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O. ABDELKADER* — SH. KHIDR** 

(Communicated by Michal Zajac) 

ABSTRACT. The goal of this article is to construct a solution with Lp-estimates, 
1 < p < oo, of the equation dg = f on strongly o-convex domain D of a Kahler 
manifold M, / G L£S(D,E), s> q, where E is a holomorphic line bundle over 
M satisfying a certain positivity conditions. 

Introduction 

The existence of solutions of the equation dg = f when / is a form of type 
(0, s), df = 0, s > 1, and satisfies Lp-estimates, 1 < p < oo, has been a central 
theme in complex analysis for many years. On strongly pseudo-convex domains 
with C4-boundary in a Stien manifold, K e r z m a n [9] has obtained a solution 
with Lp-estimates, 1 < p < oo, for the equation dg = f when / is a com
plex valued form of type (0,1), df = 0, and satisfies Lp-estimates. On strongly 
pseudo-convex domains with C2-boundary in Cn , 0 v r e l i d [11] has general
ized this results to (0,5)-forms. Using K e r z m a n ' s method, A b d e l k a d e r 
[1] has extended 0 v r e 1 i d 's results to strongly pseudo-convex domains in an 
n-dimensional complex manifold for forms of type (0, s) with values in a holo
morphic positive line bundle and to complex valued forms of type (n, s) when 
the complex manifold is a Stien manifold. A b d e l k a d e r and K h i d r [3] have 
extended A b d e l k a d e r ' s results to forms of type (0, s) with values in a holo
morphic vector bundle which is Nakano positive and to complex valued forms of 
type (r, 5), 0 < r < n , when the complex manifold is a Stein manifold. 

The local solvability of dg = f on strongly q-convex set when / is a com
plex valued form of type (0, 5), df = 0, s > q, is due to A n d r e o t t i and 
G r a u e r t [5]. On strongly q-convex domains in Cn , M a [10] has obtained 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 32F20, 32C35, 35N15. 
K e y w o r d s : Lp-estimate, ^-equation, strongly o-convex, smooth boundary, complex manifold. 
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Lp-estimates, 1 < p < oo, for solution of Bg = f when / is a complex valued 
form of type (0, s), Bf = 0, s > g, and satisfies Lp-estimates. 

In this paper, joining the results in [1] and [9] with those in [10], we extend 
the results of [1] to strongly g-convex domains and to forms of type (r,s), s > q, 
with values in a semi-positive (semi-negative) line bundle. The main aim of this 
paper is to establish the following existence theorem with Lp-estimates: 

THEOREM. Let M be a Kahler manifold of complex dimension n and E be a 
holomorphic line bundle over M. Let D be a strongly q-convex domain of M. 
If E is semi-positive (resp. semi-negative) of type k on D, then for any f G 
L\ S(D,E), Bf = 0. s > q and r + s > n + k (resp. s > q and r + s < n — k), 
there is a form g = Tsf G L1

 S_1(D,E) satisfying Bg = f, where Ts is a 
bounded linear operator. Moreover, if f G L^S(D,E), 1 < p < oo, there is 
a constant Cs such that ||g||Lp (D,E) — ^SW^WL^ S(D,E) - The constant Cs is 
independent of f and p. If f is C°°, then g is also C°° . 

The plan of this paper is as follows: In Section 1, we fix the notation and recall 
some useful facts. In Section 2, we prove an existence theorem with L2-estimates. 
In Section 3, we give local solution for the B-equation with Lp-estimates for 
1 < p < oo. In Section 4, we prove the existence theorem with Lp-estimates. 

1. Notation and preliminaries 

From now on, M denotes a Kahler manifold of complex dimension n and 
let 7r: E —•» M be a holomorphic line bundle over M. Let {u }, j G I , 
be an open covering of M consisting of coordinates neighborhoods u- with 
holomorphic coordinates z- = (zh z^... ,zj) over which E is trivial, namely 
7r _ 1 (u ) = u- x C. A Hermitian metric along the fibers of E is a system of 
positive C°°-functions h = {h-}, each defined on H , such that h- = \eiA

2hi on 
u{ Pi u-, where {e-•} is the system of transition functions of E. The curvature 
form associated to the metric h is defined by 0 = {©.} , ©. = >/—Iddloghj = 

