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ON EDGE INDEPENDENCE NUMBERS AND EDGE
COVERING NUMBERS OF k-UNIFORM HYPERGRAPH

FRANTISEK OLEJNIiK

In general, we follow the notation and terminology of book [1]. By a hyper-
graph H is meant a couple <X, &), where X is a finite set of elements called
vertices and & = {E|, ..., E,} is a finite system of non-empty subsets of X called
edges, where E, # E;and |E| > 1 for i, je{l, ..., m}, i # j, or & is an empty set.
If & is an empty set, call a hypergraph H empty. (By |E] the cardinality of the
set E; is denoted.)

By the degree d(x) of the vertex x we mean the cardinality of the set of all
edges of the hypergraph H such that the vertex x of H belongs to all of them.
The vertex x is isolated in H if d(x) = 0. Two edges E,, Eie& are disjoint if
E.n E = 0. A hypergraph H(N) = (N, &) is said to be a subhypergraph of
a hypergraph H = (X, &) induced by a set N if N < X and &, is the system of
all edges E;e & such that E; = N. A hypergraph is said to be k-uniform, & > 1,
if all its edges have cardinality k. A 2-uniform hypergraph is called graph. In all
the following consideration we will suppose that |X] > k > 3.

A k-uniform hypergraph with n vertices is called complete if its set of edges

has the cardinality (Z) The complement of a k-uniform hypergraph H =

= (X, & is the k-uniform hypergraph H=(X, &) if |§U | = <n> and
Ené =0. k

A set P < & is called an edge covering of H if for any non-isolated vertex
x € X there exists an edge E;e P such that xe E;. The cardinality of a minimum
set which is an edge covering of H is called the edge covering number a,(H)
of H.

Aset N < & is called an edge independent set of H if edges of N are pairwise
disjoint. The cardinality of a maximum set which is an edge independent set
of H is called the edge independence number S, (H) of H.

The following lemma, proved in [6], deals with a relation between the edge
covering number and the edge independence number in a k-uniform hyper-
graph H without isolated vertices.
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Lemma 1. For a k-uniform hypergraph H with n vertices without isolated
vertices the following inequalities hold

(D a(H)+k—-Dp(H)<n
) Bi(H) + (k — Day(H) = n.

Remark 1. (1) and (2) are generalizations of Gallai’s [4] relations for
graphs.

Theorem 1. For a k-uniform hypergraph H = (X, &) with n vertices and its
complement A = (X, &)

"< p, .H@H
3 uw(mw( <2

@) 0< B,(H)-B,(A) < [zJ

holds. (|x] denotes the greatest integer < x.)
Proof. The upper bounds in (3) and (4) follow from the inequalities
n

ﬂ.(H)sbJ and ﬂ,(ﬂmm.

Let B, (H) = r, i.e. in a hypergraph H there exists the edge independent set N
cardinality r. If r = Iﬁc the lower bound of (3) holds. Let V(N) be a set of

vertices incident with edges from N. Let r < [%J, then A(X — V(N)) is a

complete subhypergraph of a hypergraph A, so

From this there follows

n

e

which is the lower bound of (3). The lower bound of (4) is trivial.

Remark 2. The equality in the lower bounds (3) and (4) holds for every
complete k-uniform hypergraph. Clearly, for any n > k there exist k-uniform
hypergraphs with n vertices such that the equality in the upper bound (3) and
(4) holds.

Theorem 2. For a k-uniform hypergraph H = (X, &) and its complement
H = (X, &) where neither H nor H have isolated vertices
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(5) EJHsﬂ,(H)H},(H) for n>k, n#2k

(6) L%J < B/(H) + B,(H) for n=2k

holds.

Proof. If n < 2k, the bound of (5) is 2. In this case the assertion of (5)
holds, because B,(H) > 1 and B,(H) = 1. If n = 2k, then the bound of (6)
follows from the theorem 1. '

Let n > 2k + 1. Suppose in fact that the assertion (5) does not hold, i.e. a
k-uniform hypergraph H such that

(7) B.(H) + B,(H) = [%J

exists. If B,(H) = LEJ then B,(H) > 1, which is a contradiction to (7), thus for

hypergraphs H such that B,(H) = [%J or B(A) = L J the assertion of (5)
holds:
Let B, (H) < ljJ — 1 and N be an edge independent set of H cardinality

B(H). From (7) it follows that H{V(N)) is a complete subhypergraph of a
hypergraph H and if |[X — V(N)| = &, is H<X V(N)) a complete subhyper-
graph of a hypergraph H.

