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THE ATOMS OF A COUNTABLE SUM 
OF SET FUNCTIONS 

PETER CAPEK 

1. Introduction 

In [10], Roy A. Johnson studied atomic and nonatomic measures. In 
the present paper some generalizations of these results are presented, both in the 
case of nonnegative measures and for a more general type of set functions with 
different ranges. The main results of the paper are: An expression of the set of 
all atoms of a set function which is the sum of countably many set functions 
(Theorem 1), further its semigroup valued version (Theorem 5). The problem 
raised by Johnson [10, p. 651] is solved. By Theorem 2 the sum of countably 
many atomic measures is an atomic measure. 

The results were obtained by means of the abstract definition of an atom 
(see [3], [4], [13]). 

2. Definitions and notations 

Throughout the paper (X, £f) will denote a measurable space with a cr-ring 
/ / of subsets of X. 

Let 8 be a family of subsets of X. In what follows the symbol "<fC" is used 
in the sense of [6] and means that every family of pairwise disjoint elements 
from S is at most countable (therefore 0£<f). If A a X, then we use the symbol 
A 16 in the Hahn sense [8], i.e. A \$ = {Ee£: E a A}. The symbol A1 stands 
for X — A, N denotes the set of positive integers. 

In the following we shall work with subfamilies ,// of a cr-ring y. Frequently 
we shall use some of the following conditions in connection with 

(i) J/ # 0, 
(ii) EeJ/, Fe<f=>EnFeJf, 

(iii) £, FeJ/^EvFeJ/, 
y 

(iv) Eke.//, keN=>[j EkeJ/, 
k = I 



(v) £. Fe, / / \ £ n F = 0 = > £ u F e . / / . 
(vi) 0e , / / . 

Definition 1. /I subfamily Jf of a a-ring J is called: 
(j) hereditary in if if it satisfies (ii) 

(jj) an ideal if it satisfies (i), (ii). (iii), 
(jjj) r/ a-ideal if it satisfies (i), (ii), (iv), 
uvv) a generalized ideal (briefly a g-ideal) if it satisfies (v), (vi). 

Definition 2. Let, f * be a subfamily of a o-ring if and Eeif. Then the family 
I r = {A e if: En AeJ*} is called l'the contraction of the family . 1 by £ " . 

Definition 3. For , T c if we denote .c/(. ( ) = f) (JruJ h.) - - . \\ Then 

any element of\J(, 1 ) is called an atom. 
If for every Be(if — J ) there exists AeB\^Ji. I ), then 1 is called atomic 

and if\J(, f ) = 0, then . I is called nonatomic. 
Definition 4. Let G be a commutative semigroup with a neutral element 0 and 

let /J: if -+ G he a set function. Then the family .n = lEeif : /.t(E) = 0} will be 
called the null system of the set Junction /i. 

R e m a r k l. The notion Jf was motivated by the notion of contraction 
iv of a measure vby £e .g . . [2, p. 12]. For if vis a semigroup valued set function 
defined on // ' with the null system J \ then the set function vF has the null system 
equal to .,1 £, so there is valid: J'F = {Geif;: vF(G) = 0}. 

From this we can easily obtain that the set of all atoms of a set function v 
with the null system . r is exactly equal to the set .<J(J ) while the notion of a 
V-atom \h understood in the following sense: 

A is an atom of the set function Vif v(A) ^ 0 and if for all Eeif there holds: 
viA r E) = 0 or v(A - E) = 0. 

Thus the results obtained in the paper evidently are valid for atoms of a set 
function v having . i as a null system. 

For applications of the results obtained for subfamilies of if\ see Section 4 
of this paper and Chapter II of [4, p. 61]. 

3. Results 

Throughout the paper we shall need the following properties of subfamilies 
of / . those of a contraction of the family by the set and those of the set of all 
atoms of a subfamily. 

The proofs of Lemma 1 to Lemma 7 are rather straight-forward. 
Lemma 1. Let . / / . 1", Mn be subfamilies of if and let Eeif. Then we have: 

(a) ( f ] // j = (J Utjr, 
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(b) J'/<zJ^>JlEaJE, 
(c) Ae.rf(J'), BeA\(6f - J O = > A - B e . r , 
(d) 4 , f ' ) n / =0 . 
If J' is hereditary, then we have: 
( e ) . . l " c , l ' f , 
(0 • VE <s hereditary. 
If J" is a g-ideal, then we have: 
(g) Ee (Sf - Jr), FeE\J" => E - F<£J", 
(h) Ee.c/(. f •), EeEl.r-s-E-Eej^MO-

Throughout the paper, (a) to (h) will be reserved for the above indicated 
conclusions of Lemma 1. 

