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ON EDGE INDEPENDENCE NUMBERS AND EDGE 
COVERING NUMBERS OF fc-UNIFORM HYPERGRAPH 

FRANTISEK OLEJNIK 

In general, we follow the notation and terminology of book [1]. By a hyper-
graph H is meant a couple <X, S>, where X is a finite set of elements called 
vertices and S = {El9 ..., Em} is a finite system of non-empty subsets of Xcalled 
edges, where E{ i=- £• and \E\ > 1 for i,je{l, ..., m}, i # j , or S is an empty set. 
If S is an empty set, call a hypergraph H empty. (By |£,| the cardinality of the 
set E{ is denoted.) 

By the degree d(x) of the vertex x we mean the cardinality of the set of all 
edges of the hypergraph H such that the vertex x of H belongs to all of them. 
The vertex x is isolated in H if d(x) = 0. Two edges Eh EjeS are disjoint if 
Etn Ej. = 0. A hypergraph H<A/> = <A/, SN} is said to be a subhypergraph of 
a hypergraph H = <X, cf > induced by a set A/ if N ^ Xand <f N is the system of 
all edges EfeS such that El ^ A/. A hypergraph is said to be k-uniform, k > 1, 
if all its edges have cardinality k. A 2-uniform hypergraph is called graph. In all 
the following consideration we will suppose that |X| ^ k ^ 3. 

A k-uniform hypergraph with n vertices is called complete if its set of edges 

has the cardinality ( n I. The complement of a k-uniform hypergraph H = 
W - (n\ 

= <X, Sy is the k-uniform hypergraph H = <X, <f> if |<f u<f| = ( n) and 
^ n S = 0. W 

A set P c <f is called an edge covering of H if for any non-isolated vertex 
x e X there exists an edge EteP such that xe £J. The cardinality of a minimum 
set which is an edge covering of H is called the edge covering number ax(H) 
of H. 

A set N ^ <f is called an edge independent set of H if edges of N are pairwise 
disjoint. The cardinality of a maximum set which is an edge independent set 
of H is called the edge independence number px(H) of H. 

The following lemma, proved in [6], deals with a relation between the edge 
covering number and the edge independence number in a k-uniform hyper
graph H without isolated vertices. 

21 



Lemma 1. For a k-uniform hypergraph H with n vertices without isolated 
vertices the following inequalities hold 

(i) 

(2) 

a,(H) + (k - 1)0,(H)^n 

px{H) + (k-\)a,(H)^n. 

Remark 1.(1) and (2) are generalizations of G a l l a i ' s [4] relations for 
graphs. 

Theorem 1. For a k-uniform hypergraph H = <X, £*} with n vertices and its 
complement R = <X, S> 

(3) 

(4) 

n 

lk. 
^ A ( ) + A(/7)^2 n 

k\ 

o^ß^hn-ß^й)^ 

holds. ([x\ denotes the greatest integer ^ x.) 
Proof. The upper bounds in (3) and (4) follow from the inequalities 

ßÁH)^ and ßi(fí)^ 

Let ßx(H) = r, i.e. in a 

cardinality r. I f r = | ^ 
Lk. 

lypergraph H there exists the edge independent set N 

the lower bound of (3) holds. Let V(N) be a set of 

vertices incident with edges from N. Let r < 

complete subhypergraph of a hypergraph /?, so 

k 

From this there follows 

P](H) + px(R)>r + 

n 

~k\ 
; then H<X- V(iV)> is a 

k-r n 

k\ 
which is the lower bound of (3). The lower bound of (4) is trivial. 

Remark 2. The equality in the lower bounds (3) and (4) holds for every 
complete Ac-uniform hypergraph. Clearly, for any n > k there exist k-uniform 
hypergraphs with n vertices such that the equality in the upper bound (3) and 
(4) holds. 

Theorem 2. For a k-uniform hypergraph H = <X, Sy and its complement 
H = <X, <?> where neither H nor H have isolated vertices 
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(5) 

(6) 

n 

JkA 

n 

k. 

+ 1 < Д (/-*) + ßt{H) for n>k,nФ2k 

^Д(H) + A(/7) for n = 2k 

holds. 
Proof. If n < 2k, the bound of (5) is 2. In this case the assertion of (5) 

holds, because /?,(/•/) ^ 1 and /?,(#) ^ 1. If n = 2k, then the bound of (6) 
follows from the theorem 1. 

Let n ^ 2k + 1. Suppose in fact that the assertion (5) does not hold, i.e. a 
k-uniform hypergraph H such that 

(7) 

exists. If/J,(H) 

Д(H)+ £,(#) n 

UU 

then /?,(/7) ^ 1, which is a contradiction to (7), thus for 

hypergraphs H such that PX(H) = 

holds: jfej 
or /?,(#) = the assertion of (5) 

Let /J,(HK 
Ш 

— 1 and N be an edge independent set of H cardinality 

P\(H). From (7) it follows that H(V(N)} is a complete subhypergraph of a 
hypergraph H and if \X - \/(A/)| ^ k, is R(X- V(N)} a complete subhyper
graph of a hypergraph A/. 

