Mathematic Slovaca

Roman Nedela; Martin Škoviera
 Atoms of cyclic connectivity in cubic graphs

Mathematica Slovaca, Vol. 45 (1995), No. 5, 481--499
Persistent URL: http://dml.cz/dmlcz/132921

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ATOMS OF CYCLIC CONNECTIVITY IN CUBIC GRAPHS

ROMAN NEDELA* - MARTIN ŠKOVIERA**
(Communicated by Milan Paštéka)

Abstract

Let G be a connected cubic graph with cyclic connectivity k. An induced subgraph P of G is called a cyclic part of G if there exists a cycleseparating k-edge cut S such that P is a component of $G-S$. A cyclic part minimal under inclusion is called an atom. We establish various properties of atoms and cyclic parts in cubic graphs. Among other things we show that a cyclic part which is not a k-cycle has at least $2 k-3$ vertices, or $k=6$, and it is isomorphic to the graph Θ_{8} consisting of three internally disjoint paths of length 3 joining two vertices. Using this bound we prove that, if two cyclic parts intersect, then either each of them contains a smaller cyclic part, or one of them or their complements is isomorphic to a k-cycle, or, if $k=6$, to Θ_{8}. These two results have a number of corollaries which include results of Aldred, Holton and Jackson [1], Fouquet and Thuillier [3], and McCuaig [7]. For instance, we show that the cyclic connectivity of a connected cubic vertextransitive graph is equal to its girth, and the same is true for cubic edge-transitive graphs (see [10]).

1. Introduction

When examining the connectivity properties of a graph it is sometimes necessary to avoid trivial cuts, i.e., those producing a component which consists of a single vertex. If an edge cut gives rise to a component which is a tree with more than one vertex, then a little modification at one of its pendant vertices yields a smaller cut. Thus a minimum non-trivial edge cut-set separates the graph into components each of which contains a cycle. This simple consideration suggests the definition of the edge cyclic connectivity of a graph to be the minimum number of edges separating two cycles. Vertex cyclic connectivity can be introduced analogously.

The definition of cyclic connectivity first appeared in Tutte's paper [11]. Since then, this concept has occurred in various contexts including hamiltonian problems, edge colourings of graphs, maximum genus, the existence of cycles through

[^0]prescribed edges, and others. For cubic graphs, cyclic connectivity is especially important, being a natural extension of the usual vertex and edge-connectivity. Indeed, if the cyclic connectivity of a cubic graph does not exceed 3 , then it coincides with the ordinary connectivity. But while the usual connectivity is bounded from above by 3 , cyclic connectivity is unbounded.

In spite of that, not much is known about cyclic connectivity in general, even in the case of cubic graphs. So far, the most extensive investigation of cyclic connectivity of cubic graphs is due to Fouquet and Thuillier [3], and McCuaig [7], who established several important results of general character. (Some of them have been independently obtained in [9] using a different method.)

Our approach to the investigation of cyclic connectivity is based on the concept of an atom, the smallest induced subgraph separated by a minimum cutset. Although the term atom may receive different meanings depending on type of connectivity under consideration, various properties of the different kinds of atoms are much alike. For example, it is obvious that the image of an atom under a graph automorphism is again an atom. Therefore the study of atoms is important for, and in fact has been motivated by, the investigation of connectivity properties of transitive graphs.

For the ordinary edge-connectivity it can be easily shown that distinct atoms are vertex-disjoint (see Mader [6] or $\mathrm{Lovász}$ [5; 12.14]). The same is true for atoms of vertex connectivity but the proof is less straightforward (see Mader [6] and Watkins [13]). The present paper resolves a similar problem for the cyclic connectivity of cubic graphs and provides the necessary background for a detailed treatment of properties of cyclic connectivity in transitive cubic graphs (see [10]).

While atoms of vertex or edge-connectivity have been mainly employed in connection with graph automorphisms, the results of this paper indicate that atoms of cyclic connectivity may also be important for understanding cyclic connectivity of general cubic graphs. Various properties of cubic graphs, including those not presented here, can be obtained and formulated in terms of atoms. This is true in particular for the results of Fouquet and Thuillier [3] and McCuaig [7], whose approach to cyclic connectivity is based on independent edge cuts. Atoms and, more generally, cyclic parts provide in a certain sense a complementary view of the problem. Moreover, they seem to have the advantage that an atom or a cyclic part allows to grasp both the corresponding edge cut and the subgraphs obtained by deleting the cut. This leads to simpler formulations and proofs of several results in this area and to establishing new ones.

In this paper, we develop a theory of atoms and cyclic parts in cubic graphs. Our investigation culminates in proving two important results. The first of them, Theorem 7, yields a lower bound on the number of vertices of a non-trivial

ATOMS OF CYCLIC CONNECTIVITY IN CUBIC GRAPHS

cyclic part, i.e., one which is not a single shortest cycle. A slightly stronger bound is obtained for a non-trivial atom. In [3; Proposition 4] Fouquet and Thuillier established a result of a similar type for cyclic connectivity greater than 4.

By using Theorem 7 we prove our second main result, Theorem 9. This theorem deals with the mutual position of cyclic parts in a cubic graph. Roughly speaking, it says that if two cyclic parts of a cubic graph intersect, then either each of them contains a smaller cyclic part, or one of them or their complements is a trivial atom. Thus it either localizes a trivial atom, or enables us to reduce a large cyclic part to a smaller one. This reduction process eventually ends with an atom. Therefore we call our Theorem 9 "Reduction Theorem".

Theorem 9, as well as its proof, has been inspired by McCuaig's lemma on crossing independent edge cuts [7; Lemma 2.1]. Although this is indeed a technical lemma rather than a theorem, it plays an important role in the theory presented in [7]. By taking our approach based on atoms, omitting unnecessary details from the formulation and pushing the proof a step further, we obtain a result providing a deep insight into the structure of atoms in cubic graphs. This result has various important consequences. In particular, it serves as a strong tool in our investigation of atoms in transitive cubic graphs [10] and is in the background of the main results of [7].

The present paper is divided into four sections. The next section contains basic definitions and elementary results on cyclic connectivity of cubic graphs. The third section contains two main results and their proofs: the lower bound on the number of vertices of a non-trivial cyclic part of a cubic graph, and the Reduction Theorem. The final section is devoted to corollaries of the main results, especially of the Reduction Theorem.