Let us analyse three possibilities:

I. Let B,(H) = 2 and B,(H) > 2, thus n > 4k. We consider the set of vertices
M < Xsuch that /M~ V(N)| = 2kand |M| = 4k. Let M = K, U K, U K, U K,,

where |K,-.I =k and |§J <K V(N)| < [g] for ie{l, 2, 3, 4}. Two of the sets
K., K,, K;, K, form edges in H and two in H, because

Bi(H{V(N) — M) = Bi(H) — 2
and

Bi(A(X — V(N) — M) = B,(H) — 2.

Let K,, K,e& and K;, K,eé. If |(K,u K)) n V(N)| < k then B,(H{V(N) —
— (K, v Ky)») = Bi(H) — 1, thus B, (H(V(N) v K, v K,)) = B,(H) + 1, which
is a contradiction. It means that for k even k-uniform hypergraph such that the
assertion (7) is valid does not exist. Let k be odd and |(K, u K)) n V(N)| > k.
We can suppose that | K, n V(N)| = |K, n V(N)| holds. Let E,, E, = M be two
k-tuples such that En K, =0, En K, =0, (EVE)n K,=K,, Ein E, =0,
|E, n V(N)] + |K, n V(N)| < k,|E, n V(N)| + |K, n V(N)| < k. If at least
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one of the k-tuples E,, E, (e.g. E)) is edge of H then B,(H{(V(N)n M) —
— (E,u K)))) = 1, thus B,(H) = |N| + 1, which is a contradiction, because N is
an edge independent set of M with a maximum cardinality. If E,, E,e &, then
M — (E, u E,u K))e &, which is a contradiction to (7). Thus in a case when
B,(H) = 2 and B,(H) > 2, a k-uniform hypergraph such that the assertion (7) is
valid does not exist, the bound of (5) holds.

II. Letn > 3k and B,(H) = 1. We will prove an assertion (A): If (7) holds and
in a hypergraph H there exist edges E,, E, such that E, N E, = {x}, then x is an
isolated vertex of a hypergraph H.

Proof of (A). For each k-tuple E such that EnE, =0 or EnE =0
there is Ec&. Let the assertion (A) be not valid, thus there exists an edge
K,e & so that xe K,. Then the k-tuple E, such that E,n E, =0, E,n K, =
=0, |K,n E| + |E,n E| = k is from & too. From this follows that E, and K,
can belong to an edge independent set of a hypergraph H. Since H{(X — E,) is
a complete subhypergraph of A then

IX—E, — K,— E) ___[n—2kJ 2=F
ﬁ.(l-'l)zt k J+2 P kJ’

which is a contradiction to (7). Thus the auxiliary assertion is proved.

Let Me&. We consider two k-tuples K;, K, < X such that (K, u K;))n
A"M=M, KnK,=0, KanM#0, K,knM#0. K, K, cannot simul-
taneously belong to &, because it is a contradiction to (7) and cannot simul-
taneously belong into & because f§,(H) = 1. Let E, = X be a k-tuple such that
[EnK|=r—1, |[EnM|=r—1, |[EnMnK|=r—1. Let R= X be a
k-tuple such that Rn K, =0, RnE, =0, (Mn K,) — E, = Rn M. Clearly
Re &, which follows from the assertion (A), because |Mn R| = 1 and H does
not contain isolated vertices. But RN E, =0 and f,(H) =1, then E.€é.
We consider the k-tuple E, such that |[E,nE|=r—2, |E,n M| =r — 2 and
|E,~ E,~n M| =r — 2. Analogously as for E, we prove that E,e &. We proce-
ed analogously in the next steps, till we obtain an k-tuple E,_, such that
|E,_,nE _,nM|=1,|E_,nE _,)=1]E_,nM|=1andE,_,eé. From
the auxiliary assertion (A) it follows that the vertex of E,_, n M is an isolated
vertex in a hypergraph H, which is a contradiction to the assumption of theo-
rem 2. It means that in the case §,(H) = 1 and n > 3k a hypergraph such that
(7) holds does not exist, thus the bound of (5) is valid.

