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LUBOMIR KUBACEK — LUDMILA KUBACKOVA

(Communicated by Anatolij Dvureéenskij )

ABSTRACT. Predicting and interpolating in the Kalman filter depend on the
knowledge of stochastical properties both of the process and measurement noise.
The case when one unknown parameter 0'2Q occurs in the process noise and one
unknown parameter UZR occurs in the measurement noise whose ratio 0'6/0'2R

is also unknown is investigated in the paper.

Introduction

The main feature of algorithms of Kalman filters is their iterative character
and the possibility to realize all calculations on line. The necessity of this is quite
obvious, e.g., in the case of tracking positions of a moving satellite. The same
approach must be respected in the case of estimating parameters of covariance
matrices. Thus, an attempt is made in the paper to construct the MINQUE
procedure which can be realized on line.

In what follows, Y denotes an n-dimensional random (observation) vector;
the notations E(Y | 8) and Var(Y | 9) are used for its mean value and co-
variance matrix, respectively. Here 3 and 19 are parameters of the distribution
function of the vector Y (the general notations E(Y | 3,9) and Var(Y | 8,9)
are not used here as a consequence of the assumption that the mean value and
the covariance matrix are independent of the parameter ¥ and 3, respectively).

1. Definitions and auxiliary statements

DEFINITION 1.1. Let xo € R* (k-dimensional Euclidean space) be an un-
known vector and

Xj = Aj_1Xj_1 + I‘j—lgj—l , 1=212,...,
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LUBOMIR KUBACEK — LUDMILA KUBACKOVA

where Ag,A;,... are given k X k regular matrices, T'o,T';,... given matri-
ces and &p,&1,... is a sequence of random vectors (process noisg) which are
stochastically independent and such that E(§;) = O, Var(§;) = Q; = 0'(2)Qj,
i=0,1,....

The position of the jth point x; of the orbit {xo,xy,...} is indirectly mea-
sured by an observation vector

Vj=Cij+’r’j, j=0,1,...,

where C; is a given n X k matrix whose rank 7(C;) = k < n (in what follows,
usually k < n is assumed), and 7); is an n-dimensional random vector (mea-
surement noise) such that E(n;) = O and Var(n;) = R, = ogR;, j=0,1,....
All the vectors &g, &1,-.., Mo,M1,-.. are stochastically independent and all the

matrices Qg, Q1,..., Ro,Ry,... are positively definite (p.d.).

In the following the matrices Qp, Q1,... and Rg,Ry,... will be considered
to be known while the factors o—é and aa will be considered to be unknown.

The algorithm, which gives the best prediction (in the mean square error
sense) of x; on the basis of (vj,...,v])" (' denotes the transposition) and its
correction caused by an adding of the observation v;y; is called the Kalman
filter (KF). Sometimes it is called the discrete KF' as the continuous version can
also be considered (in more detail, see, e.g., [1] and [6]).

LEMMA 1.2. Let aé and a’% be a priori known, i.e., Qo, Q1,... and R, Ry, ...

are known, and let Xy); be the best prediction of x; on the basis of the vector

!/ \/
(V05 -5 v5)

D= AJ._1A37+11 . ..A,:El , J<k, ®y . =1 (identical matriz),

k
-Gy Z P ;L1861 +m0

=1
Co®Po,x i
Ci®1x —Ci > @y L& +m
Hk’j = . ) Ek,j = 1=2 )
Ci®jx k '
-C; > ®;ili1&io1+mj

i=j+1

Var(sk,j) = W;; and Pk,j = (H;c,jWk,ij,j)—l .



