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THE REFLEXIBLE HYPERMAPS 
OF CHARACTERISTIC - 2 

A. J. B R E D A D ' A Z E V E D O 

(Communicated by Martin Skoviera ) 

ABSTRACT. In the first par t , we classify the reflexible (finite) hypermaps with 
one and two hyperfaces. From this classification, we derive tha t there is only one 
(up to an isomorphism) non-orientable reflexible hypermap with one hyperface 
of valency n , which is a projective hypermap ( x = 1), and there are only two 
non-orientable reflexible hypermaps with two hyperfaces, both projective. In the 
second part , we classify the reflexible hypermaps on surfaces of characteristic —2. 
On orientable surfaces, [Breda d'Azevedo, A. J .—Jones, G. A.: Rotary hypermaps 
of genus 2, European J. Combin. (Submitted)] already gives a classification of 
rotary hypermaps of genus 2. It follows tha t there are 43 hypermaps, all reflexible, 
ten of which are maps. We show tha t on non-orientable surfaces, there are fifteen 
of them, twelve of which are maps. 

1. Introduction 

1.1. Topological hypermaps. 
Topologically, a hypermap 7i is an imbedding (without crossings) of a con­

nected trivalent graph Q in a connected (not necessarily compact) surface <S, 
possibly non-orientable or with boundary (dS 7-- 0), such that: 

1. Each face (connected component of S \ Q) is homeomorphic to an open 
disc or a half-disc 

2. The faces are labelled 0, 1 and 2 (or shaded black, grey and white) so 
that each vertex of Q is incident with three faces carrying different labels 
(or shades). 

3. If dS ^ 0, Q intersects each connected component of dS. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 05C10. 
K e y w o r d s : (reflexible, projective, algebraic) hypermap, hyperface, hypervertice, hyperedge. 

The author is grateful to the "Projecto de Investigagao P B I C / C / C E N / 1 0 6 0 / 9 2 " , under which 
this work was carried out, and to Gareth Jones and Stephen Wilson for some very helpful 
comments. 
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4. No vertex of Q lies on the boundary dS. 
5. Each edge e of Q joins two distinct vertices unless e D dS ^ 0 in which 

case e has only one vertex. 
6. For each face / , / D Q is connected. 

Condition 5 states that the graph Q has no loops and that free edges (edges 
with only one vertex) only occur when they intersect the boundary. For com­
pact surfaces Condition 6 may be obtained from Condition 1, so Condition 6 
does nothing new to finite hypermaps. However, for non-compact surfaces Con­
dition 1 does not imply Condition 6. For instance, Figure La is an imbedding 
not permitted by Condition 1, yet Figures Lb and Lc are of imbeddings in the 
non-compact tube and in the plane, respectively, both satisfying Conditions 1, 
2, 3, 4 and 5. Although these two imbeddings are combinatorially similar, the 
imbedding Lb does not satisfy Condition 6. 

(C) 

FIGURE 1. 

The vertices of Q are blades, while the faces labelled 0, 1 and 2 are, respec­
tively, hypervertices, hyperedges and hyperjaces of H. Each edge of Q is incident 
with two faces carrying different labels, so we label each edge with the missing 
label. The edge-labelled graph formed in this way induces three permutations 
r 0 , rx and r2 on the set of blades fi: rt (i = 0,1,2) permutes the two blades 
incident with each z-edge (edge labelled i) not meeting the boundary and fixes 
the unique blade incident with each z-edge meeting the boundary (Figure 2). 
These permutations ri satisfy r? -= 1 and since the graph Q is connected, they 
generate a transitive group G of permutations of f£, which we call the SI-group 
of H. If fi is finite, we say that 7i is a finite hypermap. 

co CÛ r Л co = co r. 

Э5 

FIGURE 2. 

132 
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1.2. Klein hypermaps. 

Let <S be the hyperbolic plane, and A be the reflection group generated by 
the three reflections R0, R1 and R2 on the sides of a hyperbolic triangle T 
with zero internal angles. A is isomorphic to the free group C2 * C2 * C2 with 
presentation 

(i?0, R1} R2 | R0 = R1 = R2 = 1), 

so we have a transitive permutation representation 7r: A —• G < S^ defined by 
Ri—^ ri. A acts properly discontinuous on <S, and <S/A is just the triangle T , 
a fundamental polygon for A . Take the barycentric subdivision of T, and label 
0, 1 and 2 the resulting three regions (Figure 3). 

FlGURE 3. The hуperbolic triangle T in the Poincaré model 
of the hуperbolic plane. 

F I G U R E 4. The hypermap 6. 

The action of A on T produces a graph QA imbedded in <S, which can be seen 
as the Cayley graph for A in respect to the generators R{, together with a 
face-labelling satisfying 2. This imbedding is a hypermap that we denote by 6 
(Figure 4); its i-faces are the connected union of the regions labelled i, and its 
Q-group is isomorphic to A . 
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For any subgroup H of A , the orbit-space S/H is a Klein surface1), possibly 
with boundary. Imbedded in this surface is the graph QH = QA/H, regarded as 
the Schreier coset graph for H in A with respect to the generators Rt. The face-
labelling of 8 is transferred to this imbedding inducing a hypermap 8/H. Write 
QH = A / H for the set of vertices of QH. The fi-group of 8/H is isomorphic to 
the quotient group A/H* generated by H*RQ, H*R± and H*R2, where H* is 
the core of ff in A . 