III. Let B,(H) =1 and 2k < n < 3k. In this case a lower bound from (5)
equals 3. Let it be not valid, thus a k-uniform hypergraph H such that §,(H) +
+ B,(A) = 2 and B,(H) = 1 exists. Let Me &, then [X — M| > k + 1. First we
indicate that if such a hypergraph exists, then an edge which has just one vertex
in an edge M exists. Let E,, E, be two k-tuples such that E,n E, = § and
(EVE)nM= M. Let Ee&, Eeé and |E,n M| =r> 1. We consider
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" a k-tuple K, such that |[K,nE|=k—1, |[KnM|=r—1. If K e&, then
I X—(K,UE) =n—(k+1)>kand H{X — (K, U E))) is a complete subhy-
pergraph of A, B,(H) = 2, which is a contradiction to the assumption. Thus
K, e &. Proceeding analogously we indicate that in & there exist edges that
inaset Mhaver —2, r—3, ..., 2, 1 vertices. Thus in a hypergraph H there
exists at least one edge E such that [EnM|=1. Let En M = {x}. Then
[IX—(Eu M) = 2. Let x,, x,e6 X— (Eu M). We the consider k-tuples F, =
={xjuM—-{x} and F,={x,)UE—{x}. Then FFn F,=0, FFNnE=90,
F,n M = 0, which is a contradiction to the fact that B,(H) = 1 and ,(A) = 1.
Thus a hypergraph H with n vertices, 2k < n < 3k, such that ,(H) + 5,(H) =2
and the assumptions of theorem 2 fulfills does not exist. The proof of theo-
rem 2 is now complete.
Remark 3. The equality in the bound (5) holds for an arbitrary k-uniform
hypergraph H such that all edges have at least one vertex x in common for which

d(x) < <Z B }) in a hypergraph H. The equality in (6) holds for any k-uniform

hypergraph H such that Ec & < (X — E)eé.
Theorem 3. For a k-uniform hypergraph H = (X, &) and its complement
A = (X, &) where neither H nor H have isolated vertices and n # 2k

. ® 2['2‘]<01(H)+au(ﬂ)<2n—(k—I)EJ—k+l

9) [E—|2<a,(H)-a.(ﬂ)<1<2n—(k—I)LEJ—k+1>%
k 4 k

holds. ([x] denotes the smallest integer > x.)
Proof. The lower bounds of (8) and (9) follow from the fact that for

n
each k-uniform hypergraph without isolated vertices a,(H) > [E—l holds. From
lemma 1 it follows that

a(H) <n—(k—1)p(H)

aq(A)y<n— (k- 1) B(A).
Adding these inequalities we obtain

o, (H) + &, (A) < 2n — (k — 1) (Bi(H) + Bi(A)).

From (5) if follows that :
a(H) + ay(H) < 2n — (k — 1)([£J + 1),
which is the upper bound from (8). The upper bound in (9) follows from the
upper bound in (8).
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Remark 4. a) If in the ‘assumption from theorem 3 we omit the con-
dition that neither A nor H contains isolated vertices, the lower bound in (8)

changes into the form [ —’ in (9) into 0 and the upper bound in (8) and (9)
does not change. k

b) The equality in the lower bounds (8) and (9) holds for a k-uniform
hypergraph such that a,(H) = a,(H) = [;{l Clearly, such hypergraphs exist.

¢) The equality in the upper bound (8) is attained, e.g. for hypergraphs
H = (X, &) with the following structure: & consists of all k-tuples which

contain (k — 1) firmly chosen vertices and n = 0 (mod k). Then o,(H) =n —
()

—k+1and a,(l:l)zlrﬂ.

The inequalities for edge covering numbers and edge independence numbers
for undirected graphs are investigated in [2], [3] and [5].
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O YUCJIE PEBEPHOM HE3ABUCUMOCTU U PEBEPHOI'O INMOKPBITUSA
k-YHUPOPMHBIX 'MITEPTPAD®OB

FrantiSek Olejnik
Pe3srome

B 371001 paboTe npuBencHbI BEpXHUE U HUKHHE OLEHKH CYMMBbI U POU3BeIeHNS Yucaa pebepHoit

He3aBUCUMOCTH 114 k-yHudopmuoro runeprpada H u ero nonosuenus H. To xe camoe caenano
IU1S YHCi1a pebepHOro MOKPBITHS.
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