KALMAN FILTER WITH VARIANCE COMPONENTS

Then
Xe—1jk—1 = Pro1k—1Hi_1 g1 Wr—1,5-1(V0, Vi, -+, Vi_1)'
Xpjk—1 = Ak—1Xk—1]k—1»
Pik-1=Ap—1Pr_1k—1Af 1 + Teo1Qe1 Ty,
Gk = Prx—1C(Rr + CkPk,k—1C§c)_1, (1.1)
Xik = Xje—1 + Gi (Vik — CrXir—1) ,
Piik = (1 = GkCr)P k-1,
Xpyilk = ArXpjp ... etc.
Proof see, e.g., in [1; p. 27]. O

Remark 1.3. Lemma 1.2 is one of results of the KF theory. It demonstrates
the important feature of this theory, namely, its iterative character. However,
the best predictors given in (1.1) can be calculated only if the factors G'ZQ and

a% are known, which is not our case. As the KF theory is based on the “on line”
approach, the estimation of og and o should respect this approach as well.
One of possible algorithms respecting this approach is given in Section 2.

DEFINITION 1.4. The model

p
(Y,Xﬂ,ZﬂN,-), BeRF, 9ecdCRP, (1.2)

i=1

is said to be a linear model with variance - covariance components. If r(X) =
k < n and Var(Y | 9) is p.d., the model (1.2) is said to be regular; here
Y,1 is an n-dimensional random vector, E(Y | B) = X3, X is a known
(nx k)-dimensional design matrix, 3 a k-dimensional vector of unknown param-

p
eters, Var(Y | 9) = > 9;V;, 9 = (V1,...,9p) € 9 C RP are unknown second
i=1

order parameters — variance components (their definition domain is assumed to
be an open set in RP), and Vy,...,V, are known symmetric matrices such that

p
9¥;V; is p.d. (for more detail see [3]).
=1

p
Let Y; be a subvector of the vector Y and (Yl,Xl,Bl, SV = 211)
i=1
the linear submodel of the model (1.2) corresponding to Yi; i.e., X; consists
of proper rows of the matrix X and V;; of proper submatrices of the matrix
V;. Let the mentioned submodel be also regular. If thg covariance matrix X
is known, the BLUE (best linear unbiased estimator) 3(Y1) of B based on Y;

is a statistic satisfying the following conditions:

1
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i) B(V1) =TV,
(i) E[B(V1)|B] =B V{BeR"},
(iii) V{T;éT*, T fulfilling (ii)} Var(TY; | £11) > Var(T*Y; | 211).
Here >; denotes the ordering of positive semidefinite matrices in the Loewner
sense, i.e., A>; B < A —B is p.s.d.

If ¥,; is substituted by I, the estimator of 3 is called the OLS-estimator
(ordinary least squares-estimator).

211) 212
2217 222

Y; X1 Y1, 22 k
[(Y2>7 (XZ)B’ (221, 222)]’ BeR, (1.3)

be known. Let B(Y:) and B(Yi,Y:) be the BLUEs of 3 based on Y; and
(Y{,Y3), respectively. Then

LEMMA 1.5. Let the covariance matriz ( ) in a reqular model

B(Y1, Ya) =B(Y1) + (X{B' X1) 71 (X; — £, 27
[Bo21 + (X2 — T ZX) (X EX) T (X — 22121_11)(1)’]—1
AYs = XB(Y1) - EaS [V - XiB(Y)] )

Here Xop 1 = Bgo — B01 B} s .

Proof. The model

(v mrisaon) (- mimean )2 (8 50|
Y2—2212f11Y1 ’ X2—221§]1_11X1 "\ 0, 3

is equivalent to the model (1.3).
Thus

B(YL, Ys) = (XS5 X+ (Xo = B %) S5, (X — B B X))
SXER Y+ Xz = 2 BX) B3 (Ve — B B V)]
Taking into account the equivalences
[X{SHX + (X2 — Zr B X ) B3, (Xo — By B X)]
= (X T %) T = (X X)) T (X — 2o B Xy )
: [222.1 + (X2 - 22121—11)(1)()(I121_11)(1)_1()(2 - 22121_11)(1)/] -
- (Xg = B B X)) (X B X)) 7
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[XiZH X1+ (X2 — 2 X)) B0 (Xa — Ezlzl_llxl)]_l
c(X - Zn B X)) 255,
= (X135 X1) T (X2 — T B Xy)
[Baa1 + (Ko = SnBEX) (X B %) T (Xe — B E X)) 7

and the expression B(Y;) = (X{E1X;)~1X, 7' Y; we easily finish the proof.
O

REMARK 1.6. Let Y = XB+¢€, where 3 and € are stochastically independent
random vectors, and X a given n X k matriz such that r(X) = k < n. Let the
mean value B = E[B] be unknown while the covariance matrices Var(3) = DI
and Var(e) = X are known and, simultaneously, r(X) = n. Then the best (in
the mean square error sense) linear prediction of the random vector 3 is