Let PH be a fundamental polygon for H in A arising from a Schreier 
transversal for H in A. The surface S/H has boundary if and only if some 
reflection fixes an edge of PH ([HS]), or equivalently, some conjugate of I?- be­
longs to H. S/H is orientable if and only if the edges of PH are only paired 
(identified) by orientation preserving elements or by reflections (boundary com­
ponents) ([HS]). So, if S/H has no boundary, then S/H is orientable if and 
only if H is a subgroup of the even subgroup A + = (R1R2, R2RQ) of index 2 
in A. 

Let us call the hypermap 8/H arising in this way a Klein hypermap. 

1.3. Algebraic hyper maps. 

To a topological hypermap 7{ we associate an algebraic sequence 
(G,Q,rQ,r1,r2) composed of the fJ-group G, the set of blades fJ, and the 
generators r 0 , r 1 , r2 defined before. Each such sequence gives rise to a Klein 
hypermap: fix an element a in fi, let Ga be the point-stabilizer of a in G, 
and H = 7 r _ 1 {G a } , the point-stabilizer of a in A . Then 8/H is a Klein 
hypermap with underlying graph QH isomorphic to the underlying graph Q 
of 7Y, and fi-group A/H* isomorphic to G. This subgroup H is called the 
hypermap-subgroup of H. 

Any sequence (G, f.,, r0, r±) r2) where ft is a set, G is a subgroup of the 
symmetric group Sn acting transitively on ft, and r 0 , r 1 , r2 are involutions 
generating G is called an algebraic hypermap. 

To each Klein hypermap we have a surface triangulation induced by the tri­
angle T. Thus, we may construct a Klein hypermap from an algebraic hypermap 
by taking 2-simplices Tu for each blade CJ E Q, each with a labelled barycentric 
subdivision, as we did with T , and joining them by their i-sides (sides opposite 
to the regions labelled i) according to the cycles of ri (that is, Tu is joined to 
Tu, if oori = u / ) , so that their regions match up (Figure 5). 

1 ; A Klein surface is a surface with a dianalytic structure [BEGG]; such structures enable 
one to define angles on surfaces including non-orient able surfaces and surfaces with boundary 
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FIGURE 5. 

The trivalent graph carried by the resulting surface (possibly with boundary) 
UT^ is isomorphic to Q. If H is not finite, the extra Condition 6 ensures that 
the edge-labelled graph carries the same information to H as a Schreier coset 
graph of a point-stabilizer H < A , so this construction may be carried forward; 
in this case, Tu may have zero internal angles, or parallel sides. 

1.4. Coverings. 

Let Hx and H2 be two hypermaps, and let (G1,£l1,xQ,x1,x2) and 
(G2,!Ti2,y0,y1,2/2) be their associate algebraic hypermaps. A covering (or mor-
phism) (f): H± —+ H2 is a function (j) from Q1 onto f&2, together with an 
epimorphism ir: G1 

tative, 
G 2 : xi i—> y{, such that the following diagram is commu-

í^ xGx 

фXҠ 

П2xG2 

П, 

V 
í ì0 

that is, uogcj) = uxfrg-K for any uo G Vt1 and g E G1. Coverings correspond to 
inclusions H1 < H2 between their hypermap-subgroups. 

A symmetry (or automorphism) of TV is a bijective covering of H onto itself. 
The group of symmetries of H, Aut H, acts on the set of blades fi; if this action 
is transitive, we say that H is reflexible (or regular). AutH is isomorphic to 
NA(H)/H, where H is the hypermap-subgroup of H, so Aut H acts transitively 
on A/H if and only if NA(H) = A. If H is reflexible, then H is normal in 
A, Aut H = G and ft = G, so the algebraic hypermap associated with H can 
be written as (GyG,rQ,r1,r2), where G = AutH, and G acts on G by right 
multiplication. 

1.5. The Walsh bijection. 

W a l s h [TW] introduced a bijection W from hypermaps H to bipartite 
maps M in the same surface <S. Any hypermap H corresponds to a bipartite 
map M. = W(H) by contracting the 0- and 1-faces to points, conventionally 
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coloured black and white. Conversely, any bipartite map M, with its vertices 
coloured black and white, corresponds to a hypermap 7i = W~X(M) by ex­
panding the black vertices to 0-faces and the white vertices to 1-faces (Figures 6 
and 7). 

W (íM) 

;H 

FIGURE 6. The Walsh biparti te map representation. 

In the bipartite map representation of a hypermap 7i, the blades are conven­
tionally represented as 'one-blade arrows' pointing to black vertices (Figures 6 
and 7). Figure 7 shows the Walsh bijection between bipartite maps and hyper-
maps with boundary. 

F I G U R E 7 . The Walsh bipart i te map representation 
for maps and hypermaps with boundary. 

When the subject matter is understood, these two hypermap representations 
will be equally used without mention. 

1.6. Type and genus. 
H has type (/ ,ra,n) if Z, ra and n are, respectively, the least common 

multiples of the valencies of the hypervertices, hyperedges and hyperfaces. If Ti 
is reflexible, then Z, m and n are the orders of r1r2 , r2r0 and rQr± , and if Ti has 
boundary, then ri = \ for some i = 0 ,1 , 2. The number Fi of i-faces of a finite 

reflexible hypermap is given by the formula F- = —̂  , where o{ = order(r r fc), 

{i,j,k} = {0,1,2} and 

1 \ 2 otherwise. 
r k * l , 
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The characteristic % of a finite reflexible hypermap 7i without boundary (we 
mean the Euler characteristic of the underlying surface S) is given by 

X = V + E + F-Џ 

= M(1 + І.+ 2 W rтг * - ' ) • 

where V, 27 and F are the number of hypervertices, hyperedges and hyperfaces. 
2 — Y 

The genus g is given by g = —, where 77 = 2 if 7i is orientable, and 77 = 1 

otherwise. 