1 E 6 j a / 3 ( l ^ A d ^ , w h e r e 
a,/3=l 

ja? ~ dzfdz? ' 

Let T(M) (resp. T*(M)) be the holomorphic tangent (resp.cotangent) bundle 
of M. 
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DEFINITION 1.1. 

i) E is said to be k-positive (resp. k-negative) at x G u,, if the form 

a,/3=l 

is a Hermitian form on TX(M) having at least n — k + 1 positive (resp. 
negative) eigenvalues, 

ii) E is said to be semi-positive (resp. semi-negative) at x e u-, if the form 
(1.1) is positive (resp. negative) semi-definite Hermitian form on TX(M). 

iii) E is said to be semi-positive (resp. semi-negative) of type k at x, if E is 
both semi-positive and k-positive (resp. semi-negative and k-negative) 
at x. 

The notation X <G M means that X is an open subset of M such that its 
closure is a compact subset of M . 

DEFINITION 1.2. We say that D d M is strongly q-convex, q > 1, if there 
exist a neighborhood U of the boundary clD of D in M and a real-valued 
C2-function p with dp(x) ^-0 on [/ such that [ / n D = { x G l 7 : p(x) < 0 } , 
and its Levi form 

^ ( ^ E ^ I ^ C A C = (C1,C2,..-,C")eC", (1.2) 

has at least n — q + 1 positive eigenvalues at each point x G U. A function /? 
satisfying (1.2) is called strongly q-convex at x. 

Remark 1.3. By shrinking U we can assume that U <E U, where U is open 
and the Levi form (1.2) has at least n — q+ 1 positive eigenvalues at each point 
x G U. Thus p and its derivatives are bounded on U. 

From now on, we assume that D is a strongly q-convex domain of M with p 
and U from Definition 1.2. We will use the standard notation of H o r m a n d e r 
[6] for differential forms. Let A r ' s ( M , £ ) (resp. Vr>s(M,E)) be the space of 
L?-valued differential forms (resp. with compact support) of type (r, s) and of 
class C°° on M . A differential form (p = {cp,} G A r ' 5 (M,E) can be expressed, 

on u-, as (£(z) = Yl VjArBsi^d-Zj r A dz^s, where A r and J55 are strictly 
Ar,Bs 

increasing multi-indices with lengths r and s, respectively. We have the operator 
8: A r ' s(M,F;) -> A r ' 5 + 1 (M,F0 , locally defined by: 

J4 r ,B 3 fe=l J 
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Let 

ds2= E ^ d z ^ d ^ , 

be the Kahler metric defined on M. 

For cp,ip G A r , s ( M , E) we define a local inner product at z G u- by 

^ .(z) A * ^ ( I ) - (tp(z), 1>(z)) dv , (1.3) 

where the Hodge star operator • and the volume element dv are defined by d s 2 

and (ip,*/)) is a C°° function on M independent of j . Let Ar>s(D,E) be the 
subspace of Ar>s(D,E) whose elements can be extended smoothly up to dD, 

kr>°(D,E) = y \ D : ve\r'°(M,E)}. 

For ip, ijj G Ar's(D,E), we define the inner product ((p,ip) and the norm 

with respect to ds 2 and h by: 

(ч>,Ф) = J(cp,rp)dv, \\<p\\2 = (<P,<p). (1.4) 

Let \f(z)\ = y/(f(z)J(z)) for / G Ar>s(D,E) and Lp

s(D,E) be the Ba-

nach space of forms / in Ar>s(D,E) for which / \f(z)\p dL> < oo, 1 < p < co, 
D 

and esssup \f(z)\ < oo for p = oo. The norm on Lp

s(D,E) is defined by 
ZED 

L*AD,E) = (l\f(z)\P^) P for 1 < p < oo and by | | / | | L ~ ( r ^ ) = 

esssup |/(2:)| for p = oo. 
zeD 

2. Existence theorems with L2-estimates 

The L2 completion of Ar>s(D,E) with respect to the norm defined by (1.4) 