Besides new results, this paper contains also some older results proved by various authors. We include them partly for the sake of completeness, partly because our present proofs are new or shorter.

2. Basic properties of cyclic connectivity

In this paper, we deal with connected finite graphs, allowing both multiple edges and loops. However, we mostly confine to cubic graphs and their subdivisions.

Let $G=(V, E)$ be a connected graph. We say that a set B of edges of G is cycle-separating if $G-B$ is disconnected, and at least two of its components contain cycles. Note, however, that there exist graphs possessing no cycle-separating edge cuts. These graphs have been characterized by Lovász in [4]. We shall formulate a partial result for cubic graphs in Proposition 1, together with a short independent proof (see also [7], [9] and [8]).

ROMAN NEDELA - MARTIN ŠKOVIERA

For X being a set of vertices or a subgraph of a graph G, let δX denote the set of all edges in G with exactly one end in X. If H is an induced subgraph of G, let H^{\prime} denote its complement, the subgraph of G induced by the set $V-V(H)$. Finally, let Θ_{2} denote the graph consisting of two vertices and three parallel edges.

Proposition 1. A connected cubic graph G has no cycle-separating edge cut if and only if it is isomorphic to one of $K_{4}, K_{3,3}$ or Θ_{2}. In fact, if C is a shortest cycle in G, then δC is a cycle-separating edge cut unless G is K_{4} or $K_{3,3}$ or Θ_{2}.

Proof. It is obvious that $K_{4}, K_{3,3}$ and Θ_{2} have no cycle-separating edge cuts. For the converse, assume that C is a shortest cycle in G and that δC is not a cycle-separating cut. Then C^{\prime} is a forest. Thus C^{\prime} is either empty, or it contains an isolated vertex or two vertices of valency one. Let g denote the length of C. If C^{\prime} is empty, then obviously $g=2$ and $G \cong \Theta_{2}$. Let C^{\prime} contain an isolated vertex u. Then u is adjacent to three vertices on C, and at least two of its neighbours, say x and y, have distance $\leq g / 3$ on C. If P is the corresponding segment of C, then $u x P y u$ is a cycle, say, of length h. Now, $g \leq h \leq g / 3+2$ whence $g=3$. Since $|\delta C|=3$, it is readily seen that $G \cong K_{4}$. Similarly, if G has two vertices of valency one, we deduce that $g \leq g / 2+2$ and, consequently, that $g=4$. Thus $|\delta C|=4, C^{\prime} \cong K_{2}$, and G is isomorphic to $K_{3,3}$.

We say that a connected graph $G=(V, E)$ is cyclically k-edge-connected if no set of fewer than k edges is cycle-separating in G. Let $\beta(G)=|E|-|V|+1$ be the Betti number (=cycle rank) of G. Clearly, deleting any set of $k \geq \beta(G)$ edges yields either a disconnected graph or a graph without cycles. Thus, if G contains a cycle-separating set, then it contains one with no more than $\beta(G)-1$ edges. The edge cyclic connectivity of $G, \zeta(G)$, is the largest integer $k \leq \beta(G)$ for which G is cyclically k-edge-connected. For instance, $K_{3,3}$ is cyclically k-edgeconnected for each positive integer k, but its edge cyclic connectivity is 4 . In fact, $\zeta(G)=\beta(G)$ if and only if G has no cycle-separating edge cut. By Proposition 1, there are exactly three such cubic graphs.

Let $g(G)$ denote the girth of a graph G, i.e., the length of a shortest cycle in G. Using Proposition 1 and examining the three exceptional cases we obtain the following

Proposition 2. For every connected cubic graph $G, \zeta(G) \leq g(G)$.
Let G be a connected cubic graph and suppose it contains a cut-set J consisting of independent edges. Then the minimum valency of $G-J$ is 2 , and, consequently, each component of $G-J$ contains a cycle. Thus each independent edge cut is cycle-separating. On the other hand, observe that, if B is a minimum

ATOMS OF CYCLIC CONNECTIVITY IN CUBIC GRAPHS

cycle-separating edge cut in a connected cubic graph G, then it consists of independent edges. Indeed, if B contains two adjacent edges e and f, let h be the third edge adjacent to both e and f. Then the set $(B-\{e, f\}) \cup\{h\}$ is again cycle-separating, contradicting the minimality property of B. Therefore, in the study of edge cyclic connectivity of cubic graphs, we may restrict ourselves to independent edge cuts. For the same reason, in the case of cubic graphs, we could replace in the definition of $\zeta(G)$ cycle-separating edge cuts by independent edge cuts.

Yet another version of cyclic connectivity has been defined by Tutte [12; p. 70] and termed vertex cyclic connectivity. A set X of vertices of a connected graph G is called a cycle-separating vertex cut if G can be expressed as a union of two edge disjoint subgraphs H and K, both containing cycles, such that $H \cap K=X$. We say that G is cyclically k-vertex-connected if it contains no cycle-separating vertex cut with fewer than k vertices.

Although the cyclic connectivity of a cubic graph can be introduced in various ways, the following result shows that the different approaches are interchangeable.

Proposition 3. ([7]) Let G be a connected cubic graph not isomorphic to $K_{4}, K_{3,3}$ or Θ_{2}. Then the following conditions are equivalent:
(i) G is cyclically k-edge-connected.
(ii) G is cyclically k-vertex-connected.
(iii) Each independent edge cut has at least k edges.

Proof. Let m_{E} and m_{V} be the cardinality of a minimum cycle-separating edge cut and vertex cut in G, respectively, and let m_{I} be the minimum number of edges in an independent edge cut. We shall show that $m_{E} \geq m_{I} \geq m_{V} \geq m_{E}$, thereby proving the theorem.

As we have already observed, every minimum cycle-separating edge cut consists of independent edges. Hence $m_{E} \geq m_{I}$.

Now, let B be a minimum independent edge cut of G. Since each component $G-B$ has minimum valency 2 , it contains a cycle. Let H be a component of $G-B$, and let U be the set of vertices of H incident with an edge in B. Define G_{1} to be the subgraph of G induced by $V(H) \cup U$ and G_{2} the subgraph of G induced by $(V(G)-V(H)) \cup U$. Then $G_{1} \cup G_{2}=G, G_{1} \cap G_{2}=U$, and both G_{1} and G_{2} contain cycles. Thus U is a cycle-separating vertex cut. The minimality of B ensures that $|U| \leq|B|$, which implies that $m_{I}=|B| \geq|U| \geq m_{V}$.