1.7. The reflexible abelian hypermaps. 

If 74 is a reflexible hypermap, the number of blades must be even. If 74 
has boundary, then up to a permutation of the i-faces, 74 has type (1,1,1), 
(2,2,1) or (n,2,2), thus \G\ = 1, 2 or 2n, and 7i has 1, 2 or n hyperfaces, 
1 or n hyperedges and 1 hypervertex. If 74 has no boundary but \G\ < '4 , the 
number of hyperfaces F < | = 2. In both cases, if 74 is a reflexible hypermap 
with |fi| < 4, 74 has 1 or 2 hyperfaces; as the group G = Aut74 = 1, C2 or 
C2 x C 2 , G is an abelian group, and thus 74 is one of the sixteen reflexible 
abelian hypermaps classified in [BJ1]. These sixteen abelian hypermaps have 1 
or 2 hyperfaces, so we give here a brief review of them. 

One blade. There is only one, the trivial hypermap A, with boundary, defined 
by r 0 = rx = r2 = 1 (Figure 8). It has hypermap subgroup A. 

F I G U R E 8. T h e unique reflexible abelian hypermap with one b lade. 

T w o blades. There are seven of them: Bl, B% and 23+ , for i = 0,1, 2 (Figure 9), 

corresponding to the hypermap-subgroups A2 = (R-,Rk)
A, A2 = (R{,R-Rk)

A 

and A + = (R1R2,R2R0)
A, where ( , ) A stands for the normal closure in A . 

The superscript i means that only the 2-edges are not cfree' (i.e., they do not 

intersect the boundary) while the superscript i means that only the z-edges are 

'free'. 
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F I G U R E 9. The reflexible abelian hypermaps with two blades. 

Four blades. There are seven of them: BVj, B+i and 6 0 1 2 , for i = 0,1,2 
(Figure 10), with hypermap-subgroups A^' = A* n Aj, A+* = A+ n A* and 
A0 1 2 == A0 n A 1 n A 2 . As these intersections suggest, the 4-blade hypermaps 
can be obtained by combining the 2-blade hypermaps B by products2 y . 

<BU & 0 & 1 <Bn 2 0 1 2 

F I G U R E 10. The reflexible abelian hypermaps with four blades. 

The sixteenth reflexible abelian hypermap is the orientable hypermap T> on the 
sphere with 8 blades corresponding to the derived subgroup A7 = A0 n A 1 n A 2 

(Figure 11). 

F I G U R E 11 . The unique reflexible abelian hypermaps with eight blades. 

For a further reading on hypermaps with boundary, see [IS], and for maps 
with boundary, see [BS]. For a more general account of hypermaps without 
boundary, see [JS2], [LJ], [BJ1]. 

2) This is an extension to hypermaps [B J l ] of the concept of the parallel products for maps 
introduced by W i l s o n [SW2], 
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2. Finite reflexible hype rmaps with one hyperface 

Unless otherwise stated, hypermaps will be understood as finite and reflexible. 
Orientable hypermaps and non-orientable hypermaps will be understood with­
out boundary. In general, H will denote a (reflexible) hypermap of type (/, m, n) 
with automorphism group G generated by involutions r 0 , rx, r 2 , while the num­
bers V = ^ j - , E = ^ and F = ^ will denote the number of hypervertices, 
hyperedges and hyperfaces of 7i, respectively. 

Let us first introduce some reflexible hypermaps with one hyperface (the 
pictures are placed within the proof of Theorem 1). By eb(n), we denote the 
hypermap with boundary (r 2 = 1) of type (2,2,n) defined by 

( r 0 ' r i ' r 2 I ro = r i = r2 = ( r o r i ) n = !> • 

The superscript " 1 / " stands for "one face (or hyperface)" while the subscript 
"6" means "with boundary". For even values of n we denote by ej(n) the 
non-orientable hypermap of type (2, 2, n) and characteristic x = 1 defined by 

( r 0 ' r i ' r 2 I r o = r i = ( r o r i ) n = r
2 ( r o r i ) f = ! > • 

The subscript " —" means "non-orientable". For k = 0 , 1 , . . . , n — 1 we denote 

by ek
f(n) the orientable hypermap of type ( , k, ^ , T-̂ -W , n ] and characteristic 

X = (n,k-r-i) + (n,fc)-f-l — n , where ( , ) stands for the greatest common divisor, 
defined by 

( r 0 ' r i ' r 2 I ro = r i = r2 = ( r o r i ) n = r
2 ( r o r i ) f c r o = !> • 

Let H be a hypermap with one hyperface of valency n . Then r2 E (^o ' r i ) ' 
and G is generated by rQ and r x , so G is a dihedral group Dn of order 2n, a 
cyclic group C 2 , or the trivial group {1}. 