is denoted by L2

rs(D,E). Let 8: L2

rs(D,E) -> L2

rs+1(D,E) be the maximal 

closed extension of the original 8. A form u G L2

 s(D,E) is in the domain of 

8 if 8u, defined in the sense of distributions, belongs to L2

S+1(D,E). Then 

8 defines a linear closed, densely defined operator. From the general results 

of functional analysis, 8 admits a linear, closed and densely defined adjoint 

8*: L2

 S+1(D,E) -> L2

 S(D,E), called the Hilbert space adjoint of 8, such that 

(<pM) = (8*y,i>) 

for any ty G Dom(d) and cp G Dom(<9*). 
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Let 
Dr>, = 88* + 8*8: Dom(D rs) -> L2

rs(D, E), 

be the Complex Laplacian operator of 8: Lfs(D,E) ->• Lfs+1(D,E), where 

Dom(D rs) = {<p € L2
rs(D,E) : <p € Dom(0) nDom(d*), 

8<p G Dom(8*) and 8*<p G Dom(d)} . 

Let W>S(D,E) be the space of harmonic forms of type (r,s), i.e., 

Ur>s(D,E) = Ker(D r J = {a € L2
rs(D,E) : 8a = 8*a = 0} . 

We define a linear operator 

Nry.Lls(D,E)^L2
rs(D,E) 

as follows: 
TO i faGKer(D r i S ) , 

"•• U ifa€R(D r iJ, 
where 7£(Dr5) is the range of D r 5 and 0 is the unique solution of \3r scf) = a 
with 0 _L Ker(Dr^), and we extend Nr s by linearity. Let Hrs be the orthogonal 
projection of L2

rs(D,E) onto ?{r>s(D,E). For 5 > q, the operator N satisfies 
the following theorem: 

T H E O R E M 2.1. (cf. [8]) 

(1) Nr s is a bounded operator; 
(2) for any a e L2

rs(D,E), a = B5*Nrsa + B*dNrsa + Hr>sa, and the 
dimension of 7ir,s(D, E) is finite; 

(3) Nr>sH
r>s = Hr>sNrs = 0, Atri5DriS = DrsiVr(S = I-Hr>s on Dom(D r J , 

and if Nrs+1 is defined on Lfs+1(D,E) (resp. !Vrl is defined on 
Ll^D^E)), then Nr3+18 = dNr>s on Dom(8) (resp. A ^ d * = 
8*Nrs on Dom(8*) ) ; 

(4) Nrs(A
r>s(D,E)) C Ar>s(D,E) and Hr>s(Ar>s(D,E)) C Ar>s(D,E). 

n 
Let u) = \\f-l Yl 9jap dz? AdZj be the (1,1) differential form associated 

Q,/3 = l 

to the Kahler metric ds2 on M. Let e(u): Ar>s(M,E) -> Ar+1 '5+1(M,F;) be 
the linear mapping locally defined by (e(u)(f-) = u A ^ and T: Ar>s(M,E) -> 
A r _ 1 '5 _ 1(M, E) be the linear mapping locally defined by T = ( - l ) r + s •e(cj) • . 
On Ar>s(D,E), we write D and hr>s(D,E) for D r^ and Ur's(D,E) respectively. 
For ^ G Ar'5(M, E), on Kahler manifolds, at any point, from classical differential 
geometry, we have the identity 

((D - * ~XD * )<p, <p) = ((e(@)T - Te(e))<p, <p). (2.1) 
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THEOREM 2.2. (cf. [4]) Let M be a Kahler manifold of complex dimension n 
and E be a holomorphic line bundle over M . Let D ~ M be a strongly q-convex 
domain of M. If E is semi-positive (resp. semi-negative) of type k on D, then 
we have hr>s(D, E) = 0 for r + s > n + k and s > q (resp. r + s < n — k and 
s>q). 