B* = [X'(Z + XTX')"1X] 'X/(B + X8X')"lY =3
= (X'Z7IX)"IX's" 1y,
Here, ﬁ is the BLUE of B based on Y, i.e., it equals the BLUE in the linear
model (Y, XB,X + XXgX').
Proof iseasy, and therefore it is omitted. O

Thus it can be seen that predictions and least squares estimators in the
considered model coincide in the given sense.

P
DEFINITION 1.7. Within the model (Y,X,@, > 19iVi) (cf. Definition 1.4),
i=1

the 99-MINQUE (minimum norm quadratic estimator) of a linear function
g(9)=g'9,9€d,is

p
DAY (MxZoMx) TV (MxZoMx) Y,
=1

under the condition that the system of equations

A=
> (mxmmy) " T €
is consistent; here A = (Aq,...,Ap) and
= Mx)"Vi(MxZoMx)*V;],  4,5=1,....p,
{S(szoMx)+}i,j Tr[(Mx ZoMx) " Vi(Mx ZoMx) V] i ] P

P

o = Y ¥ 0Vi, Mx =1 — XX*t, and * denotes the Moore-Penrose g-inverse
=1

(in more detail, cf. [4]).
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In the following, vec(A) means the vector that arises by arranging columns
of the matrix A one below the other.
Let C,, n, be the (mn) x (mn) matrix with the property
V{A: A is m x n matrix} Cvec(A") = vec(A)

(in more detail, cf. [5; p. 10]).
LEMMA 1.8. For the observation vector Y in the model from Definition 1.4 it
is valid _
EY®Y|B,9)=X®X)3*®+V9,
where _

V = [vec(V1),...,vec(Vp)].
If, in addition, the vector Y is normally distributed, i.e., Y ~ N (X3, %), then

Var(Y ® Y | B,9)
=(lp2n2 +Crnp)(T® )+ E® (XBA'X')+ (XBAX)® X
+ [(XB) @ 1]Z[1® (B'X)] + 19 (XB)|Z[(B'X) ®1].

Proof. See, eg., 2] O

Remark 1.9. Each invariant estimator of the parameter ¥ (i.e., an es-
timator whose realizations — estimates — do not depend on the value of 3) is
a function of the maximum invariant My Y (in more detail, cf. [5]). By this

reason, the model
P
(Mx Y, O, Zﬂ,-MxV,-Mx>
=1
is convenient for invariant estimating the parameters 9J,,...,9,.

Since only the quadratic estimators are taken into account, the second tensor
power of the maximum invariant, i.e., (MxY)?® = (Mx ® Mx)Y?®, in the
model from Definition 1.7, can be considered as the observation vector. In this
way, a model “linear” with respect to its structure

[(Mx ® Mx) Y%, (Mx ® Mx)V9, (Mx ® Mx)(I + C)(Zo ® £o)(Mx ® Mx)]
is obtained; the covariance matrix is implied by the assumption on normality of
the vector Y and Lemma 1.8.

LEMMA 1.10. For the model from Definition 1.7 the vector Mz_l/zngl/zY
1]
is also the mazximum invariant.