Lemma 2. Let Jt, J", . //„ be subfamilies of y for keN. Then there holds: 

(1) .c/ if] J/, . e {j(^(JQ^JQ, 
\A = I / A• = 1 

(2) .c/(. // n Jr) c ^J(Ji) u j / ^ K ) . 
Lemma 3. Lei .//, .4* be subfamilies of S/\ J'* be hereditary, then 

(1) . Q / ( i ) n , r c 4 , r n / ) ' , 
(2) ,c/(.// n ,J') n . V' = $/(Ji) n .f \ 

Definition 5. 77/e set A e s/(Ji) n ,c/(.yV) vv/// be called Ji n J^-decomposable 
if there exists EeSf such that A n E^Ji and A n EL$Jr. In the opposite case 
we shall say that A es/(</i) n s/(J') is J/ n A"-indecomposable. 

Definition 6. The set A e f] s/(„V]) will be calledpairwise indecomposable for 
/ £ / 

ie I if for every /, jel A is J] n J]-indecomposable. 
Remark 2. If A e.z/(Ji)ns/(Jr) where Ji = J\ then by (c), A is 

Ji n J -indecomposable. 
Lemma 4. Let {. \r

k}k = \ be a sequence of subfamilies of Sf such that A e 

e C\ ,c/(.J \). Then A e.c/f Q Jr
k) iff A is pairwise indecomposable for keN. 

A- = i ' \ A = i / 

Theorem 1. Let {Jik}k = \ be a sequence of hereditary subfamilies of Sf \ then 

A e Pj s/(Jik): A is pairwise indecomp. for ke M> n 
keM J 

n\ n • 
\ A e / V - M 

Proof. We subsequently use Lemma 2, (1) (1. equality), the distributive 
law [11, § 19, (10)] and (d) (2. equality), Lemma 3, (2) for .// = f) Jik and 

keM 

. \ = ( ] „//A. (3. equality) and Lemma 4 (last equality) so that we get: 
A e ,V - M 

•« fV4 = U 
\A: = 1 / Q* Mc N 

•*UV*Í ='ď D - ^ n 
A = 1 

n(.s/(.^)u.//A.) 
LA = I 
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= s/(f)җ)n (J \f)ҖҖ)J П Җ)] = 
\A = 1 / O r . W c .V L* Є M \k: є Л - M / J 

= u {Гn^(^^^fn^)ln( п ^)} 
O ŕ W c Л l L * t Л / U є W / J XAє/V-Л/ / J 

= [j ÌІAєÇҲ ,<zł(J/\): A is pairwise indecomp. for kєM 
0 * Л/c Л L l kєüf 

П л) 
N - л/ / . 

n 

n 
\ A e / V - A/ 

If we consider only two subfamilies, we get as a special case the following 
consequence, which is a generalization of the theorem on the sum of two 
nonatomic measures ([10, Theorem 1.1.]). 

Corollary 1. Let J{, J he hereditary subfamilies of ff. Then 

s/(J/ nJ") = {Aes/(J/) n .<z/(J")\ A is J/ n J-indecomp.) u 

u (s/(J/) nJ") u (s/(J^) n J/). 

Lemma 5. If Jr is hereditary and Aes/(Jr), then A \ ff cz s/(Jr) u t V. 
The two following lemmas characterize the notions of t//n./V-decom-

posability and Jl n „ I -indecomposability. 
Lemma 6. Let.//, J" be hereditary and A es/(J4) n s/(J"). Then the follow

ing conditions are equivalent: 
(1) A is .J/ n J -decomposable; 
(2) there exists Eef such that A n Ees/(Jl) and A n ELes/(J")\ 
(3) there exists Ee £f such that AnEe ,s/(J/ n Jf) and An E1e s/(J{ n . f ) ; 
(4) there exists Ee ff such that AnE$J4nJ' and A n E1<£J/ n J\ 

Lemma 7. Let Jt, .V be hereditary and Ae<<rf(Jt) n .9/(Jr). Then the follow
ing conditions are equivalent: 
(5) A is Jl n J -indecomposable, 
(6) Ae.s/(J/nJ"). 
Moreover, if J" is an ideal, then the conditions (5), (6) are equivalent with (7): 
(7) A\.s/(.r)cz.s/(J/). 