THEOREM 1. The reflexible hypermaps with one hyperface of valency n ( n E N ) 
are: 

i) For n = l: A, e\f(l), and e\f(l). 

ii) For n = 2: B°, B6, B1, B1, e\f(2), ej(2), and e\f(2) (fc = 0,1). 

hi) For n (> 2) even: eb (n), ej(n), and ek
f(n) (fc = 0 , l , . . . , n — 1). 

iv) For n (> 2) odd: e\f (n), and e\f (n) (k = 0 , 1 , . . . , n - 1). 

P r o o f . 
i) r2 = 1. Then H has boundary. 
If r0 = r1 = 1, then n = 1, |G| = 1, and H is the one blade hypermap A. 
If only one of rQ or rx is the identity, then n = 2, \G\ = 2, and H is the 

two blade hypermap B° or B1, according as rx = 1 or r0 = 1. 
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If r0 ^ 1 and rx ^ 1, then r0 = r\ = r2 = (r0r^)n = 1 defines the map 
with boundary eb (n), of type (2,2,n) consisting of a single face surrounded 
by n vertices and n edges lying on the boundary (Figure 12). For n = 1 we 
have the 2-blade map £b (1) = B2 while for n = 2 we have the 4-blade map 

n=l n=2 n=4 

F I G U R E 12. The hypermap with boundary eb(n). 

ii) r2 + \. 
a) r2 is in the cyclic group C generated by a = rQr1. Then n must be even 

and r2 = ai . 
If 7i has boundary, then ri = 1 for some i E {0,1} and r

0 7̂  ^ . Then 
r2 = r- ({i, j} = {0,1}), n = 2, and H is the map Bl. 

If 7i has no boundary (i.e., r0 ^ 1 and rx ^ 1), then r0 = r\ = ( r ^ ) 7 7 , = 
r 2v r o r i ) ^ = ^ defines the projective (i.e., non-orientable with characteristic 1) 
map ej(n) of type (2,2,n) (Figure 13). 

012 

n=2 

F I G U R E 13. The non-orientable hypermap e_ (n) for n = 2 and 6. 

b) r2 ^ C, say r2 = akr0 for some k G { 0 , 1 , . . . , n — 1}. Then 7i is 

orientable. Fixing r 2 , we have |Au t£ ) n | choices of pairs ( r ^ r j ) generating 

D n such that order(r0r1) = n , all these choices giving isomorphic hypermaps. 

Thus we have n distinct hypermaps ek (n) (Figure 14) corresponding to dif­

ferent choices of r 2 , each of type ( , k+1^, T^J , n j and characteristic \ — 

(n, k +1) + (n, k) +1 — n. The hypermap ek (n) can be obtained from a polygon 
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with 2n sides and with its 2n vertices "bipartitioned" into n white vertices 
(representing the hyperedges) and n black vertices (representing the hyperver-
tices) by identifying the edges according to the rule dictated by the equation 
r2a

kr0 = 1: an edge i is identified with the (2k + l ) th edge counting from edge 
i (excluding this edge) and following the arrow tail direction (arrows pointing 
always to black vertices). 

6^(1) = !»* 

FIGURE 14. The orientable hypermaps ej(n). 

FIGURE 15. The orientable hypermaps eJin). 

3. A brief commentary 

The hypermap with boundary eh (n) is the map Vn in [BJ2] while the non-
orientable hypermap ej(n) is the map called Sn in [SW]. The hypermap e0 (n) 
of type (n, l , n ) with genus 0 is the dihedral hypermap Vn in [BJ2]. When 
n = 1, we have the 2-blade hypermap B + in [BJ1]. Its associate eQ (n)'01) 
obtained by applying the hypermap operation (0 1) which transpose hyperver-
tices and hyperedges, is the hypermap £n-i(

n) °f tyPe ( l ? n > n ) o n t h e sphere. 
If n is even, we may take k = ^ . The resulting orientable hypermap £k__(n) 
(see Figure 15) of type (n, 2,n) or (fc,2,n), according as k is even or odd, and 
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characteristic x — 2 — k or 3 — fc,is the dihedral map T>n in [BJ2] and the map 
called Mk in [SW]. 

The hypermap ex (n) has type (^,n,n) or (n,n,n), according as n is 
even or odd, and characteristic x = 4 — n or 3 — n . For n prime, the hy­
permap £k (n) is the 2n-blade hypermap /C*'°, /C^'1 or /Cn 'm in [B], where 
m = — ̂ -^ (mod n ) , according as fc = 0, k = n — 1, or otherwise. 

4. Finite reflexible hypermaps with two hyperfaces 

If a 2-edge e joins the same hyperface F of a reflexible hypermap 7i 
(Figure 16), then r2 belongs to the dihedral group Dn generated by r0 and r±, 
G = Dn, and 7i has one hyperface only. 

FIGURE 16. 

If 71 has two hyperfaces, any 2-edge must then join distinct hyperfaces. We must 
have r2 ^ 1 and r2 ^ ri for i = 0 , 1 . Besides, G has 4n elements, unless 7i has 
boundary, in which case, G is a dihedral group of order 2n. The dihedral group 
D generated by r0 and r1 of order 2n is a normal subgroup of index 1 or 2 in 
G, according as 7i has boundary or not. Hence D contains any conjugate of ri 

for i = 0,1 and G = D V ( r 2 ) . Their two hyperfaces must be arranged in the 
way pictured by Figure 17. 

FIGURE 17. 

From this diagram, 71 must have type (Z, m, n) with I and ra even. Conversely, 
if r^2 E D for i = 0 , 1 , then the number of hyperfaces of a reflexible hypermap 
7i is less or equal than 2. 