Finally, let W be a minimum cycle-separating vertex cut of G. Then there exist subgraphs H_{1} and H_{2} in G, both containing cycles, such that $H_{1} \cup H_{2}=G$ and $H_{1} \cap H_{2}=W$. Let P be the set of edges of G that are pendant in H_{1} or H_{2}. Obviously, $|P| \leq|W|$. It is clear that $H_{1}-P$ and $H_{2}-P$ are components
of $G-P$, and that both contain cycles, for a pendant edge does not lie in a cycle. Thus P is a cycle-separating set of edges and $m_{V} \geq m_{E}$.

This completes the proof.
The previous theorem implies that the edge cyclic connectivity of a cubic graph is equal to its vertex cyclic connectivity. Therefore, in the rest of the paper, we shall use the term cyclic connectivity for edge cyclic connectivity and cycle-separating cut for cycle-separating edge cut. Moreover, it can easily be seen that the cyclic connectivity of a graph is invariant under subdivisions and adjoining new 1 -valent vertices. This fact guarantees that most of our subsequent results can be modified for graphs with maximum valency 3 .

In the following lines, we introduce the central notion of this paper. Let B be a minimum cycle-separating cut in a cubic graph G. Clearly, $B=\delta P$ for some induced subgraph P of G. We shall refer to P as a cyclic part of G. Thus a cyclic part is an induced subgraph P of G such that δP is a cycle-separating cut with $|\delta P|=\zeta(G)$. A cyclic part minimal under inclusion will be called an atom.

It is fairly obvious that each atom must be connected. The next observation, partly due to McCuaig [7], shows that a little bit more can be said.

Proposition 4. Let G be a connected cubic graph. Then each cyclic part of G is connected and each atom is a block. Moreover, if $\zeta(G) \geq 3$, then each cyclic part is a block.

Proof. Let P be a cyclic part of G. If P is disconnected, then it has a component Q containing a cycle. Note that $\delta Q \subseteq \delta P$ for P is an induced subgraph of G. Moreover, $|\delta Q|<|\delta P|$ since $Q \neq P$. Thus δQ is a cycleseparating cut with $|\delta Q|<\zeta(G)$, which is a contradiction.

Now, let P be a cyclic part of G containing a cut-vertex. Since the maximum valency of P is at most 3 , there is a cut-edge e in P. Let P_{1} and P_{2} be the components of $P-e$. Clearly,

$$
\left|\delta P_{1}\right|+\left|\delta P_{2}\right|=|\delta P|+2=\zeta(G)+2
$$

On the other hand, δP is an independent set of edges. It follows that the minimum valency of both P_{1} and P_{2} is 2 , implying that each of them contains a cycle. Hence $\left|\delta P_{1}\right| \geq \zeta(G)$ and $\left|\delta P_{2}\right| \geq \zeta(G)$, with sharp inequalities occurring whenever P is an atom. As a result,

$$
2 \zeta(G) \leq\left|\delta P_{1}\right|+\left|\delta P_{2}\right| \leq \zeta(G)+2
$$

and, if P is an atom,

$$
2 \zeta(G)+2 \leq\left|\delta P_{1}\right|+\left|\delta P_{2}\right| \leq \zeta(G)+2
$$

By solving these inequalities with respect to $\zeta(G)$, we obtain $\zeta(G) \leq 2$ and $\zeta(G) \leq 0$, respectively. The second possibility cannot happen, which means that an atom cannot have a cut-vertex. A cyclic part may have a cut vertex only when $\zeta(G) \leq 2$. The result follows.

A cyclic part (in particular, an atom) is said to be trivial if it consists of a single cycle (necessarily a shortest one). Otherwise it is non-trivial. Note that two atoms of the same graph may differ in the number of vertices. Thus we are led to consider atoms with minimum number of vertices, which we call proper atoms. This concept enables us to give a simple answer to the natural question suggested by Proposition 2: For which graphs the cyclic connectivity is strictly smaller than the girth?

Proposition 5. ([9]) Let G be a connected cubic graph of girth g. Then $\zeta(G)<g$ if and only if G has a non-trivial proper atom.

Proof. If G has a trivial atom, say C, then $\zeta(G)=|\delta C| \geq g$. By Proposition $2, \zeta(G)=g$. If G has no atom, then Proposition 1 shows that G is either K_{4} or $K_{3,3}$ or Θ_{2}, and we have $\zeta(G)=g$ again.

For the converse, assume that $\zeta(G)=g$, but G has a non-trivial proper atom, say A. Clearly, G is different from $K_{4}, K_{3,3}$ and Θ_{2}. By Proposition 1, if C is a cycle of length g, then δC is cycle-separating. Thus $|A| \leq g$. On the other hand, A contains a cycle D with $|D|<|A|$ since it is non-trivial. Therefore $g \geq|A|>|D| \geq g$, which is absurd.

The previous proposition has an interesting consequence:
COROLLARY 6. ([9]) In a cubic graph, either all proper atoms are trivial or all proper atoms are non-trivial or there are no atoms.

Proof. Assume there exists a cubic graph which contains a trivial (proper) atom as well as a non-trivial proper atom. Then, by Proposition 5, its cyclic connectivity is at the same time equal to the girth and smaller than the girth, a contradiction.

Observe that there do exist cubic graphs having both trivial and non-trivial atoms. Of course this can only happen in a graph with cyclic connectivity equal to girth. The simplest such example can be constructed by first subdividing each edge of Θ_{2} with one additional vertex and subsequently by joining the 2 -valent vertices of the resulting graph (denoted by Θ_{5}) to the vertices of a triangle to form a cubic graph. Thus the adjective "proper" cannot be omitted from Proposition 5. On the other hand, by comparing Proposition 5 and Corollary 6, we get that if G is a cubic graph with $\zeta(G)<g$, then all its atoms are nontrivial.

3. Main results

In this section, we prove our two main contributions to the study of atoms of cyclic connectivity in cubic graphs, Theorem 7 and Theorem 9. In both of them, certain subdivisions of the graph Θ_{2} occur as exceptional cases. It will be therefore convenient to fix the following notation. Let Θ_{5} be the graph of order 5 obtained from Θ_{2} by replacing each edge with a path of length 2 , and let Θ_{8} be the graph of order 8 obtained similarly using paths of length 3 .