Let us analyse three possibilities: 
I. Let /?, (AY) ^ 2 and px(R)^ 2, thus n ^ 4k. We consider the set of vertices 

M c Xsuch that |/Wn \/(#V)| = 2k and \M\ = 4k. Let M = Kx u K2 u /C3 u /C4, 

^|/C;-n\/(A/)|^r/c 

where | /C,| = k and 
L2. 

for i e {1, 2, 3, 4}. Two of the sets 

/C,, /C2, /C3, /f4 form edges in H and two in R, because 

and 
A ( H < ц л / ) - м » = A ( H ) - 2 

A ( H < X - V{N) - M » = /?,(/?) - 2. 

Let /C,, K2e<f and K3, K4e£. If |(K, u / Q n V{N)\ ^ k then ft{H(V{N) -
- (K, u /C2)» -= /? , ( / / ) - 1, thus 0,(i-/< V(/V)u K, U K,» = /?,(#*-/) + 1, which 
is a contradiction. It means that for k even ^-uniform hypergraph such that the 
assertion (7) is valid does not exist. Let k be odd and |(/C, u K2) n V{N)\ > k. 
We can suppose that |K, n V(A/)| ^ |/C2n l/(A/)| holds. Let £,, £, ^ Mbe two 
A>tuples such that £, n /C, = 0, £2 n Kt = 0, (£, u £2) n /C, = /<2, £, n £ = 0, 
|£, n V/(A/)| + |K, n V(A/)| ^ A:, | £ n \/(A/)| + |K, n V{N)\ < fc. If at" least 
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one of the k-tuples E,, E2 (e.g. E,) is edge of H then fix(H((V(N)n M) -
— (E, u Kx)}) = 1, thus PX(H) = |A/| + 1, which is a contradiction, because A/is 
an edge independent set of H with a maximum cardinality. If E,, E2eS, then 
M— (E, u E2u Kx)ei, which is a contradiction to (7). Thus in a case when 
PX(H)^ 2 and /?, (/?) ^ 2, a k-uniform hypergraph such that the assertion (7) is 
valid does not exist, the bound of (5) holds. 

II. Let n ^ 3k and/?, (H) = 1. We will prove an assertion (A): If (1) holds and 
in a hypergraph H there exist edges E,, E2 such that Exn E2 = {x}, l/zerz x is an 
isolated vertex of a hypergraph H. 

Proof of (A). For each k-tuple E such that En E2 = 0 or En E, = 0 
there is Ee$. Let the assertion (A) be not valid, thus there exists an edge 
K0eS so that xeK0. Then the k-tuple E0 such that E^n E2 = fy, E0n K0 = 
= 0, \K0n Ex\ + \E0n Ex\ = k is from S too. From this follows that E0 and K0 

can belong to an edge independent set of a hypergraph H. Since H(X — E,> is 
a complete subhypergraph of H then 

A(H)^ 
I X - E . - K o - E o ì n-2k n 

+ 2 - + 2 = 
_ fc _ _Â:_ 

which is a contradiction to (7). Thus the auxiliary assertion is proved. 
Let MeS. We consider two k-tuples Kx, K2 _= X such that (KxKjK2)n 

nM=M, KxnK2 = ®, KxnM^Q, / C 2 n M # 0 . Kx, K2 cannot simul
taneously belong to 3, because it is a contradiction to (7) and cannot simul
taneously belong into S because (5X(H) = 1. Let E, _= Xbe a k-tuple such that 
\ExnKx\ = r- 1, \ExnM\=r- 1, \EX n Mn Kx\ = r - 1. Let fl_Xbea 
k-tuple such that RnK2 = Q, Rn E, = 0, (Mn Kx) - E, = Rn M. Clearly 
/ ? G # , which follows from the assertion (A), because | M n A?| = 1 and H does 
not contain isolated vertices. But RnEx = 0 and fix(H) = 1, then E-eS. 
We consider the k-tuple E2 such that |E2 n E,| = r — 2, |E2 n M| = r — 2 and 
|E2n E, n M| = r — 2. Analogously as for E, we prove that E2eS. We proce
ed analogously in the next steps, till we obtain an k-tuple Er _, such that 
| E r _ , n E r _ 2 n M | = 1, |E r _ ,nE r _ 2 | = 1, | E r _ , n M | = 1 and Er_xeS. From 
the auxiliary assertion (A) it follows that the vertex of Er_, n M is an isolated 
vertex in a hypergraph H, which is a contradiction to the assumption of theo
rem 2. It means that in the case PX(H) = 1 and n ^ 3k a hypergraph such that 
(7) holds does not exist, thus the bound of (5) is valid. 