P r o o f . Firstly, we suppose that E is semi-positive of type k on D. Then, 
from Definition 1.1, the matrix (©Ja/j) is positive semi-definite and of rank 
> n — k + 1 at any point of D. Let x0 G D be an arbitrary fixed point and vi, 
i = 1,2, . . . , n , be the eigenvalues of (®ap) with respect to (gag) at x0, with 
^i > v2 -^ " ' -*. Vn — 0* Then m1 = inf vn_k+ 1(x) > 0. We define another 

xED 
Kahler metric 

a,/3=l 

on a neighborhood of D, where fi1 > 0. Let CJ1 be the differential form as
sociated to ds^ and T1: A r ' s(M, £ ) -* A r _ 1 ' 5 _ 1 ( M , £ ' ) be the linear mapping 
defined by T1 = (—l)r+5 -k e(ux) * . Let b be the rank of (0a/j) at x0. Using 
(2.1), as [2; Lemma 1], we prove that at any point in D, for <p G A r ' 5 ( M , E ) , 
we have 

((rie(0) - e{e)TMJaia2^0i^A = h^ja^arh^ , (2.2) 

1 + U,V„ 4-i 1 

i + ̂ J" t t 5A 1 " 1 + A.i««J"^\1"i + Mi 
Let 1 < a 1 < cY2 < • • • < ar < n (resp. 1 < /3\ < (32 < • • • < (5S < n) be 
fixed. Suppose that in the set { a l 5 . . . , cYr} (resp. {/31?..., /35}) there exists 51 

(resp. 52) among the first b of the set {1, 2 , 3 , . . . , n}. Then, we have 

1 / n-k+i 1 x 

V<-(2b-Sl-s2+ g I _ _ - ( n - ^ + l )j . 
But r + 5 > n + k implies that r — (n — b) + s — (n — b) > 2b — n + k. Hence, there 
exist at least 2b —n + k of ai and Pi among the first b of the set {1,2, 3 , . . . , n}. 
Therefore, s1 + s2 > 2b — n + k, i.e., 2b — s1 — s2 — (n — k + 1) < — 1. Then, for 
any fixed /i1 > 2^~1 , we have Q < —l/2fi1. Then from (2.2), at any point of 
D, for r + s > n + k we have 

( ( r i e ( 6 ) - e ( 0 ) r 1 ) ¥ ? , <p) < - ( i / 2 / x 1 ) ( v , <p), 
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where the inner product (•,•) is defined by the metrics ds2 and h. Therefore, 
from (2.1), we obtain 

o<(^-1n1^^,^)-((r1e(e)-e(0)f1)^,^) 
<-(l/2^)(ip,^)<0 

for <f e hr>s(D, E)_ with r + s>n + k where Dx = 88* + 8*8 and 8* is the 
formal adjoint of d when the inner product (•, •) is defined by ds2 and h, i.e., 
hr>s(D,E])^0 for r + s >n + k. 

Secondly, we suppose that E is semi-negative of type k on D. Then, from 
Definition 1.1, the matrix (Qjaa) is negative semi-definite and of rank > n—k+1 
at any point of D. We define another Kahler metric 

n 

<-*.= EC-W-^e^d-fd-f, 
a,!3=l 

on a neighborhood of D, where \i2 > 0. Let x0 G D be an arbitrary fixed 
point and 7^, % = 1,2,... ,n, be the eigenvalues of (0,-aj) at x0 with respect 
to (gjap) with 7X < 72 < • • • < 7n < 0. Then ra2 = inf 7n-fc+i < 0. As in the 

xGD 
first case, if D2 is defined by ds2 and h, we have 

0 < ( • - 1 D 2 * V , V ) < -(l/2fi2)(ip,ip) < 0 

for (p e hr's(D,E) with r + s < n-k and \x2 > (l-2n)/m2, i.e., hr>s(D,E) 2* 0 
for r + s < n — k. The proof is complete. • 

The boundedness of the operator Hr>s, [7; Proposition 1.2.3, Proposition 1.2.4] 
(as they are applied to [7; Proposition 2.1.1]) and Theorem 2.1 imply that 
Hr>s(Ar>s(D,E)) is dense in the finite dimensional vector space Hr's(D,E), 

s > q, with respect to the graph norm (|M|2 + | |<M 2 ) ' . Then Hr>s(Ar's(D,E)) 
= nr's(D,E), s>q. Therefore, 

hr's(D,E)^Ur's(D,E) s>q. 