Finally, for an arbitrary graph K, let $c(K)$ be the number of components of $K, e(K)$ be the number of edges of K, and let $v(K)$ and $v_{i}(K)$ be the number of vertices and the number of i-valent vertices of K, respectively.

Now, we can state our first main result.
Theorem 7. Let G be a connected cubic graph with cyclic connectivity k, and let P be a non-trivial cyclic part of G. Then either $v(P) \geq 2 k-3$, or $k=6$, P is isomorphic to Θ_{8} and $v(P)=2 k-4$. Moreover, if P is an atom, then $v(P) \geq 2 k$, or $k=3, P$ is isomorphic to Θ_{5} and $v(P)=2 k-1$.

Proof. Since P is a non-trivial cyclic part of G, it is homeomorphic to a cubic graph H. If there are two disjoint cycles in H, then, by Proposition 2, $v(P) \geq 2 k$ and the theorem holds. Therefore we may assume that any two cycles in H have a vertex in common. Thus H is isomorphic to one of Θ_{2}, K_{4}, or $K_{3,3}$.

If H is isomorphic to K_{4} or $K_{3,3}$, then P contains a subgraph K which is a subdivision of K_{4}. We shall estimate $2 e(K)$ in two ways. First, we have

$$
\begin{equation*}
2 e(K)=2 v_{2}(K)+3 v_{3}(K)=2 v(K)+v_{3}(K)=2 v(K)+4 \tag{1}
\end{equation*}
$$

On the other hand, if C_{1}, C_{2}, C_{3} and C_{4} are the cycles of K corresponding to the triangles of K_{4}, then every i-valent vertex of K is contained in exactly i cycles from C_{1}, C_{2}, C_{3} and C_{4}. Since $v\left(C_{i}\right) \geq k$, it follows that

$$
\begin{equation*}
2 e(K)=\sum v\left(C_{i}\right) \geq 4 \zeta(G)=4 k \tag{2}
\end{equation*}
$$

By comparing (1) with (2), we obtain

$$
4 k \leq 2 e(K)=2 v(K)+4 \leq 2 v(P)+4
$$

whence $v(P) \geq 2 k-2$. Thus, in this case, the theorem holds.
It remains to consider the case that $H \cong \Theta_{2}$. Suppose $v(P) \leq 2 k-4$. Then,

$$
2 k-4 \geq v(P)=v_{2}(P)+2=k+2
$$

whence $k \geq 6$. To establish the reverse inequality, we compute $2 e(H)$ in two ways. On one hand,

$$
\begin{equation*}
2 e(H)=2 v_{2}(P)+3 v_{3}(P)=2|\delta P|+6=2 k+6 . \tag{3}
\end{equation*}
$$

atoms of cyclic connectivity in cubic graphs

On the other hand, let C_{1}, C_{2} and C_{3} be the cycles in P. Again, $v\left(C_{i}\right) \geq k$, and analogously as before we have

$$
\begin{equation*}
2 e(H)=\sum v\left(C_{i}\right) \geq 3 k . \tag{4}
\end{equation*}
$$

From (3) and (4), it follows that

$$
3 k \leq 2 e(H)=2 k+6,
$$

that is, $k \leq 6$. Thus $k=6$. To summarize, P is homeomorphic to $\Theta_{2}, v(P)=8$ and, by Proposition 2, it has girth at least 6 . But this is only possible when P is isomorphic to Θ_{8}. This proves the first part of the theorem.

From now on, suppose that P is an atom. In order to finish the proof we point out two important properties of non-trivial atoms.

PROPOSITION 8. Let P be a non-trivial atom of a cubic graph G. Then the following hold:
(i) No two 2-valent vertices of P are adjacent.
(ii) If P is not isomorphic to Θ_{5}, then no three 2-valent vertices of P have a common neighbour.

Proof. Let H be the cubic graph homeomorphic with P. Then to each edge e of H there corresponds a path Q_{e} in P whose end-vertices belong to $v_{3}(P)$ and internal vertices to $v_{2}(P)$. First, we show that the length of every path Q_{e} is at most 2 , thereby proving (i).

Let J be the set of all internal vertices of Q_{e}. As every vertex of J is incident with exactly one edge in δP, we have

$$
\begin{equation*}
|\delta(P-J)|=|\delta P|-|J|+2=\zeta(G)-|J|+2 \tag{5}
\end{equation*}
$$

On the other hand, since $P-J$ is a subdivision of $H-e$, it contains a cycle. However, P is an atom, so

$$
\begin{equation*}
|\delta(P-J)| \geq \zeta(G)+1 \tag{6}
\end{equation*}
$$

By comparing (6) with (7) we obtain

$$
\zeta(G)+1 \leq \zeta(G)-|J|+2
$$

whence

$$
\begin{equation*}
|J| \leq 1 \tag{7}
\end{equation*}
$$

Thus, the path Q_{e} in P corresponding to an edge e of H has length at most 2 . This proves (i). (If the cyclic part P were not an atom, then instead of (6) we would get $|\delta(P-J)| \geq \zeta(G)$ implying that $|J| \leq 2$. This shows that in a non-trivial cyclic part each edge of H corresponds to a path of length at most 3.)

ROMAN NEDELA - MARTIN ŠKOVIERA

Let S be the set of all edges in H for which the length of Q_{e} is 2 . Obviously,

$$
\begin{equation*}
|S|=v_{2}(P)=|\delta P|=\zeta(G) \tag{8}
\end{equation*}
$$

Denote by H_{S} the subgraph of H formed by the edges in S and the vertices incident with them. Now, we show that if H_{S} contains a vertex of valency 3 , then $P=\Theta_{5}$.

Suppose v is a 3 -valent vertex of H_{S}. Then v is adjacent in P with three vertices $w, x, y \in V_{2}(P)$. Obviously,

$$
|\delta(P-\{v, x, y, w\})|=|\delta P|=\zeta(G)
$$

Since P is an atom, $P-\{v, x, y, w\}$ is acyclic, and so is $H-v$. However, $H-v$ is in fact a single vertex. Indeed, in the opposite case, $H-v$ would contain at least two vertices of valency not exceeding 1 , implying that $3=|\delta v|=|\delta(H-v)| \geq 4$, a contradiction. Thus $H-v$ is an isolated vertex and H is isomorphic to Θ_{2}. Note that $v_{2}(P)=3$ because (7) implies $v_{2}(P) \leq 3$ and (8) implies $v_{2}(P) \geq 3$. In summary, if H_{S} contains a 3 -valent vertex, then P is isomorphic to Θ_{5}. This proves (ii).