Write a = r0r1. 
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For fc = 0 , 1 , denote by e_ (fc), the non-orientable hypermap of character­
istic x = 1 a n d type (2,4,2) or (4,2,2), respectively, denned by the following 
presentation of the dihedral group D4, 

(r0,rvr2 | r0
2 = r\ = r\ = an = {rkrk^r2f = {rk^r\)^a = l ) . 

If fc = 0, this presentation reduces to (r0 , r1 , r2 | r 2 = (r0r2)
4 = 1 , r1= (r0r2)

2S), 

while if fc = 1, it reduces to {r0,r^r2 I ri = ( r i r 2) 4 = 1> r o = ( r i r 2) 2 ) - Notice 
that applying the operation (0 1), that transposes hypervertices with hyper-
edges, to ej(0) we get ej (1), and vice-versa. 

For each fc0 G { 0 , . . . , n — 2} and fcx G { 1 , . . . , n — 1} such that fc0(l — A) 
= 0 (mod n) and A 2 = 1 (mod n ) , where A = k1 — fc0, we denote by £^(fc0> &i) 

the orientable hypermap (without boundary) of type ( t n 1™+!) > 77TFl ' n ) ' in~ 

duced by the presentation 

( W i ^ a | rl=r\=rl=an= r^ak°r0 = rf-afc^r0 = l ) . 

As we shall see later, this hypermap has 4n blades. 

THEOREM 2. Let n be a reflexible hypermap with two hyperfaces of valency n. 
Then 

i) if n has boundary, n = B2, Bi2 or B62; 

ii) if n is non-orientable, n is the projective hypermap ej (k) for some 
k<E{0,l}; 

iii) if n is orientable, n = B+2 , or £2^(fc0, k±) for some fcn E { 0 , . . . , n —2} 
and k1 e { 1 , . . . , n - 1} . 

P r o o f . If r0 = r 1 , then n = 1 and G = gp(r x , r 2 ) = C2 or VA, depending 
on whether rx = 1 or not, that is, whether n has boundary or not. We have in 
this case H = B2 or S + 2 , both of type (2, 2,1). 

If r0 7̂  rx but one of them is the identity, say ri, then n has boundary and 
r- =- r 2 , where {i, j } = {0,1}. Consequently, Z = 2, m = 2, n = 2, G = V4, 

and 7Y = B1 2 or B02, according as rn = 1 or r1 = 1. 
Let now r0 ^ r 1 and rt ^ 1 for i = 0 , 1 . 
In these circumstances, n has no boundary, and / > 2, m > 2, and n > 2. 

As (r2) D D = {1}, G is a split extension of D with complement ( r 2 ) . Let 
G be the cyclic group of order n generated by a = r0r±, and let G + be the 
subgroup generated by the "even" words a and rxr2. As r^2 is in Z), we have 
three choices: 

i) Both r 0
r 2 and r x

r 2 belong to C. Then n must be even and r0
T2 = 

r 1
r 2 = a 2 . This implies that ^0 = ^x, and so rn

r 2 and r 1
r 2 cannot both belong 

to C. 
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ii) For i = 0 , 1 , one of rp belongs to C , say r / 2 G C. Then r 0
r 2 eD\C, 

n is even, and / = 4 since ( r 2 r x ) 2 G £ > \ C Furthermore, a7"2 = r^r^2 G D\C, 

so n = 2, r0 =- r x , and a = r{2. Then we have r 0
r 2 = r0 or r 0

r 2 = rx = ar0. 

If rj2 = r1, then r0 = r 1
r 2 -= a, and this implies that rx = 1. Thus we must 

have r 0
r 2 = r 0 . In this case, m = 2 and W is the non-orientable map e_ (1) of 

type (4,2,2) (Figure 18). Its automorphism group is the dihedral group D4 with 
presentation (r0,rvr2 | r\=r\=r\= a2 = rr

0
2r0 = r\2a = l ) = (r0> r i> r2 I 

( r 1 r 2 ) 4 = l> ^ ^ ( r ^ ) 2 ) . r? = 

2f 
Є (0) 

FIGURE 18. The map e_ (1) and the hypermap e_ (0). 

iii) Both r 0

r 2 and r / 2 belong to 2? \ C Write r [ 2 = a f c i r 0 , i = 0 ,1, where 
k0 G {0, . . . , n - 2 } and kx G { l , . . . , n - l } . Then we have afc° = (r2r0)

2 

k! -!_.___ _.u„ -c-^ i:x u 2n and akl = r2rxr2r0. From the first equality, we have m 

2n 

, and from the 

s e c o n d , / = 

(n, fc0) 

. Furthermore, a ~ A = a1"1, so (n, A) = 1; a f c o + 1 = a A f c l 

( n ^ + l) 
so (k± + l)(l-A) = 0 (mod n ) , and since (fc1 + l ) ( l - A ) = fc0(l - A) ( m o d n ) , 
k0(l - A) = 0 (mod n ) ; finally, a~fc° = r2a

k°r2, thus afc° = aAk°, and hence 
a A f c l = a

A f c o + 1 , so A 2 = 1 (mod n ) . Notice that the equation (n, A) = 1 is 
unnecessary since this can be obtained from A 2 = 1 (mod n ) . As G splits over 
D, G has presentation 

V 0 ' ľ ľ ľ 2 г2 = г? rГ2nk0 f0 a r0 
r i a x r 0 I>. 

and so 7i is the orientable hypermap e2J (k^k^. 