. -1/2 . . .
Proof. The matrix Mg_1/24%, /2 transforms the maximum invari-
o

ant into Mz_1/2x20—1/2Y, and the matrix MXE(I)/2 transforms the invariant
0

My, 12455 /?Y into Mx Y. O
(]
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Thus, we can start from another “linear” model
— ~1/271 &
{z, [(Mzgl/,,xzo ) @ (M,:gmxz0 Y )]w, Var(Z | 00)}
created by the second tensor power
_ -1/2y,\20 _ -1/2 -1/2 ]Y2®
Z = (Myoaay B3 7)™ = [(Mpoa/ayg 55%) © (Moo 55 /%) | Y29

LEMMA 1.11.

(i) The OLS-estimator (cf. Definition 1.4) of ¥ (from Definition 1.7) based
on the second tensor power of the mazimum invariant (Mx ® Mx)Y?® from
the model

[(Mx ® My) Y2, (Mx ® Mx)V3, (Mx ® Mx)(I + C)(Zo ® Zo)(Mx ® Mx)]
(see Remark 1.9) is

Y'MxViMxY
3 = [V'(Mx ® Mx)V] 'V/(Mx @ Mx) Y2® = S} :
Y'MxV,MxY

(ii) The OLS-estimator of 9 (from Definition 1.7) based on the second tensor
power of the mazimum invariant M2—1/2x251/2y 1s
0o

3 B ~y—1
9 = {V’ [(251/2M2g1/2x261/2) ® (Egl/zMzgl/zxz(—J—l/z)]v}
-V [(251/2M231/2x) ® (251/2Mzgl/2x)]
[0 M ) © (351 M )| Y20
= {V'[(MxZ,Mx) " ® (MxZoMx) ]V} 'V
- [(MxZoMx)* ® (MxZoMx) ] Y>®
Y'(MxZoMy)tVi(MxE,Mx)+tY

-1
(My=oMy) ™

Y (MxZoMx) TV, (MxZoMx)TY
Here

{SMx}i,j = Tr(MxV;MxV;), i,j=1,...,p,

{S(MxEoMx)+}i,j = Tr[(MxZoMx)TV;(MxZMx)tV;], ihj=1,...,p.
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Proof. If the relations
MXMX - MX, MEEI/ZXMzgl/ZX = Mzguzx,
(A®B)(C®D)=(AC)® (BD),
[Vec(Vi)]l(Mx ® Mx) vec(V;) = [Vec(Vi)]lvec(MijMx) = Tr(V;MxV;Mx),
(MxZoMx)* = 55" = ZFIX(XEF X)X S5t = 25 Mgy 2572,

[vec(Vi)] [(MxZoMx)* @ (Mx ZoMx)*] vec(V;)

= Tr[Vi(MxZoMx)*V;(MxZoMyx)* |,
[vec(Vi)]l(Mx ® Mx)Y?® = [vec(V;)] vec(Mx YY'Mx)

= Tr(ViMx YY'My) = Y'MxV;Mx Y,

and
[vec(Vi)] [(MxZoMx) T ® (MxEoMyx)*] vec(V;)
= Tr[Vi(MxZoMx)*V;(MxZoMyx) "]
are taken into account, then the proof can be finished straightforwardly. O

Remark 1.12. Lemma 1.11 demonstrates the fact that all invariant esti-
mators of ¥ in the model from Definition 1.7 can be derived from the linear
theory (least squares procedures) applied to models

[(Mx ® Mx) Y22, (Mx ® Mx)V9, (Mx ® Mx)(1 + C)(Z ® Z¢)(Mx ® Mx)]

and

(2, (Mg 55 7%) @ (M2 2077) V9, Var(2))

respectively. It is to be said that, in the case Y is not normally distributed,
another covariance matrix of the second tensor power of the observation vector
occurs in the “linear” models considered, however, this is of no importance for
the further consideration since the OLS-estimator only will be demonstrated (in
more detail, cf. [7] and [8]).