Proof of Theorem 7 continued. Let P be a non-trivial atom of G. The second part of our theorem obviously holds if $P \cong \Theta_{5}$. Now, assume that P is not isomorphic to Θ_{5} and let H be the cubic graph homeomorphic with P. Then, using Proposition 8 and the notation of its proof, every vertex of H_{S} has valency at most 2 . Hence, $v\left(H_{S}\right) \geq e\left(H_{S}\right)$. Combining this observation with (8) we obtain

$$
v_{3}(P)=v_{3}(H)=v(H) \geq v\left(H_{S}\right) \geq e\left(H_{S}\right)=|S|=\zeta(G)
$$

and, consequently,

$$
v(P)=v_{2}(P)+v_{3}(P) \geq|S|+\zeta(G)=2 \zeta(G)=2 k
$$

which completes the proof of Theorem 7.
In a certain sense, Theorem 7 could be strengthened. The reason is that nonisomorphic cyclic parts P with $v(P)<2 \zeta(G)$ can easily be listed. This follows from the fact that, in this case, P is either a k-cycle, or is isomorphic to a graph $H \in\left\{\Theta_{2}, K_{4}, K_{3,3}\right\}$, and each edge of H corresponds in P to a path of length at most 3 . For $k \geq 5$ such a list can be found in Fouquet and Thuillier [3; Fig. 3 and Fig. 4].

Here is our second main result, the Reduction Theorem.
Theorem 9. Let G be a connected cubic graph with cyclic connectivity k. If A and B are distinct cyclic parts of G with non-empty intersection, then one of the following cases occurs:
(i) At least one of $A \cap B$ and $A \cap B^{\prime}=A-B$ is a cyclic part of G contained in A.

ATOMS OF CYCLIC CONNECTIVITY IN CUBIC GRAPHS

(ii) Among the cyclic parts A, A^{\prime}, B and B^{\prime} at least one is a k-cycle.
(iii) $k=6$ and at least one of A, A^{\prime}, B and B^{\prime} is isomorphic to Θ_{8}.

Proof. Set $G_{0}=A \cap B, G_{1}=A \cap B^{\prime}, G_{2}=A^{\prime} \cap B^{\prime}$ and $G_{3}=A^{\prime} \cap B$, where the indices are taken modulo 4 . Note that G_{0} is non-empty. If G_{1} or G_{3} is empty, then either $A \subseteq B$ or $B \subseteq A$, respectively, and hence $A \cap B$ is a cyclic part. If G_{2} is empty, then $A-B=B^{\prime}$ is a cyclic part. In both cases, part (i) of the theorem holds. Thus we can assume that G_{i} is non-empty for all $i=0,1,2$ and 3 .

Choosing any index $i, 0 \leq i \leq 3$, one can find among A, A^{\prime}, B and B^{\prime} a cyclic part D_{i} which contains both G_{i} and G_{i+1}. There is, in fact, exactly one cyclic part D_{i} as required and, moreover, $V\left(D_{i}\right)=V\left(G_{i}\right) \cup V\left(G_{i+1}\right)$. A crucial step of our proof is to establish the following lemma, which is, basically, a part of Lemma 2.1 in [7].

LEMMA. Assume that both G_{i} and G_{i+1} are acyclic. If $\left|\delta G_{i}\right| \leq k$ and $\left|\delta G_{i+1}\right| \leq k$, then D_{i} is either a k-cycle or it is isomorphic to Θ_{8}.

Proof. We show that $v\left(D_{i}\right) \leq 2 k-4$. Since δA and δB are independent sets of edges, it is immediate that every $G_{j}(0 \leq j \leq 3)$ has minimum valency greater than or equal to 1 . Thus

$$
\begin{equation*}
\left|\delta G_{j}\right|=2 v_{1}\left(G_{j}\right)+v_{2}\left(G_{j}\right) \tag{9}
\end{equation*}
$$

Note that for every forest F with maximum valency ≤ 3 one has

$$
\begin{equation*}
2 v_{0}(F)+v_{1}(F)-v_{3}(F)=2 c(F) \tag{10}
\end{equation*}
$$

which can easily be proved by induction. For $j=i$ and $j=i+1$, (10) implies that $v_{3}\left(G_{j}\right)=v_{1}\left(G_{j}\right)-2 c\left(G_{j}\right)$, whence

$$
v\left(G_{j}\right)=v_{1}\left(G_{j}\right)+v_{2}\left(G_{j}\right)+v_{3}\left(G_{j}\right)=2 v_{1}\left(G_{j}\right)+v_{2}\left(G_{j}\right)-2 c\left(G_{j}\right)
$$

By combining this with (9), for $j=i$ and $j=i+1$ we obtain

$$
\begin{equation*}
v\left(G_{j}\right)=\left|\delta G_{j}\right|-2 c\left(G_{j}\right) \tag{11}
\end{equation*}
$$

But $\left|\delta G_{i}\right| \leq k$ and $\left|\delta G_{i+1}\right| \leq k$, so from (11) it follows that

$$
\begin{aligned}
v\left(D_{\imath}\right) & =v\left(G_{i}\right)+v\left(G_{i+1}\right)=\left|\delta G_{i}\right|-2 c\left(G_{i}\right)+\left|\delta G_{i+1}\right|-2 c\left(G_{i+1}\right) \\
& \leq k-2+k-2 \leq 2 k-4
\end{aligned}
$$

Thus we have proved that

$$
\begin{equation*}
v\left(D_{i}\right) \leq 2 k-4 \tag{12}
\end{equation*}
$$

If D_{i} is not a k-cycle, then it is a non-trivial cyclic part of G. But now, Theorem 7 and inequality (12) imply that it is isomorphic to Θ_{8}.

Proof of Theorem 9 continued. It is well known ([5; 6.48(a)]) that for any two subsets X and Y of $V(G)$ it holds that

$$
|\delta(X \cup Y)| \leq|\delta X|+|\delta Y|-|\delta(X \cap Y)| .
$$

Setting $X=A$ and $Y=B$ and using the fact that $\delta(X \cup Y)=\delta\left(X^{\prime} \cap Y^{\prime}\right)=$ $\delta\left(G_{2}\right)$ we have

$$
\left|\delta G_{2}\right| \leq 2 k-\left|\delta G_{0}\right| .
$$

Using an appropriate substitution for X and Y we obtain that

$$
\begin{equation*}
\left|\delta G_{i+2}\right| \leq 2 k-\left|\delta G_{i}\right| \tag{13}
\end{equation*}
$$

for any $i \in\{0,1,2,3\}$ taken modulo 4 .
Now, suppose that neither G_{0} nor G_{1} is a cyclic part of G. We distinguish four cases covering all the possible relations between $\left|\delta G_{i}\right|$ and k, where $i=0,1$.