Hence, the image of the orthogonal projection operator Hr's is identically equal 
to zero, i.e., 

# r ' 5 a = 0. (2.3) 

Form the above results, we prove the following existence theorem with 
L2-estimates: 
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THEOREM 2.3. Let D be a strongly q-convex domain of an n-dimensional 
Kahler manifold M and E -» M be a holomorphic line bundle over M. If E is 
semi-positive (resp. semi-negative) of type k on D. then for any a G L2

r s(D, E), 
da = 0, s > q and r + s > n + k (resp. s > q and r + s < n — k), there is 
a unique form (f> G Lr 3_1(D,E) satisfying 8(j) = a with § _L Ker(<9) . and the 
estimate 

ll^llL^_l(E,D) < CIMIL^(E,D) 

holds. If a is C°°. then (j) is also C°°. 

P r o o f . Using (3) of Theorem 2.1 and the condition on a, da = 0, we 
have BNrsa = Nr^s+1da = 0. Using (2.3) in (2) of Theorem 2.1 we obtain 
a = 88*Nr sa. Therefore we may take 0 = 8*Nr sa, the condition (j) _1_ Ker(9) 
clearly implies the uniqueness. Moreover, if a is C°°, then so is Nr 5 a , hence (j) 
is C°°. Using (2.3) in (3) of Theorem 2.1 and the fact that N^s is bounded we 
have the following L2-estimate: 

U\\\a_l{D,E) = (8*Nri.a,B*Nri.a) = (dd*Nr,sa,NrtSa) 

= ((8d* + 8*d)Nr>sa,Nr>sa) 

= (a,Nrsa) < \\a\\L2s{DiE)\\Nrsa\\L2rs{D>E) 

< C\\<*\\LUD,E) 

This proves the theorem. • 

Theorem 2.3 is needed in the course of the proof of Theorem 4.3. 

3. Local solution for the <9-equation with Lp-estimates 

We consider the following situation: Let D be a strongly q-convex domain 
of M and W5 = W((0,S) be the open ball in M of an arbitrary fixed center 
C0 G dD and radius 5 such that W5 <__ u • C V <E U for a certain j G L, where 
S is a positive constant which depends continuously on the distance d((0,CV) 
from (0 to the complement of V. Then, according to [10] and the fact that every 
^-valued form is a C-valued form on W5, there exist an open set IX and a 
linear operator 

Ts: Ll>a(D<0,E) -> Ll^Ws^E), s>q, 

with Ws/2 n _ C _ ( o C ^ n f l and 

f = Ts+1(8f)+dTsf 

344 



LP-ESTIMATES FOR SOLUTIONS OF ^-EQUATION 

for / G Llta(DCo,E) with df G Lls+1(DCo,E). Moreover, if / G L^DJ, 
df = 0, then there is a constant C such that the estimate | | T 5 / | | L P _ (vV^nD) — 
C||/IILP (Dc ) holds. Then using K e r z m a n ' s techniques, [9; Theorem 1.3.1], 
as [1] and [3] we can prove the following theorem: 

THEOREM 3.1 (LOCAL THEOREM). Let Ts be the operator which is de
fined above and f G Ll^D^E), df = 0, s > q. Then, there is g = Tsf G 
Lo,a-i(ws/2nD>E) su^h that dg = f. If f is C°°, then so is g. If f G 
Ll^D^E), then g G Lls_l(W5/2C\D,E) and satisfies 

I^H^a-1(W5/2nD,E) < Cll/HLg,a(DCo,E) > 1 < P < oo , 

where C = C(s) is a constant independent of f and p. 

Using Theorem 3.1 (Local theorem), as [1] and [3], we can prove the following 
lemma: 

LEMMA 3.2 (AN EXTENSION LEMMA). Let D _ M be a strongly q-convex 
domain. Then, there exists (slightly larger) open set D _ M with the following 
properties: D _ D; for any / G LJ S(D, E) with df = 0 and s > q, there exist 

two bounded linear operators Lx, L2, a form f = Lxf G LJ S(D,E) and a form 
u = L2f G LJ 5_i (-0, E) such that: 

(i) df = 0 in D. 
(ii) / = / — Bu in D. 

(iii) If f G Lp
0yS(D,E), then f G L^S(D,E) and u G L g ^ ( £ > , £ ) with the 

estimates 

H/IILg^D.E) <ClWf\\Lp
0>s(D,E) 

and 

IMIL^.^D.E) < c_ll/H_Si,(_MiO > 1 < P < oo , 

where the constants Cx and C2 are independent of f and p. If f is C°° 
in D, then f is C°° in D and u is C°° in D. 