Lemma 8. Let {Jr
k\'k^ i be a sequence of o-ideals such that Be f] .r/(J\). 

( ' \ A = l 

Then there exists A eB\s/\ f^\ i\)-
\A = i / 

P r o o f We introduce on the index set IV the equivalence relation R as 
follows: (iJ)eR iff B is J{{ n .^-indecomposable. Evidently R is reflexive and 
symmetric. We will show that it is transitive too. Let (i,j)eR and (/, k)eR. By 
Lemma 7 we have A\.?/(J"t) cz s/(Jr) and A\.s/(Jr) cz .v/(J\). From this we 
obtain that A\s/(J"i) cz s/(J"k), so (/, k)eR; thus we have proved the transiti
vity of R. 
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Thus R is an equivalence on N and so it defines a partition {K}j£l of the 

set IV (i.e. K, are nonempty pairwise disjoint subsets of N such that M K, = IV 
\ iel 

Put Jfl = f] Jr
k for every iel. For any fixed iel, due to Lemma 4 and 

keKj 

Lemma 7, (7) there is valid B\sJ(J\) = £ | ^ ( . V ' ) for all keKh therefore the 
set of atoms of B\stf(J ') is the same as that of B\s4(J/\), where Jr

k is the 
arbitrary cr-ideal from the class {Jq: qeK,}. 

So we have an at most countable family pK'} / e / of a-ideals such that 
Bes/(J') and for all i ^ j B is Jr'n ^-decomposable. 

According to Lemma 6, (2) and (c) we get that for all /, jel, i ^j there 
exists sets Bi}, BJt such that 5 ^ 0 ^ = 0, BijuBJi = B, BiJe^(Jri)n„VJ, Bne 
es4(Jri) n Jri. Put A1 = f j 'B{J for i e / . Then 

/ / j e / 

B-A' = B- H 5/,= U (B-Bu)= U 5,e^'-
/?- je/ / ' # je/ /7- je/ 

for all i e / . 
Therefore by (h), A{es4(Jfl) and thus {-4'}/G/ is a family of pairwise disjoint 

sets such that A'e f ) J^7. By Lemma3, ( 1 ) , 4 ' W ( f] JTl). Because Q jf* = 
i^jel \iel / iel 

= P | ^ , we obtain thatfor e v e r y / G / , ^ ' G ^ ( f ) J ^ ) . So we can put A = _4' 
A = 1 \A = 1 / 

for arbitrary iel and we obtain A from the conclusion of the lemma. 
00 

Theorem 2. Let {^J*-. i be a sequence of atomic o-ideals, then P) Jfk is an 
atomic cr-ideal, too. 

Proof. Let Cff)^. Denote M = {keN: C$Jf^. Obviously M # 0. 

To proof the theorem it suffices to find A e C \ st ( f] Jfk), because in this case 
\keM / / oe \ 

with respect to the fact Ae f] ~Vk9 by Lemma 3, (1) we get A e s/ ( f] J/\). 
keN-M \k=\ J 

Thus we may suppose 0 =£ M c= N and C$Jr
k for all fceM. Since ^ are 

atomic for all keM, there exists CkeC\s/(Jr
k). From the family of atoms 

{Ck}kGM we form the family of atoms {Bk}k€M, BkeC\stf(Jr
k) by putting 

(1) Bk = Ck- (u {C,: C,n C,e .V ;W{(Q - Q : ( Q - Q e . V J ) . 
We affirm that 

(2) {Bk}keM is a family of atoms such that for all p, qeM there holds either 
Bp = BqorBpnBq = Q. 

Indeed in the case when CpnCqeJ/\ we have Bqa Cq— Cp, and so 
B,nBp = Q. 