Case 1. $\left|\delta G_{0}\right|>k$ and $\left|\delta G_{1}\right|>k$. Then by virtue of (13) we have $\left|\delta G_{2}\right|<k$ and $\left|\delta G_{3}\right|<k$, which implies that both G_{2} and G_{3} are acyclic. Employing our Lemma, we can deduce that $A^{\prime}=D_{2}$ is either a k-cycle, or $k=6$ and A^{\prime} is isomorphic to Θ_{8}. This yields (ii) or (iii).

Case 2. $\left|\delta G_{0}\right|>k$ and $\left|\delta G_{1}\right| \leq k$. From (13), it follows that $\left|\delta G_{2}\right|<k$. Thus G_{2} is acyclic while G_{1} is acyclic by the assumption of this case. Our Lemma now yields that $B^{\prime}=D_{1}$ is either a k-cycle, or is isomorphic to Θ_{8}. Again, (ii) or (iii) is satisfied.

Case 3. $\left|\delta G_{0}\right| \leq k$ and $\left|\delta G_{1}\right|>k$. In this case, (ii) or (iii) is satisfied with $D_{3}=B$.

Case 4. $\left|\delta G_{0}\right| \leq k$ and $\left|\delta G_{1}\right| \leq k$. Now, (ii) or (iii) is satisfied with $D_{0}=A$. The proof of Theorem 9 is complete.

Figure 1.

ATOMS OF CYCLIC CONNECTIVITY IN CUBIC GRAPHS

We finally remark that case (iii) of Theorem 9 really occurs and is not contained in cases (i) and (ii). To see this, consider the example in Fig. 1. If u_{0}, u_{1}, u_{2} and u_{3} are the "corner" vertices of the graph in Fig. 1, set G_{i} to be the subgraph induced by u_{i} and its neighbours. With the notation of the above proof, it is easy to see that the cyclic parts D_{0}, D_{1}, D_{2} and D_{3} are all isomorphic to Θ_{8}.

4. Corollaries

We start this section with two corollaries of Theorem 7. The essential part of this section, however, will be devoted to consequences of Theorem 9.

The following result improves Corollary 1 of [3].
COROLLARY 10. Let G be a connected cubic graph with $\zeta(G)<g(G)$, and let P be a cyclic part of G. Then either $v(P) \geq 2 \zeta(G)$, or $\zeta(G)=3$ and P is isomorphic to Θ_{5} and $v(P)=5=2 \zeta(G)-1$.

Proof. Since $\zeta(G)<g(G)$, there exists a non-trivial atom $A \subseteq P$, and the result follows from Theorem 7 .

Our next theorem imposes a restriction on the possible choice of atoms for a cubic graph with given cyclic connectivity.

THEOREM 11. Let A be a non-trivial atom of a connected cubic graph G. Then $\zeta(A) \geq \zeta(G) / 2+1$, or A is isomorphic to Θ_{5} and $\zeta(A)=2=$ $\zeta(G) / 2+1 / 2$. In each case, $\zeta(A)>\zeta(G) / 2$.

Proof. Let us first examine the case when A is homeomorphic to none of Θ_{2}, K_{4} and $K_{3,3}$. Then there exists a cycle-separating cut B in A such that $|B|=\zeta(A)$. If A_{1} and A_{2} are the components of $A-B$, then

$$
\begin{equation*}
\left|\delta A_{1}\right|+\left|\delta A_{2}\right|=|\delta A|+2\left|\delta A_{1} \cap \delta A_{2}\right|=\zeta(G)+2|B|=\zeta(G)+2 \zeta(A) \tag{14}
\end{equation*}
$$

On the other hand, A is an atom, so $\left|\delta A_{i}\right| \geq \zeta(G)+1$ for $i=1,2$. By using (14) we now obtain

$$
2 \zeta(G)+2 \leq\left|\delta A_{1}\right|+\left|\delta A_{2}\right|=\zeta(G)+2 \zeta(A)
$$

whence

$$
\zeta(A) \geq \zeta(G) / 2+1
$$

as required.
It remains to handle the case when A is homeomorphic to one of the three exceptional graphs. Denoting this graph by H we have

$$
\begin{aligned}
\zeta(A) & =\beta(A)=\beta(H)=v(H) / 2+1=v_{3}(A) / 2+1 \\
& =\left(v(A)-v_{2}(A)\right) / 2+1 \\
& =(v(A)-\zeta(G)) / 2+1
\end{aligned}
$$

ROMAN NEDELA — MARTIN ŠKOVIERA

But now, if A is not isomorphic to Θ_{5}, Theorem 7 implies that

$$
\zeta(A)=(v(A)-\zeta(G)) / 2+1 \geq \zeta(G) / 2+1,
$$

and the theorem follows.
Sometimes the bound given in Theorem 11 can be improved. For instance, from Theorem 11 it follows that no cyclically 7 -connected cubic graph contains an atom homeomorphic to Θ_{2}, K_{4} or $K_{3,3}$. Proposition 8 implies, however, that in a non-trivial atom $A \not \not \Theta_{5}$ the set of edges each of which is incident with a 2 -valent vertex forms a subgraph with maximum valency 2 . But then it is easy to see that the cyclic connectivity 7 can be replaced by 6 , and this is best possible.

We now pass to corollaries of Theorem 9. Here, we concentrate only on results of general character, without imposing further restrictions on graphs. Besides establishing new results, we reprove two theorems of $\mathrm{McCuaig}[7]$. Our Reduction Theorem enables us not only to shorten the original proofs but also sheds new light on them. For instance, one of McCuaig 's theorems is included as an implication between two of three equivalent statements. Finally, we present a sample of results on vertex-transitive cubic graphs. Further results can be found in [10].

The following concept and two notations are due to McCuaig [7]. A cyclic part A of a connected cubic graph G is an end of G (a $\zeta(G)$-end in the original terminology) if no edge of A belongs to a minimum cycle-separating cut. Obviously, each end is an atom. Moreover, it is easy to see that any two distinct ends are disjoint (see also [7; Lemma 6.2]).