4. Global solution for the <9-equation with ZAestimates 

Recall that 3D is defined by a function p: U —> R. Cover dD by finitely 
many balls W{ d = W(xv 8^, x{ G dD, i = 1, . . . m, such that for each x{ G dD 
we have WiS* '_ u, C V _ U. Put S = min S{. Then as in [9; p. 321, 

' * J l<i<m 
Lemma 2.3.3, Claim] (see also [1; Proposition 3.2]), we can prove the following 
proposition: 
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PROPOSITION 4 . 1 . Let D be as in the extension lemma and let Wi 5 be 

as above such that Wi 5 _ _ • C D for a certain j G I. Then, for any f G 
Lot8(Wit6>E)> 9f = 0, s > q, there exists a = Tf G Ll%8_x(Wii5/2,E) such 

that Ba = f, where T is a bounded linear operator. If f G L% s(Wi _, E), 

1 _ P _ 2; then we have a G L^s]/1
n(WiS/2,E) and \\a\\LP+i/4n(w E) < 

c||/||_ga(virM,_) and for any p, 1 <p < oo, we have 

l a l l - ó , . - i ( ^ , . / í Л - ^ "£?,.(»'..*.-')' 

where c = c(n, a) is a constant independent of f and p. 

Using Proposition 4.1 as [1; Proposition 3.2], we prove the following proposi
tion: 

PROPOSITION 4.2. Let D be as in the extension lemma. Then, there exists a 
strongly q-convex domain _ ) _ _ _ ) such that for every f G FJ S(D, E), Bf = 0. 
s > q, there are two bounded linear operators F_ and L2 and two forms /_ = 
L\f £ L\ _(_?_,_?) and r)l= L2f e L\ s_l(Dl,E) such that: 

(i) 0/_ - 0 on F>_. 

(--) f = fi+ dVi on Di • 
(iii) | | / 1 | | L ^ / 4 n ( D i ^ ) < c | | / | | L ^ ( ^ ) for feLls(D,E), l < p < 2 . 

(iv) For e?;en/ open set W <_ F)_ and for every p, 1 < p < oo, we have 

H/illLg)S(W,E) - cll/IILgs(D,E) ' 

and 

l^illLo\,-iW^) - cll/HLg)S(E,E) > 

where c = c(D, W: n) is a constant independent of f and p. 

The solvability with F2-estimates for du = f on _)_ follows from The
orem 2.2 and Theorem 2.3. 

Using Theorem 2.3, Proposition 4.2 and the interior regularity properties of 
the 9-operator, as [1; Theorem 3.1], we can prove the following theorem: 
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THEOREM 4 .3 . Let D be the strongly q-convex domain of the extension lemma 
and W <E D. Then, for any form f G LJ S(D,E) with Bf = 0, s > q, there 

exists a form rj G L^ S_X(W,E), rj = Lf, such that Br\ = f, where L is a 

bounded linear operator. If f G L\ S(D, E) with 1 < p < oo ; then 

V£LPo,s-i(W,E) and M L ^ ^ E ) < Oil/hl.(£>,E) > 

where C = C(D, W) is a constant independent of f and p. If f is C°°, then 
r) is C°°. 

The idea of the proof of Theorem 4.3 is as follows: 

If p > 2, Theorem 4.3 is an immediate consequence of the fact that L% S(D, E) 
C Ll S(D,E), that there exists a solution u G L% S_1(D,E) of Bu = f (if / G 
LQ S(D, E), Bf = 0) and the interior regularity properties for solutions of elliptic 
B operator. If 1 < p < 2, then the problem of solving Bu = f can be changed 
into one (in a smaller region) involving a form /-_ G Lr

 s (Dx ,E), r > p; this is 
the case in which Proposition 4.2 is used. The improvement of the exponent is 
small, but iterating An times, we finally obtain a form f4n G LQ s(D4n,E) to 
which Theorem 2.3 can be applied. 

Using Lemma 3.2, Theorem 4.3 and Theorem 2.3 we obtain our results. 
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