In the opposite case (Cpn Cq)$(Jfpn Jfq). Then by (c) it is easy to see that 
Bpu Bq c Cpn Cq and thus for Bp, Bq there holds: 
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(3) Bp = (CpnC({) - (u{C,-: Cfn CpeJ'p}Kj{CpnCl{ - C,: (Cp - C,)e. \p})< 
(4) Bl( = (CpnCl{) - ( u {C,: C , n C , 6 , ( , } u { C ^ n C , - C,: (C„ - C,)e. (,]) . 
If for all re M the following condition is satisfied 
(5) CrnCpjy\iXCrnC({eJ\r 

then, in this case, from (3) and (4) we get Bp = B({. 
If (5) is not satisfied, then there exists reM such that CrnCpeJ'p but 

(Cl{ - Cr)eJr In this case BpaCp- Cr and B({ cz C(/ - (C({ - Cr) = C({nCr 

and thus Bpn Bq = 0. So we have proved (2). 
Thus we have the family of atoms {Bk}k€ Xf 0 # M cz IV satisfying the property 

(2). Denote Iq = {ieM: B, = Bl{}. By (2) {Iq: qeM} form a partition of the 
set M. 

Let qeM be arbitrarily choosen. Then by Lemma 8 there exists AeB({\ 

\s/( f] J]). Of course since A el p j .>: J by Lemma 3, (1) we have 
V/e/, / V/e/V-L -/ 

/í eB,i .</( n -* i ) a n d s° A e ci-í/( n - M • 
R e m a r k 3. Let v be a measure and ̂ V be its null system. Then we shall 

say that a measure v satisfies the countable chain condition (shortly CCC) if 
there (Sf — Jr) C holds. A finite measure satisfies CCC (see, e.g., [2, Section 44] 
or [5] Lemma 1 and Theorem 2). Thus the supposition (J/ — J')C in Lemma 9 
is weaker than that of finiteness of the measure v. 

If v is a cr-finite measure, then for all EeSf there exists a sequence En of 
XJ OC 

pairwise disjoint sets such that E= \J En. Then we have vE = £ vE . Be
rt = I // = 1 

cause vE are finite for their null system there (Jt — ̂ V£ ) C holds. Then since 

(<f - Jr
E) = ( J (ST - ,yiTE) we obtain (£T - Jr

E) C. Thus the supposition of 
n = 1 

Theorem 4 that for all Ee Sf there holds that (Jt — JT^ C is more general than 
the supposition of cr-finiteness of a measure v. 

For a proof and applications of Lemma 9 see Lemma 2, Corollary 1 and 
Corollary 2 from [4]. 

The proof of Lemma 10 is straightforward. 
Lemma 9. Let Jt be a o-ideal, 0 e ̂ V cz Jt and (Jt — JT) C. Then there exists 

Fe Jt such that ^V~Fi = Jt. 
Lemma 10. Let JT a <f, G, FeSf. Then Gesrf(JfF) iff G n Fes/^). 
Theorem 3. Let Jt be a o-ideal on Sf,§eJt cz JT and let (Jt — JT) C hold. 

Then there exists FeJt such that Aeszt(Jt) iff A — Fesrf^). 
In particular {A - F: Aes4(Jt)} c s4(Jf), 

{A: A - Fesf(Jf)} cz s/(Jt). 
Proof. By Lemma 9, there exists FeJt such that Jt = Jr

FL. By Lemma 10, 
A e d(Jt) iff A - Fe s4(JT). 
86 



The following theorem is a generalization of Theorem 2.4 from [10]. Our 
proof is more straightforward and it does not use singularity. 

Theorem 4. Let J/ be a o- ideal, t l e . i ' c J/ and let for ail Ee i/\ (Jl — .. \ E) C 
hold. Then we have: 
(1) If A ' is nonatomic. then Jl is nonatomic. 
(2) If A" is atomic, then „// is atomic. 

Proof. (1) Indirectly. Suppose Aes4(Jt). Then since (J/ — -K.)C by 
Theorem 3 there would exist Fe.U such that (A — F)es/(.AA). According to 
Lemma 10, A — Fe^(,\ ), which is a contradiction with the nonatomicity of~Y. 

(2) Let A 4 J/. Take FeM (from Theorem 3) such that (AA)FL = J/. Then 
by (g) we have A — F^Jt and thus A — F$.A'\ Since *V is atomic, there exists 
Be(A - F) | st(Jf\ As B = Bn (A - F) by Lemma 10, Besf{(A'A)Fi) and thus 
Bes#(Jt). 