In a different context, McCuaig considers two special subgraphs, which we denote by $M(G)$ and $N(G)$ (originally $N_{\zeta(G)}(G)$ and $\left.N_{\zeta(G)}^{\prime}(G)\right)$. For a connected cubic graph G let $M(G)$ be the subgraph of G formed by the set of edges belonging to some minimum cycle-separating cut. Edges in $M(G)$ are sometimes called non-removable, whereas those not belonging to $M(G)$ are called removable ([3], [2]).

Further, let $N(G)$ be the subgraph of $M(G)$ formed by the set consisting of edges that are contained in no cycle of length $\zeta(G)$.

The following theorem relates the three objects to each other and contains Theorem 2.3 of [7$]$ as the implication (ii) \Longrightarrow (iii).
Theorem 12. Let G be a connected cubic graph of girth g. The following conditions are equivalent.
(i) Each atom of G is an end.
(ii) No minimum cycle-separating cut of G contains some edge of a cycle of length $\zeta(G)$, i.e., $M(G)=N(G)$.
(iii) No minimum cycle-separating cut contains two edges in the same component of $M(G)$.

ATOMS OF CYCLIC CONNECTIVITY IN CUBIC GRAPHS

> Proof.
(ii) \Longrightarrow (i):

Assuming (ii), let A be an atom which is not an end. Then there exists a cyclic part $B \neq A$ such that some edge e of δB is in A. Since A is an atom, Theorem 9 implies that $\zeta(G)=g$, and there exists a cyclic part P among A, A^{\prime}, B and B^{\prime} which is a g-cycle or Θ_{8}. In both cases, each edge of P lies on a g-cycle. On the other hand, one of the cuts δA and δB separates P while the other intersects P. Thus one of those cuts contains an edge of a g-cycle, contradicting (ii).
(i) \Longrightarrow (iii):

Suppose that (i) holds and that G has a minimum cycle-separating cut S comprising two edges e and f in the same component of $M(G)$. Choose e and f so that their distance in $M(G)$ is minimum and let Q be the shortest path of $M(G)$ joining them. The choice of e and f implies that Q lies entirely in one of the cyclic parts separated by S. Call it A. Since e and f are independent, Q is not a single vertex, and therefore A contains an edge h of $M(G)$. By the definition of $M(G)$, there is a cyclic part B in G such that h is in δB. Obviously, $A \neq B$ and A intersects B, so we can employ Theorem 9 . From the choice of e and f it follows that the case (i) of Theorem 9 cannot occur. Thus $\zeta(G)=g$ and one of A, A^{\prime}, B and B^{\prime} is a g-cycle or Θ_{8}. In both cases, there is a g-cycle C containing an edge of δA or an edge of δB. Thus C is not an end. Since C is an atom, we have arrived at a contradiction.
(iii) \Longrightarrow (ii):

Assume that some $\zeta(G)$-cycle C contains an edge $e=u v$ of $M(G)$. Since G contains a $\zeta(G)$-cycle, we have $\zeta(G) \geq g$. By Proposition $2, \zeta(G) \leq g$ and so $\zeta(G)=g$. Thus C is a g-cycle. Let f and h be the edges of δC incident with u and v, respectively. Since $\delta C \subseteq M(G), f e h$ is a path in $M(G)$ implying that f and h belong to the same component of $M(G)$.

This completes the proof.
The following result is Theorem 2.2 of McCuaig [7].
Theorem 13. ([7]) Let G be a connected cubic graph. Then $N(G)$ is a forest.
Proof. Suppose that there is a cycle C contained in $N(G)$. Then, for any edge e_{1} in C, there exists another edge e_{2} in C such that both e_{1} and e_{2} belong to a common minimum cycle-separating cut S. Choose e_{1} and e_{2} to have the minimum distance in C and let P be the portion of C realizing this distance. Since e_{1} and e_{2} are independent, P contains an edge, say f_{1}. Again, there exists another edge f_{2} in C (which by the choice of e_{1} and e_{2} is contained in $C-\left(P \cup e_{1} \cup e_{2}\right)$ such that f_{1} and f_{2} belong to some minimum cycle-separating cut T. Let A be the component of $G-S$ containing f_{1} and let B be the component of $G-T$ containing e_{1}. Clearly, A and B are distinct cyclic parts of G with $A \cap B \neq \emptyset$. Moreover, the edges f_{1}, f_{2}, e_{1} and e_{2} lie
in A, A^{\prime}, B and B^{\prime}, respectively. The choice of e_{1} and e_{2} implies that neither $A \cap B$ nor $A-B$ is a cyclic part. Thus from Theorem 9 it follows that one of A, A^{\prime}, B and B^{\prime} is either a cycle of length $\zeta(G)$ or Θ_{8}. In either case, one of the edges f_{1}, f_{2}, e_{1} and e_{2} lies on a cycle of length $\zeta(G)$, which is a contradiction.

Cubic graphs with cyclic connectivity smaller than girth differ from other cubic graphs in many remarkable properties. The following theorem summarizes some of them. Part (a) is a generalization of the main result of [9] which states that distinct non-trivial proper atoms are disjoint. Part (b) coincides with Theorem 6.2 of [7], and part (c) combines Theorem 2.3 of [7] with Proposition 7 of [3]. Note that from the proof it readily follows that the assumption $\zeta(G)<g(G)$ can be replaced by any of the three equivalent statements of Theorem 12.

Let us call an atom A of a cubic graph G detached if there exists no atom $B \neq A$ having a non-empty intersection with A. Note that each end is a detached atom (cf. [7; Theorem 6.1]). Fig. 2 shows that the converse is false.

Figure 2.
THEOREM 14. If G is a connected cubic graph with $\zeta(G)<g(G)$, then the following hold:
(a) Every atom in G is an end and hence is detached.
(b) G has at least two ends.
(c) $M(G)$ is a forest with at least $\zeta(G)$ components and each component of $M(G)$ is an induced subgraph of G.

ATOMS OF CYCLIC CONNECTIVITY IN CUBIC GRAPHS

Proof. Let g be the girth of G. Since $\zeta(G)<g, G$ contains no $\zeta(G)$-cycles, and hence $M(G)=N(G)$. Thus, the three equivalent statements (i) - (iii) of Theorem 12 hold. In particular, (i) is true, implying (a). (Observe, however, that (a) can also be directly deduced from Theorem 9.)