Conversely, let G = Gn(fc0,fc1) be the group with the above presentation, 
where k0 and fc1 are as above. So, k0 and fcx satisfy: 

(n, A) = 1, 

(fex + 1)(1 - A) = 0 ( m o d n ) , 

A 2 = 1 (mod n ) , 

(1) 

(2) 

(3) 

where A = fc1 — k0. By the Reidemaster-Schreier process, we see that \G\ = 
4 • order (a). To show that the relations r0

2ak°r0 = 1 and r[2aklr0 = 1 do not 
force order(a) to "collapse", that is, to be less than n, take two bipartite 2n-gons 
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Fl and F2 with their edges labelled 0,1, . . . , 2n — 1 as shown in Figure 19a. 
Join the two 0-edges of Fx and F2 so that vertex-colors match (Figure 19b) and 
denote by H the union F. U F 2 . 

2n-2 
'2n-3 2n-l\ 

2n-2 

'2n-l 2n-3\ 

(a) (b) 

F I G U R E 19. The two 2n-gons representing the two n-hyperfaces. 

The relator r[2aklrQ applied to the edge 1 G Fl leads to an edge 1 G F 2 

and hence to an edge-identification, or pairing, 1 ~ 1. Acting next the re­
lator r0

2ak°r0 to the edge 2 G F± we get an edge 2 G F2 and an edge-
identification 2 ~ 2. So acting alternately the relators r[2aklr0 and r0

2akor0 to 
the odd and even edges (respectively) we get new labels (identification-labels) 
0 = 0,1, 2 , . . . , n on the edges of F2 and a pairing 1 ~ 1, 2 ~ 2, ..-., n ~ n 
(Figure 20). 

-( 2k + l)-2Д(mod 2n) 

-(2k,+l)(mod2n) 

F I G U R E 20. T h e identification-labels i in 71. 

It is important to note that at this point, we are looking at r0, rx and r 2 as 
permutations of the set of blades fl rather then as reflections. We can then write, 

1 = l . r [ 2 a f c l r 0 

2 = 2.rr

0*ak°r0 

0.aklr, 

l.akorn 

0 ' 

O.a' 

So, by induction, 
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m = 0 . a ^ A if m is even, 

and 

m = 0.ain^~A+klrQ if m is odd. 

Relatively to the initial labelling in F2, we have m = —mA (mod 2n) if m 
is even and m = — (2fcx + 1) — (m — 1)A (mod 2n) if m is odd. The difference 
m—m — 2 is constant and equal to —2 A (mod 2n) no matter if m is even or odd, 
so starting from zero and counting successively (clockwise) — 2A (mod 2n) (or 
2A (mod 2n) counterclockwise) we get the even identification-labels 2,4, 6 , . . . , 
while starting from 1 and counting successively (clockwise) — 2A (mod 2n) we 
get the odd identification-labels 3, 5, 7 , . . . (see the example given in Figure 21). 
Since (n, A) = 1, this shows that all the 2n edges of F2 get an identification-
label. 

F I G U R E 2 1 . The hypermap e2J(\,Z) of type (4 ,4 ,8 ) . 

Let us make it more general. If k is an edge in one "hyperface", denote 
by k the identification-edge in the other "hyperface". Then, relatively to the 
initial labelling, we have 0 = 0, 1 = —2k1 —1 (mod 2n), 2 = — 2A (mod 2n), 
3 = — (2k± + 1) — 2A (mod 2n), . . . , m — —mA (mod 2n) if m is even, and 

m = —(2fc1 + 1) — (m — 1)A (mod 2n) if m is odd. Moreover, i = z, for any 
i (E { 0 , 1 , . . . , 2 n - 1 , 0 , 1 , . . . , 2 n - l } . 

We observe that we could have labelled the edges of F2 counterclockwise 
instead to prevent writing m in the non-palatable "negative" form. Yet we would 
lose the symmetry of the labelling and consequently, in return, we would get a 
"negative" form for the last formula, namely: — i = —i. 

Now we need to check whether these identifications under the action of G do 
or do not collapse3) 7Z. If H0, R1 and R2 (seeing them as reflections) do not 
collapse 1Z, then, by induction, any word in RQ, i t 1 and R2 does not collapse 
1Z: in fact, suppose that any word w E F(RQ,R1,R2) with length(iv) < n — 1 
does not collapse 1Z, and let w be a word with length n . Put iw = j , where 

3) A word w does not collapse 7Z if iw = j implies that iw = j for any i,j G { 0 , 1 , . . 
2n- 1 , 0 , ! , . . . , 2 n - l } . 
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i->3 £ { 0 , 1 , . . . , 2n — 1 , 0 , 1 , . . . , 2n — l } . We may write w = Rs 

s G {0,1,2} and w' of length n — 1. Let k = iRs. Then kw' = j , and so 
kw' = j . As k = iRs, we also have iw = j . Thus, any word in RQ, Rl and 
R2 does not collapse 1Z. In other words, this means that TZ may be seen as a 
fundamental region for some subgroup (the hypermap subgroup) of the triangle 
group A. 