LEMMA 1.13. In the model from Lemma 1.5,
Var[B(Y1)] > Var [,é(Yl, Y2)] .
Proof. It follows from the equivalence
X, BEX0 + (Xo = BB Xn) B (Xe — Bor B X)) 7
= (X2 X) 7 = (X B X)) T X — B B0 X0) [Baza + (X2 — Boi By Xa)
C(XUETEX) T (X2 — EnBtXa)] T (Xe - BB X)) (XS X0) T
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and the obvious fact that the second term on the right hand side of the equality
is a p.s.d. matrix. O

Remark 1.14. If 3(Y;) and E(Yl, Y2) are any unbiased estimators which

differ from B(Y;) and A(Yi, Y>), respectively, then the inequality from
Lemma 1.13 need not be valid; cf. the following example:

Example 1.15. Let us consider the model

Y1 1 011, 012, O13
Yo |,|1]8, | 021, 022, 02
Ys3 1 O31, O32, 033

Let B(Yy,Y,) = 3(Y1 + Y2) (an OLS-estimator), then Var [B(Yl, Y,)] =
%(0'11 + 2012+ 092). If ﬁ~( Y1, Y2, Y3) = %(Yl + Y2 + Y3) (an OLS-estimator),
then Var[ﬁ(Yl, Yz, Yg)] = %(0’11 + 20’12 + 20’13 + 099 + 20’23 + 0'33). Thus

Var[B(Y1, Y2)] > Var[B(Y1, Yz, Ys)]
<~ 5(0’11 + o922 + 20’12) > 4(20’13 + 2093 + 0'33) .

The last consideration leads to the conclusion: Under some circumstances, a
sequence of non-efficient estimators may have decreasing variances. If the esti-
mators considered are from the numerical viewpoint simple, then it seems to be
reasonable to use this sequence instead of the sequence of the efficient estimators
which are, from the numerical viewpoint, complicated.

Therefore, in the following, the I-MINQUE procedure for the estimation of
variance components in KF is used as these estimators seem to be the most
simple in the class of quadratic estimators.

The notation I-MINQUE means that either ¥y in Definition 1.7 fulfils the
equality | = fﬁwvi (if such ¥y exists), or the matrix Xy = i P;0V; is

i=1 i

=1

substituted by_l (if such Yo does not exist).

2. Estimators of variance components in KF

The KF is considered in the form

Vo

Vi

: Ho,; €0,

‘ = e X0 + e s

V.

J Cj+1q)j+1,() Ej
Vit1
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where
e [ _(agv,-, B; >+02 (ﬁ, 0 )
Py Bj,  Cjt1Kjt1,+1C5p R\O, Rju/’
ROa 0) ) 0)
ﬁ: 0’ R17 ) 0)
07 0) ) R]
Co
Ci®ip .
Ho; = . y Pijo=Aj_1Aj_2...Ap, i=1L2...,
Ci®j0
o, O, o, ..., o0
0, CiKiCj, CiKyCh, ..., CKyC
Vj: 0, C2K21C'1, C2K22C'2, sy C2K2jC;- y

0, CjKj1C’1, CjKj2C,2, R Cjijc,

Kisri = Risr1ToQolo®;  + PiproT1QuD @], + - + &, 0i1Qioa Ty,
Kiitr = ®i1T0Qol0® . + i oT1QiT @, 0+ + | APRY o PR AAIRL. NP
i=1,2,...,

Q-o3Q;, K=ok, j=0172...,

(0]
CiKy;4+1C)y g

Bj _ J' J+
C;Kj+1C)1

THEOREM 2.1. In the given KF, the iterative procedure for 1-MINQUE of the
parameters 0'(2), 0'2R is given by the sequence of relations:

(1) , )
P; = (Hp ;Ho;) ™",
(2)
Vo
X015 = P;jHo ;
vj
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(3) )
Vo Vo
Y, = Cl - Ho,j’?ou} V; : | —Ho,iXo|5| ,
Vj Vj
(4) ,
Vo Vo
Y2, = | —HoXo;| Rjj | —Ho,iXo5| »
Vj Vj
where
RO; Oa ) 0
Rjj _ 0, Rla ) 0 ,

(5)

