime intervals projective with p is the same in all maximal chains 
of (a, b). For intervals of length 0 and 1 the assertion is obviously true. Let 
n > 1 and suppose that the theorem is valid for all intervals of the length 
n. Let /(a,b) = n + 1, and let a = a0 < a 1 < • • • < a n + 1 = b, a = b0 < 
&!<•••< bn+] = b be two maximal chains. If an = bn, the assertion is an 

150 



VALUATIONS AND DISTANCE FUNCTIONS ON DIRECTED MULT I LATTICES 

immediate consequence of the induction assumption. Let an 7- bn. Take any 
eleme"nt of the set (an A bn)a and denote it by c n _ 1 . Evidently, b G a n V 6 n , 
and, by 1.15, (cn_1 ? a n ) , (cn_1 ? &n) are prime intervals. Take any maximal chain 
a = c0 < cx < • • • < cn_1 of (a, cn_1). We can now complete the proof using the 
induction hypothesis several times together with the fact that either both or none 
of the intervals ( a n , a n + 1 ) , (cn_1,bn) are projective with p and analogously for 

(Cn-l>aJ> K^n+l)' D 

1.17. LEMMA. If the intervals (a, 6). (r, s) are transposed, then d(a,b) = 
d(r, s). 

P r o o f . We can suppose a G b A r , s G b V r . By 1.15, the intervals (a, b), 
(r, s) have the same length. Analogously as in the proof of the preceding lemma, 
we will prove by induction on /(a, b) that for any p G P the number of prime 
intervals projective with p is in any maximal chain of (a, b) the same as in a 
maximal chain of (r,s). If l(a,b) < 1, the assertion is evidently true. Let us 
suppose that n > 1, and the statement holds if /(a, b) = n. Let l(a, b) = n + 1, 
a = a0 < ax < • • • < a n + 1 = b be a maximal chain. Pick t G (an V r)s. If 
an G b A t, then (£, s) is a prime interval by 1.15, and either both or none of the 
intervals (an , b), (t, s) are projective with p. Using the induction assumption to 
(a, an), (r, t ) , we complete the proof. Suppose that an ^ b At. Then b <t = s. 
Since t G (an V r) n (b V r ) , a G (6 A r) n (an A r ) , the modularity of M implies 
an = b, a contradiction. • 

1.18. COROLLARY. I/ (a, b), (r, 5) are projective intervals, then d(a,b) = 
ci(r, 5). 

We have assigned to each class of projective intervals an element of G. Evi
dently, if a class is the sum of classes Tx and T2 , the value assigned to T is the 
sum of values assigned to T± and T2 . So we have: 

1.19. THEOREM. Let M be a directed modular multilattice of locally finite 
length, G = (G; +) a group. Distance functions of valuations M —> G are just 
the mappings d: M x M —> G defined by d(a,b) = d(u,w) = __ p(u,w)\ , 

peP 

where u £ a/\b, w G aVb, and p(u,w) expresses the number of prime intervals 
projective with p in any maximal chain of (u, w), for all possible choices of 
A G G. If G is a partially ordered group, d is the distance function of an 
isotone valuation if and only if all A are nonnegative, and d belongs to a 
positive valuation if and only if all A are positive. 
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2. An application 

Many authors investigated the lattice of all congruence relations on a lattice, 
see, e.g., [3], [4]. Using the argument of the preceding section we will prove a 
generalization of the theorem that the congruence relations on a modular lattice 
of finite length form a Boolean algebra. 

2.1 . DEFINITION, (cf. [6]) Let G be a binary relation on a directed multilattice 
M . Then © is called a congruence relation on M provided that: 

(i) O is an equivalence relation, 
(ii) for all a, a', 6, b' G M the relations a Q a', b G b' imply a V b Q a' V b' 

and a A b G a' A b'. 

By a V b G a' V b', we mean that 

(1) for each x G a V b there exists y G a' Vb' such that x Q y, and 
(2) for each y G a' V 6' there exists x £ aV b with x Q y. 

The meaning of a A 6 6 o' A fe' is analogous. 

We will use the following theorem proved in [6]: 

2.2. THEOREM. Let M be a directed multilattice, Q a reflexive binary relation 
on M. Then G is a congruence relation if and only if it fulfils the following 
conditions: 

(i-J a G b <^=> u Q w for some u £ a Ab, w G a V b, 
(hi) a<b<c, a Ob, b@c =-> a Q c. 

(ii-i) o, <b , aQ b ==-> a V £ G 6 V r , a At Q b At for any t. 