The counterclockwise rotation a one step around Fx is a clockwise ro­
tation a by —2A (mod 2n) steps around F2, and this rotation has order 
n if TZ does not collapse. Now take the following three reflections (see Fig­
ure 22): the reflection R2 fixing the 0-edge, which is given by the permutation 
(m, m) , when referring to the initial labelling, which can be written as (m, m) = 
(m, — m A ) (mod 2n) if m is even, and (m, — (2k1 + 1) — (m — 1)A ) (mod 2n) 
if m is odd; the reflection Rx permuting the edges labelled 0 and 1 in Fx, 
which is given by the permutation (771,1 — m) (mod 2n) in Fx and the permu­
tation (m, 1 — m) = (m, — (2kx + 1) — m) (mod 2n) in F2; the reflection RQ 

permuting the edges labelled 0 and 2n — 1 in Fx, which is given by the per­
mutation (m, —m — 1) (mod 2n) in F1 and the permutation (m, —m —l) = 
(m, — (2k0 + 1) — m) (mod 2n) in F2. Using the relations (2) and (3) we may 
also write i?1 = (m — kl5 —m — fcx — 1) (mod 2n) and RQ = 
(m — fc0, — m — kQ — 1) (mod2n) , in F2 . Taking m = 0, i t j and R2 corre­
spond to the reflections (fcj, —k1 — 1) (mod 2n) and (—kQJ —kQ — 1) (mod 2n), 
respectively. 

F I G U R E 22. The reflections R2, R± and R0. 

R2 is an involution since m m. Using the relations (2) and (3) we see that 
2 does not collapse TZ. This is equivalent to checking that —mA = —mA and 

(2kx + 1) — (m — 1)A. i?x and RQ are involutions 
- m = —(2^ + 1) — m and 

—m — 1 = — (2k0 + 1) — m . So, by induction, any word in RQ, Rx and R2 does 
not collapse TZ. Hence \G\ = An. • 

R 

-(2kx + 1) - ( m - 1)A = -(2kr + 1) - (m - 1)A. 
and do not collapse TZ, in fact, for any m, 1 — 
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5. A brief note 

Taking kQ = 0 in £^/(kQ, k±) we get the 2-face map £n^(0, k±) called M'n k in 
[SW], In particular, k1 = 1 gives M'n = £n^(0,1), following W i 1 s o n 's notation 
[SW], while fc1 = n — 1 gives the 'ring' spherical map en = £n^(0, n — 1) ([SW]) 
with automorphism group a direct product G = Dn x C 2 . If in addition n is 
odd, then G = D2n, and we get the dihedral map £n^(0,n — 1) called V2n in 
[BJ2]. For n = 2 we have the abelian hypermap V = £2 (0,1). 

6. Reflexible hypermaps of characteristic —2 

A rotary hypermap H (without boundary) with x = —2 has genus g = 2 or 4 
depending on whether H is orientable or not. The orient able case is classified 
in [BJ2]. According to that paper, there are 43 rotary hypermaps, all reflexible, 
of genus 2 of which 30 are maps and 13 are hypermaps (see Table 1). We may 
associate with each (finite) reflexible hypermap H (without boundary) with 
automorphism group G a sequence of numbers s = (/, ra, n, V, E, F, \G\) , where 
(l,m,n) is the hypermap-type, V, E and F are the number of hypervertices, 
hyperedges and hyperfaces, respectively, and |G| is the order of G. If H has 
characteristic %, we say that s has characteristic %• More generally, if s = 
(/, ra, n, V, E, F, |G|) is such that 21V = 2mE = 2nF = \G\, then we say that s 
is a hypermap-sequence, for short a H-sequence. Each hypermap H is associated 
with a H-sequence, but the converse is false. The number X — 2 (7 + ^ + 
^ — l) is the s-characteristic of the H-sequence s. The characteristic x °f 
a hypermap H is the s-characteristic of its associate H-sequence. If H has 
boundary, we may also associate a H-sequence (/,ra, n, V, E, F, |G|) , but this 
time we have IV = \G\ or 21V = \G\ according as the hypervertex meets or 
not the boundary. Similarly for the other numbers. We notice that if |C?| > 4, 
then the only reflexible hypermap with boundary up to an operation permuting 
hyperfaces is eb (n), the map corresponding to the dihedral group G = Dn = 
(r0, rx); this has H-sequence (2, 2, n, n, n, 1,2n). 

Table 1 lists the H-sequences with s-characteristic —2 and shows the number 
of orientable and non-orientable hypermaps associated with them. 
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TABLE 1. H-sequences for x = — --• 

# 1 m n V E F |G| #Orientable #Non-orientable 

1 5 5 5 1 1 1 10 3 0 
2 3 6 6 2 1 1 12 1 0 
3 4 4 4 2 2 2 16 1 0 
4 2 8 8 4 1 1 16 1 0 
5 3 3 9 3 3 1 18 0 0 
6 2 5 10 5 2 1 20 1 0 
7 3 4 4 4 3 3 24 1 1 
8 3 3 6 4 4 2 24 0 0 
9 2 6 6 6 2 2 24 1 0 
10 2 4 12 6 3 1 24 0 0 
11 3 3 5 5 5 3 30 0 0 
12 2 4 8 8 4 2 32 1 0 
13 2 3 18 9 6 1 36 0 0 
14 2 5 5 10 4 4 40 0 0 
15 3 3 4 8 8 6 48 1 0 
16 2 4 6 12 6 4 48 1 2 
17 2 3 12 12 8 2 48 0 0 
18 2 3 10 15 10 3 60 0 0 
19 2 3 9 18 12 4 72 0 0 
20 2 4 5 20 10 8 80 0 0 
21 2 3 8 24 16 6 96 1 0 
22 2 3 7 42 28 12 168 0 0 