MHO,j =|- HO,ijHé)’j,
(6)
ch_ ( Tr(My, ;ViMy, ,V5),  Tr(My, ,V;My, ;R;;) )
J Tr(My, ;R;jiMn, ;Vj), Tr(My,,R;;My, ;Rj;) )’
(7) _,
g . I —1 ~ -
(29) = (3).
R.j 725
(8)
-1
Gjr1=P;®} 1 0C; 1 (1+Cir1®41,0P; ®)41 0Cip1)
(9) i i i
Xolj+1 = Xolj + Gjt+1 (Vi1 — Cit1®541,0%0)5)
(10)

Vir1 — Cir1®jp10%041 = (1 — Ci41®,41,0G541) (Vi1 — Cir1®j41,0%015)

(11)
Vo
( : ) — Ho,jXo|j+1
V]‘ '

Vo
=| | —Ho,Xo; —Ho,;Gj+1(vit1 — Ci11®j11,0%0;) ,

Vj
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(12)
Vo
F15+1 =1, — 2(vj41 — Ci41®511,0%05) Gjy1Ho G [ | 1| = Hos%ops
vj
+ (vj+1 — C41®;41,0%);) Gjr1Ho,ViHo,;Gj1
- (Vj+1 = Cir1®j41,0%0)5)
Vo !
+2 | ) Ho%opsn | Bj(vir — Cir1®ji1,0%0)j41)
vj
+ (v — Cj+1‘I’j+1,0’~‘0|j+l),cj+1Kj+l,j+1C;'+1
(Vg1 — Ci11®j41.0%00541) 5
(13)
Vo
Fo.i41 =25 — 2(vis1 = C1®jr10%05) GjaHo Ry | | 1| = Hokos
vj
+ (vi+1 — Ci41%P541,0%)5) Gjy1Ho,R;5Ho,;Gjh1
- (Vit1 = Cj+1®j41,0%);)
+ (V41 = Cia1®541,0%0541) iz (Vi1 — Cipa®je10%0)j41)
(14)
Piv1=(1-G;11Cj+1®;41,0)P;,
(15)
MH,;40 = M( Ho,; )
Cit1®5+41,0
:(MHO,,-, 0)+(Ho,j(Pj —Pj11)Hg —Ho,;G;j 11 )
o O -G Ho 1+ Cj1®410P;®) 1 0C )7t/
(16)

V. B. R;; 0]

v' — 7 J R . — JJ

Ak (B;., C]’+1Kj+1,j+1cg'+1>7 s (0, Rj+1>’
a7

m _

c), =
( Tr(MHo,j+1vj+1MHo,j+1vj+1)’ Tr(MHO.J’+1Vj+1MH0'j+1Rj+l’j+1) )
Tr(MHo,j+1RJ'+1,J'+1MH0,]‘+1V]'+1)’ Tr(MHo,j+1Rj+1yj+1MHo,j+1RJ+1gj+1) ’
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(18)
(&% j+1) (C(') )—1 (5’1 j+1> t
~9 = : P ,...  €lC.
°'2R,j+1 AR Y2,5+1

2
Proof. With respect to Lemma 1.11, the I-MINQUE of (‘;9) in the
R

model
Vo

2 2
» Ho,jxo0, oQV; + orRj;
vj

is

~ -1 ~
("?i) _ (Tr(MHo,jVjMHo,jvj)7 Tr(MHo,jVjMHo,jRjj)> <‘]1,j) ,
R

j TI‘(MHOVJ_ RijHg,jvj)a Tr(MHo,j RijHo,j RJJ) 72,5
where
Vo
;)'/l,j = (V(ga"'aV;)MHo,jvaHo,j )
Vj
Vo
:)’2,]‘ = (Vé, ey VJ{)MHO']_ RijHo,j
v
Obviously,
Vo Vo Vo Vo
Muo, | * | = ¢ | —HoiPiHo | : | =] @ | —HosXo-
V]' Vj Vj Vj
Now, from Lemma 1.5, for
Vo
Yl = ) xl = HO,j ) IB = Xo , x2 = Cj+1q)j+1,0’
vj
211:|7 212:(), 222:|
we obtain