2.3. THEOREM. Let M be a directed multilattice, G a partially ordered group. 
Further, let d be a mapping M x M —> G sncA ttW (M\d) is a pseudometric 
directed multilattice. Then the relation G defined on M by 

aQb <=> d(a, b) = 0 

is a congruence relation on M. 

P r o o f . By assumption, of is a mapping M x M —> G+ satisfying the 
conditions Ml , M2, M3 of the preceding section. We will use the foregoing the
orem. Obviously, Q is a reflexive relation satisfying the conditions (ix), (hi) . 
Let a<b,aQb,teM. We are going to prove a V t Q b V t. The relation 
a At G b At would be proved analogously. Pick any w G b V t. Then there 
exists w' G (a V t ) ^ . Evidently, w G 6 V i t / . Pick u G (6 A w')a. By M3 and Ml, 
d(w, w') = d(iA, 6) < d(a, 6) = 0, so that d(w, w') = 0. 

Now let w G a V t. Choose elements ^OGbV^O,^t;, G(bV t )^ , x G (6 A iu) a , 
y G ( W A T I / ) X , ueaAt, p£(xAt)u, u' e(bAt)p, qe(yAt)p, r e(pAa)x, 
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s e (r V u')b (see Fig. 3). We want to prove d(w,w') = 0. By M2, M l and 
M3, d(w, w') =-= d(y, w) = d(y, w) + d(w, w) = d(y, w) + d(x, b). However, 
d(x,b) < d(a,b) = 0, hence d(x,b) = 0. Consequently, it is sufficient to prove 
d(y,w) = 0. As (b,w), (x,w) are transposed intervals, and so are (x,w), 
(p, t), we have d(b, w) = d(p, t). Observe that d(b, w) = d(b, w') + d(w', w), 
d(p, t) = d(p, q) + d(q, t), so that 

d(b, w') + d(w', w) = d(p, q) + d(q, t). (*) 

Further, (w',w), (y,w) are transposed intervals, and so are (y,w), (q,t), which 
implies d(w',w) = d(y,w) ^ d(q,t). Substituting into (*) we obtain d(b,w') = 
d(p,q). Besides d(b,w') = d(u',t), as (b,wf), (u',t) are also transposed inter
vals. Therefore d(p, q) = d(u', t). Using the above, Ml and M3, we get d(y, w) = 
d(q, t) = d(p, t) — d(p, q) = d(p, u')-\-d(u', t) — d(p, q) = d(u,p'). Finally, as the in
tervals (p, u') and (r, s) are transposed, there is d(p, u') = d(r, s) < d(a, b) = 0. 
We have proved d(y, w) = 0, the desired result. • 
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2.4. THEOREM. Let M be a directed modular multilattice of locally finite 
length. Then there exists an order-isomorphism of the system of all congruence 
relations on M onto the system of all subsets of the set of classes of projective 
prime intervals of M. Hence, the ordered system of all congruence relations on 
M is a Boolean algebra. 

P r o o f . Let 0 be any congruence relation on Af. If (-c,y), (x1\y') are 
projective prime intervals, then evidently x 0 y is equivalent to xf 0 y'. Set 
$(©) = I (x,y) : (x,y) is a prime interval, x Q y}, (x,y) being the class of 
all intervals which are projective with (x,y). 

Evidently, © 1 < 0 2 implies $ ( 0 ^ C * ( 6 2 ) . 

Now let $ (©i ) C $ ( 0 2 ) , a 9-. b. Take any u G aAb, w G aVb, and a maximal 
chain u — a0 < ax < • • • < an == w. We have u — a0 0 1 a1 Q1 • • • 0 1 an = w, 
and since ( a ^ ^ + i ) are prime intervals, there is also u = a0 0 2 a1 0 2 • • • 0 2 

an = w, which implies u ©2 w, a 0 2 6. 

It remains to show that $ is onto. Let S be a set of classes of projective 
prime intervals. Let Z be the ordered group of all integers, d be the mapping 
M x M - ^ Z a s i n 1.19 for 

A = f o if pes, 
p I l if p i s. 

Then (M; d) is a pseudometric directed multilattice. Denote by 0 the congru
ence relation on M corresponding to d in the sense of the preceding theorem. 
We want to show that $ ( 0 ) = <S. There is (x, y) G $ ( 0 ) if and only if (x, y) is 
a prime interval with x 0 y, and this is evidently equivalent to (x,y) G S. The 
proof is complete. • 

2.5. COROLLARY. A directed modular multilattice of locally finite length is 
simple (i.e., has only trivial congruence relations) if and only if all its prime 
intervals are projective. 
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