III. Let PX(H) = 1 and 2k < n < 3k. In this case a lower bound from (5) 
equals 3. Let it be not valid, thus a k-uniform hypergraph H such that PX(H) + 
+ /?,(#) = 2 and fix(H) = 1 exists. Let MeS, then \X- M\ ^ k + 1. First we 
indicate that if such a hypergraph exists, then an edge which has just one vertex 
in an edge M exists. Let E,, E2 be two k-tuples such that Exn E2 = 0 and 
(Exu E2)nM= M. Let EjGcf, E 2 G # and | E , n M | = r > l . We consider 
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a k-tuple Kx such that \KX n £,| = k - 1, |/C, n M| = r - 1. If Kx e$, then 
| X - (/C, u £,)| = n - (k + 1) ̂  k and / 7 < X - (If, u £,)> is a complete subhy-
pergraph of /?, /?i(/?) = 2, which is a contradiction to the assumption. Thus 
KxeS. Proceeding analogously we indicate that in $ there exist edges that 
in a set M have r — 2, r — 3, ..., 2, 1 vertices. Thus in a hypergraph H there 
exists at least one edge £ such that | £ n M\ = 1. Let £ n M = {x}. Then 
| X - ( £ u M)\ ^ 2. Let xl9 x2eX- ( £ u M). We the consider k-tuples Fx = 
= {x,} u M — {x} and F2 = {x2} u £ — {x}. Then Fxn F2 = Q, Fx n £ = 0, 
F2n M = 0, which is a contradiction to the fact that /?,(H) = 1 and /?,(R) = 1. 
Thus a hypergraph H with n vertices, 2k < n < 3k, such that /?, (H) + /?, (/?) = 2 
and the assumptions of theorem 2 fulfills does not exist. The proof of theo
rem 2 is now complete. 

R e m a r k 3. The equality in the bound (5) holds for an arbitrary k-uniform 
hypergraph H such that all edges have at least one vertex x in common for which 

d(x) < ( , _ . J in a hypergraph H. The equality in (6) holds for any k-uniform 

hypergraph H such that EeSo(X- E)eS. 
Theorem 3. For a k-uniform hypergraph H — <X, <?> and its complement 

R = <X, $> where neither H nor R have isolated vertices and n # 2k 

(8) 2|"-J ^ ax(H) + ax(R) ^ 2n - (k - 1)1 - I - k + 1 

(9) |"̂ J2 ̂  ax(H)-ax(R) < I (2n - (k - l ) | j j - k + \J 

holds, (fx] denotes the smallest integer ^ x.) 
Proof. The lower bounds of (8) and (9) follow from the fact that for 

rni 
each k-uniform hypergraph without isolated vertices ax(H) ^ - holds. From 

k I 
lemma 1 it follows that 

al(H)^n-(k-\)P](H) 

al(R)^n-(k-l)Pl(fl). 

Adding these inequalities we obtain 

a,(H) + a,(H) ^ 2/i - (k - 1)(A(H) + A(^))-

From (5) if follows that 

ax(H) + ax(H) ^2n-(k- l)(\j\ + lV 
which is the upper bound from (8). The upper bound in (9) follows from the 
upper bound in (8). 
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in (9) into 0 and the upper bound in (8) and (9) 

hypergraph such that ax(H) = ax(H) Clearly, such hypergraphs exist. 

k + 1 and «,(/?) 

Remark 4. a) If in the assumption from theorem 3 we omit the con
dition that neither H nor H contains isolated vertices, the lower bound in (8) 

changes into the form 
does not change. 

b) The equality in the lower bounds (8) and (9) holds for a /c-uniform 
n 

k 
c) The equality in the upper bound (8) is attained, e.g. for hypergraphs 

H = <X, d?> with the following structure: $ consists of all k-tuples which 
contain (k — 1) firmly chosen vertices and n = 0 (modre). Then ax(H) = n — 

n 

k 
The inequalities for edge covering numbers and edge independence numbers 

for undirected graphs are investigated in [2], [3] and [5]. 
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O MHCJIE PEEEPHOH HE3ABHCHMOCTH H PEBEPHOTO IIOKPblTHfl 

k-yHHO0PMHbix rnriEPrPAooB 

Frantisek O l e j n i k 

Pe3K>Me 

B 3TOH pa6oYe npHBeaeHbi BepxHHe H HH)KHHe oueHKH cyMMbi H npoH3Be.aeHH5i HHCJia pe6epHOH 
He3aBHCHMocTH AJIH k-yHH(|)opMHoro THneprpacJm H H ero flonojmeHHH R. To ace caMoe caeJiaHo 
juia HHCJia peGepHoro noKpwTHH. 
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