Xoj+1 = Xo)j + Gjt1(vjt1 — Ci11®j41,0%05) -

(10) and (11) are consequences of this relation.
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As far as (12) and (13) are concerned, they arise from the formula

!/

Vo Vo
Yi,j+1 = ) MHo,j+le+1MHO,j+l
vj vj
Vi+1 Vi+1
!
Vo
: Ho )
— . ’J v
= - Xo|j+1
vj (Cj+1‘1’j+1,0 |
Vi+1
Vo
: HO 9
. V . . — ( ?] i .
j+1 . . 0|7+1
vj Cit1®j410
Vi+1
and
’
Vo
-~ . O,j ~
Y2,5+1 = ’ - ( ) Xo|j+1
v Cit1®j410 !
Vi+1
Vo
. Ho ;
“Risq s : _ ( J Rl
J+1,+1 olj+11} »
’ vj Cit1®j110 lg
Vit+1

respectively. Here (9) and (10) must be taken into account.

(14) follows from the relations

-1
Ho ;
Pjy1= [(Hé,j, ;‘+1,0C;+1) (Cj+1'I';+1 0 )]

~ -1
= (Pj1 + 2511,0C5+1C5+1%P511,0)
-1
=P; = P;®} 1 0Ci 11 [1+ Ci1®541,0P®5 41 0Cl ] Cir1®jt1,0P;
= (I - Gj+1cj+1‘1’j+1,0)PJ"
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As
M, 00 = M( Ho ; )
Cit1®j+1,0
(0. ) (c.%
o, 1 Cit1®j41,0
(P +‘I”+1 oCJ+1CJ+1q’J+1 0) ( 0,57 ‘I)I+1 0cJ+l)

(U, V

- v/, Z b
where

- -1
U=1- HOJ’(P' T+ ®p1 0C3‘+1Cj+1‘1’j+1 0) Ho; »

— -1
- _HO,J (P ! + ‘I’,+1 OCJ+1CJ+1<I’J+1 0) (I’g+1 OC]+1 ’
-1

Z=1- Cj+1‘I’j+1,0(P + ‘1"+1 0C1+1C1+1‘1’J+1 0) ‘I’J+1 0c1+1 ’
I —Hg j(P'—1 + ®541,0C511Ci1 P41, o) H:)’j
=1-Ho;P;H; ; + Ho ;P;®},, (Cjyy
(1 4+ Cj11®541,0P;®)410C)h1) 1Cj+1'1’j+1’°PjH6’j

=My, + Ho,;G;11Cj11%®,41,0P;Ho 5
and, from (14),
Gj+1Cj+1®j11,0P; = Pj — Pjt1,
we obtain the (1,1)st block of the matrix My, ; in (15).
The (1,2)nd block can be expressed as
—Ho ;P;®5 1, OCJ+1( + Cj+1‘I’j+1,0I:’J"I’;‘JA,()C;'H)_1 )

what, with respect to (8), equals —Hp ;G;+1. Analogously, we obtain the (2, 1)st
block. The (2,2)nd block is implied by the relationship

- -1
- CJ+1‘I)J+1 O(P ! + 'I’g+1 oc +1CJ+1‘I’J+1 0) ‘I’J+1 0C3+1

= (1+Cj+1®541,0P;®}41,0Cj41)
Now, the proof can easily be finished. O

-1

Remark 2.2. With respect to Remark 1.14 and Example 1.15 on the one
side and with respect to Lemma 1.11 on the other, it is not clear if the sequence

of estimators 5
(UQJ) (6(23,1'+1)
. - y e
TR TR.j+1

has decreasing variances. The following lemma is useful for recognizing this fact.
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LEMMA 2.3. If the random vectors &g,€1,... and Mo, MNy1,... in the KF are
normally distributed, then

var[ (352 ) [ o] = (e v [ (322) [ o8] )
where
Var (91,5 | 03, 0R)
= 0d2Te[(Mp, V)1 + 030k Tr[(Mu, ,V;)*Mu, ,R;;]
+ oR2 Tr[(MHO,],VjMHo,j R,

cov(Y1,5,¥2, | oG, oR)
= 032 Tr[(MHo,jVj)aMHOJ R;;] + aga§4 Tr [(MHO']_ V;My,, R;;i)?|
+ O.Lli?2 Tr [MHo,j Vj(MHo,j Rjj)3] ’