By our assumption, G is not isomorphic to Θ_{2}, K_{4} or $K_{3,3}$. Therefore G contains an atom. This atom and any atom contained in its complement are the two required ends of G.

Finally, Theorem 13 combined with (ii) of Theorem 12 implies that $M(G)$ is a forest. By (iii) of the same theorem, the number of components cannot be smaller than $\zeta(G)$. The proof that each component of $M(G)$ is an induced subgraph of G is similar to that of Theorem 13.

This completes the proof.
The following corollary coincides with Theorem 1 of Aldred, Holton and Jackson [1].

Corollary 15. Let G be a connected cubic graph with cyclic connectivity k. If $M(G)$ intersects an atom of G, then $g(G)=k$.

Proof. By the assumption, G contains an atom that is not an end. Theorem 14 (a) then implies that k cannot be smaller than $g(G)$. Thus the statement follows.

Figure 3.
From Proposition 5 and Corollary 6, we know that, if $\zeta(G)<g(G)$, then each atom in G is non-trivial, and, from Theorem 14 (a), that it is detached. Thus one could expect that every non-trivial atom in a cubic graph must be detached. The graph in Fig. 3 shows that this is not the case. It is easy to see that its cyclic

ROMAN NEDELA - MARTIN ŠKOVIERA

connectivity is 5 , it contains exactly two 5 -cycles, and their complements are distinct non-trivial atoms with non-empty intersection. The following theorem shows that this example is typical.

THEOREM 16. Let G be a connected cubic graph with cyclic connectivity k and girth g. If G contains two distinct non-trivial atoms with non-empty intersection, then $k=g$ and there exists a non-trivial atom A in G whose complement A^{\prime} is isomorphic either to a k-cycle, or, if $k=6$, to Θ_{8}.

Proof. If $k=\zeta(G)<g$, then, by Theorem 14, any two distinct atoms of G are disjoint. Therefore $k=g$. Now let A and B be two non-trivial atoms with $A \cap B \neq \emptyset$. Clearly, none of A and B is a k-cycle, and, if $k=6$, none of them is isomorphic to Θ_{8}. Using Theorem 9 for A and B and realizing that A is an atom we see that (ii) or (iii) of that theorem is true. Hence, one of A^{\prime} or B^{\prime} is either a k-cycle or Θ_{8}. This completes the proof.

In our final result, we apply Theorem 14 (a) to determining the cyclic connectivity of any cubic vertex-transitive or edge-transitive graph. For further results in this direction see [10].

THEOREM 17. Let G be a cubic vertex-transitive or edge-transitive graph of girth g. Then G has no non-trivial proper atom. In particular, $\zeta(G)=g$.

Proof. We prove the theorem only for vertex-transitive graphs. The case of edge-transitive graphs is handled in [10, Theorems 8 and 14].

Assume that G contains a non-trivial proper atom A. Thus, by Proposition 5, we have $\zeta(G)<g$. If x and y are two vertices of A, then there is an automorphism ϕ sending x to y. Obviously, $\phi(A)$ is an atom, too, and $A \cap \phi(A) \neq \emptyset$. However, by virtue of Theorem 14 (a), A is detached. Therefore $\phi(A)=A$, and hence A is vertex-transitive. Since A contains a 2 -valent vertex, all the vertices of A are 2 -valent, by vertex-transitivity. Thus A is a cycle, which contradicts the non-triviality of A.

The previous result suggests the question whether the adjective "proper" in the statement of Theorem 17 can be omitted. We conjecture that the answer is "yes". To support this conjecture we prove in [10] that a vertex-transitive or edge-transitive cubic graph with sufficiently many vertices as compared to its girth (at least $g \cdot 2^{(g / 2)-1}+3$) has no non-trivial atom. The proof is based on Theorem 16.

ATOMS OF CYCLIC CONNECTIVITY IN CUBIC GRAPHS

REFERENCES

[1] ALDRED, R. E. L.-HOLTON, D. A.-JACKSON, B.: Uniform cyclic edge connectivity in cubic graphs, Combinatorica 11 (1991), 81-96.
[2] ANDERSEN, L. D.-FLEISCHNER, H.-JACKSON, B.: Removable edges in cyclically 4-edge-connected cubic graphs, Graphs Combin. 4 (1988), 1-21.
[3] FOUQUET, J.-L.-THUILLIER, H.: Non-removable edges in 3-connected cubic graphs, Graphs Combin. 7 (1991), 119-141.
[4] LOVÁSZ, L.: On graphs containing no independent cycles (Hungarian), Mat. Lapok 16 (1965), 289-299.
[5] LOVÁSZ, L.: Combinatorial Problems and Exercises, Akadémiai Kiadó, Budapest, 1979.
[6] MADER, W.: Minimale n-fach kantenzusammenhängende Graphen, Math. Ann. 21 (1971), 21-28.
[7] McCUAIG, W. D.: Edge reductions in cyclically k-connected cubic graphs, J. Combin. Theory Ser. B 56 (1992), 16-44.
[8] MOSHI, A. M.: Matching cutsets in graphs, J. Graph Theory 13 (1989), 527-536.
[9] NEDELA, R.-S̆KOVIERA, M : On cyclic connectivity of cubic graphs. Manuscript.
[10] NEDELA, R.-S̆KOVIERA, M.: Atoms of cyclic connectivity in transitive cubic graphs. In: Contemporary Methods in Graph Theory (R. Bodendiek, ed.), BI-Wissenschaftsverlag, Mannheim, 1990, pp. 479-488.
[11] TUTTE, W. T.: A non-Hamiltonian planar graph, Acta Math. Acad. Scient. Hung. 11 (1960), 371-375.
[12] TUTTE, W. T.: Graph Theory. Encyclopedia Math. Appl. 21, Addison-Wesley, Reading, 1984.
[13] WATKINS, M. E. : Connectivity of transitive graphs, J. Combin. Theory 8 (1970), 23-29.

* Matej Bel University Faculty of Science Tajovského 40 SK-975 49 Banská Bystrica Slovakia
E-mail: nedela@bb.sanet.sk
** Department of Informatics Faculty of Mathematic:s and Physics Comenius University Mlynská Dolina SK-842 15 Bratislava Slovakia
E-mail: skoviera@fmph.uniba.sk

[^0]: AMS Subject Classification (1991): Primary 05C40.
 Key words: cyclic connectivity, atom, cubic graph.