The following theorem is a semigroup valued version of Theorem 1, Theo
rem 2 and Theorem 1.2 from [10]. Indeed, if ju is a set function with values in 

X 

a topological semigroup such that JJ, = £ //„ and Jt resp. Jtn are null system of 
n= I 

/u and /i„, respectively, then for the null system Jt of // there holds Jt c= 

n= I 

Theorem 5. Let {Jlk}£= , be a sequence of hereditary subfamilies of if and Jl 
X 

be a o-ideal such that f] Jik c: J4 and let (Ji — Jtk) C hold for all keN. Then 
k = i 

there exists Fe Jt such that ( 

(1) {A - F: Aes/(Jt)} cz (J <Ae f) s/(Jlk): A is pairw. indecomp. for 
-\ / \ 0# A/c N I keM 

keM\n( f) J/X 
) \keN-M / 

(2) If Jlk are nonatomic for all keN, then Jl is nonatomic as well. 
IfJtk are cr-ideals, then 
(3) if Mk are atomic for all keN, then J4 is atomic. , v 

Proof. (1) According to Theorem 3, {A - F: Ae^(Jt)} est If) Jik). 
/ * \ V* = * J 

For s/[ f) Jtk) we use Theorem 1 and so we obtain the inclusion (1). 
(2) is implied by (1) because if Jlk are nonatomic, then the right-hand side 

of inclusion is empty. x 

(3) If all Jtk are atomic, then by Theorem 2 f) Jtk is atomic and according 
to Theorem 4 Jt is atomic too. A" x 
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4. Applications 

The results concerning the atoms of set functions are in the present paper 
presented abstractly for the families of sets. Namely if v is a set function with 
values in the semigroup (G; +) , its null system JV = {Eeif\ v(E) = 0} is a 
subfamily of $f. Then if the null systems of the set functions satisfy the hypothe
sis of Theorems 1 to 5, these theorems can be applied even to semigroup valued 
set functions. For these applications see [4, Corollaries 1 to 6]. However, if v is 
a set function with values in the extended set of real numbers, then by Remark 1 
there holds s/(v) = si(yV\ so the results concerning the atoms of subfamilies 
will be generalizations of the results for real valued set functions. 

Thus we obtain besides others the following results: 
Theorem 1 besides others expresses that for subadditive nonnegative set 

functions /un with the null systems J/n there holds 

4,i")= 
= U IA e P) s/(/ik): A is pairw. indecomp. for k e M> n f P) J/k\ . 

A keM J \k<=N-M / _ 

Moreover, the above equality holds if instead £ /1„ we take an arbitrary /u 
x n = I 

having a null system equal to f) J/k. 
* = i 

Theorem 2, for example, expresses that the countable sum of nonnegative 
atomic measures is atomic, too. 

Theorem 3 is valid, for example, for set functions //, v such that // is a 
nonnegative measure dominated by a set function v satisfying CCC. According 
to it there exists F/z-null such that Aestf(fi) iff A — Fes/(v). 

Theorem 4 is valid, for example, for a nonnegative measure dominated by a 
cr-finite set function v. According to it, if v is nonatomic (atomic), so // is 
nonatomic (atomic), too. 

Theorem 5, (1) (Theorem 5, (3)) is a semigroup valued version of Theorem 1 
(Theorem 2). Theorem 5, (1) and (2) is valid for example for semigroup valued 
set functions fin, whose null systems are hereditary and the null system of the set 

x 

function £ //„ is a cr-ideal. 
л = I 

I point also to the possibility of succesive applications of the results of the 
present paper to set valued set functions (see, e.g., [1, 7, 9, 12]). If (G; +) is a 
group and M \ Sf -> (2G — {0}) is a set valued set function such that M(0) = {0}, 
then we can put as a null system M = {Eetf: M(E) = {0}} and so the results 
of Theorems 1 to 5 can be applied for set valued set functions. 
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АТОМЫ СЧЕТНОЙ СУММЫ ФУНКЦИЙ МНОЖЕСТВ 

Ре1ег С а ре к 

Резюме 

В работе найдено представление множества атомов неотрицательной функции множства, 
возникающей как счетная сумма неотрицательных функций множеств. 

Аналогичный результат приводится также для мер со значениями в полугруппе. Кроме 
того, в статье показано, что сумма счетного качества атомических мер является атомической 
мерой. 

Эти и другие результаты получены в абстрактной форме, когда мера заменена понятием 
сг-идеал, или более общей системой множеств. 
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