Var(¥2,; | 68, 0R)
:Ué2Tr[(MH0,jVJ'MHo,j Rjj)z] + 0602R4Tr[MHo,jvj(MHo,j Rjj)s]
+or2Tr[(My, ;Rj;)*] -

Proof. It is implied by the relationship
cov(MxTiMxY, MxT:MxY |9) =2Tr [MXTIMXE(ﬁ)MngMxE(ﬁ)] )
which is valid under the conditions
Y ~ N(XB,2(9)),
and T; = TY, T2 = T5, which can easily be proved (see, e.g., [5]). O

Remark 2.4. If the estimates 7§ i R ; are used instead of the unknown
values crf), a%, then we obtain an estimate of the covariance matrix

(6%,
Var [(6_?]) ‘aé,aﬁ] .
R.j

If the sequence of such estimates demonstrates a tendency to decrease (e.g., in the
Loewner sense), then it is reasonable to use the procedure given by Theorem 2.1.
A desirable situation may occur when this sequence is oscillating around the null
matrix after some step j. In this case, the estimates\_&aj and &%’j are, from

the practical point of view, equal to the actual values of the parameters 0'%)
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and a%, and there is no necessity to continue in the iteration procedure. The
filtering and predicting, respectively, of the state vectors x; can be continued
with values &(2') ; and &%j.

Remark 2.5. Till now, the problem whether the quantities 0'(2) and or,%
are unbiasedly estimable was not investigated. This depends on the regularity
of the matrix C;-I) (cf. [5]). For this reason, it is sufficient to investigate the case
j =1, i.e., to solve the problem within the model

Vo Co 2 (O, o) 2 (Ro, O
(%) ()= =a (0 cmanmer) +o# (6 =)

The matrix C{" for this model is
c — (Cu, Ci2
! Ca1, C2 )’
where

Ci1 = Tr[(1 — U)C1ToQoTHC (1 — U)C1ToQoIyC]
Ci2 = Tr(CoS™A,C, C1ToQoIC; C1A;S™ICHRy)
+ Tr[(1 = U)CiToQoloC (I — U)Ry ],
Coz = Tr[(1 — CoS™1CY)Ro(I — CoS ™ Cf)Rg + CoS ™ A{CiR; C1AS1C)Ro]
+ Tr[C1AcS ' CHRoCoS T ALC Ry + (1 — U)Ry (I — U)Ry],
S™! = (CLCy + ALC,C1Ap) T,
U =C;A,ST'A/C).
As
I— U =1-CyAs(C)Co + A)C,C1A¢) T ALC, = [I14+ C,A¢(C)HCo) ' AHC)] "

is obviously a p.d. matrix and C;ToQoI'{C} is a p.s.d. matrix, Cy; # O. As o}
is unbiasedly estimable from the vector vy = Cyxg + 779, and at least one linear
combination 9106 + g20% has the property

(3) e+ (2)#(2) ¢ (2)2(2) < curon

what implies that glo'é + g20% and, simultaneously, o are unbiasedly es-
timable, both of g and o are unbiasedly estimable.

If the sequence considered in Remark 2.4 has no desirable properties, then it
is necessary to develop the iterative procedure for determining estimates 6'(2) e
&ﬁ,j which are at least (‘76,0’ U%’O)-locally efficient. In this case, the sequence

ry
Var [(&SJ) { 02Q,0’UI22,0} , j=0,1,...

R,j
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is decreasing in the Loewner sense.

Such an iterative procedure is much more complicated than that given by

Theorem 2.1. Nevertheless, the idea used in Theorem 2.1 can be used as well.
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