Most of the H-sequences in this list do not correspond to non-orientable 
hypermaps. Concerning non-orient ability, Theorem 1 and 2 withdraw from 
this table all the hypermaps with one and two hyperfaces. The elimination 
of H-sequences follows the same basic argument. Keeping in mind that Sylow 
5-subgroups in item 11 are cyclic groups generated by rotations around hyper­
faces, the number n5 of Sylow 5-subgroups must divide F, so there is only one 
Sylow 5-subgroup in G. Factoring it out would leave a hypermap of type (3,3,1) 
with one hypervertex. But according to Theorem 1 (after transposing hyper­
faces and hypervertices) this H-sequence cannot correspond to a non-orientable 
hypermap. Similar argument for items 14, 18, 20 and 22, In item 15, there are 
one or four Sylow 3-subgroups. It cannot be one because factoring it out would 
contradict Theorem 2. Being four, we have a permutation representation of de-
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gree 4. Any rotation rv around a hypervertex must fix one Sylow 3-subgroup 
and permute the other three. This leads to the Schreier graphical representation 
of type (3,3,2) of 5 4 (Figure 23), and so H must be a covering of T^12), an ori-
entable hypermap obtained from the tetrahedron T by an operation transposing 
hyperedges and hyperfaces, so it must be itself orient able. 

£ 
FIGURE 23. 

Similar argument for item 19. In item 21, any hyperface rotation r r must fix 
two hyperfaces (otherwise, it would fix all the hyperfaces, generating in this way 
a normal subgroup that factored out would leave a 2-hyperedge hypermap not 
covered by Theorem 2). The square r A of order 4, cannot fix all the hyperfaces, 
otherwise it would generate a normal subgroup and factoring it out would give 
a hypermap (without boundary) with s-characteristic x > 2. so r*2 must also 
fix two hyperfaces. Then the permutation representation of degree 6 induced by 
the action of G on the six hyperfaces leads to a Schreier graphical representation 
of type (2,3,4) of S4 (Figure 24), and so 7i must be the orient able hypermap 
C(01I, an associate of the Cube C. 

cr-2 « - * - - ъ 
FIGURE 24. 

In item 16, replace the H-sequence (2,4,6,12,6,4,48) by (4,2,6,6,12,4,48). 
Then the action of G on the four hyperfaces gives a permutation representa­
tion of degree 4 with Schreier graphical representation of type (4,2,3) of 5 4 

(Figure 25). 

"Ъ 
FIGURE 25. 
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Thus G is a double covering of S4. By [BJ4], we must have G = S4 x C 2 , 
GL2(3), S4 or B, where B is the group with presentation 

(x,y | x4 = y6 = (xy)4 = 1, x2 = y3) . 

The binary group S4 has only one involution, which is central, so it cannot be 
the automorphism group of a reflexible hypermap. The group B has a faithful 
permutation representation of degree 16 given by 

X = (1 2 3 5 6 7)(4 8)(9 10 11 13 14 15)(12 16) 

Y = (1 16 7 10)(2 13 8 11)(3 14 5 12)(4 15 6 9) , 

and 

which projects over 5 4 by X —> X (mod 4) and Y —• Y (mod 4). One infers 
from this projection that B has only four involutions, one central and three 
projecting over the even involutions of S4 so, as with the binary group, B cannot 
be generated by involutions, and so B cannot be the automorphism group of 
a reflexible hypermap either. The linear group GL(2, 3) can be generated by 
involutions, but, contrary to the group B, its involutions (with the exception of 
the central involution) project over the odd involutions of S4 via the projection 
GL(2,3) —> PGL(2,3) = S4. As G is generated by two odd involutions and 
one even involution, it cannot be G i ( 2 , 3) either. Hence G must be S4 x C2, 
and thus H must be a double covering of the Projective Octahedron VO. From 
[BJ3], there are only two double coverings of this map, the maps VO1 and VO° 
(Table 2). 

T A B L E 2. 

Map Notation in [CM] Hypermap type # V E F Aut + M = Aut M 

VO'1 
{6,4}3 4 2 6 6 6 12 4 S4 x C2 

voò 
{6,4}6 4 2 6 6 6 12 4 S4 x C2 

The map VO (Figure 26), in the Coxeter notation {6,4}3 ([CM]), is the non-

bipartite map opp(C) in [SW]. The second map VO° (Figure 26) is the bipartite 

map called Gamma(2) in [SW]. Following Coxeter's notation, we should write 

P(9 5 = {6 ,4} 6 . 
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6 \ \ / yC 2 A 4 
rpQl <pcP 

4 ' 5 5 

F I G U R E 26. The maps VO1 and P O 6 . 

The action of G on the hypervertices in item 7 induces a faithful permutation 
representation of degree 4 that gives 5 4 (a rotation rv around a hypervertex 
fixes one hypervertex and permutes the other three), so G must be itself S4. 

According to [BJ3], there is only one hypermap and this is H = W~1(VO0>) 
(Table 3). 

TABLE 3. 

Hуpermap Hуpermap tуpe # V E F Aut+ H = Aut H 

У V - Ҷ P O 0 ) 4 4 3 3 3 3 4 s4 

This hypermap W~1(VO ) can be constructed from the bipartite map VO° 
obtained before (Figure 26) by regarding it as the Walsh bipartite map repre­
sentation of H (Figure 27). 

FIGURE 27. The hypermap W~1{VO°). 
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