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Abstract

Positive solutions of the singular (p, n−p) conjugate BVP are studied.
The set of all zeros of their derivatives up to order n − 1 is described.
By means of this, estimates from below of the solutions and the absolute
values of their derivatives up to order n−1 on the considered interval are
reached. Such estimates are necessary for the application of the general
existence principle to the BVP under consideration.
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1 Introduction

Let n, p ∈ N, n > 2, p ≤ n− 1, and T be a positive number. In [3] (for p = 1)
and [6], the authors have considered the singular (p, n− p) conjugate boundary
value problem (BVP)

(−1)px(n)(t) = f(t, x(t), . . . , x(n−1)(t)), (1.1)
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x(i)(0) = 0, x(j)(T ) = 0 0 ≤ i ≤ n− p− 1, 0 ≤ j ≤ p− 1, (1.2)

where f satisfies the local Carathéodory conditions on the set D = [0, T ] ×
((0,∞) × Rn−1

0 ) with R0 = R \ {0} and f is singular at the value 0 of each
its phase variable. They have given conditions on f guaranteeing the existence
of a positive (on (0, T )) solution to BVP (1.1), (1.2). The singularities of the
function f in (1.1) ‘appear’ in any positive solution of BVP (1.1), (1.2) and
some its derivatives at the fixed points t = 0, t = T , and all its derivatives up to
order n− 1 ‘pass through’ singularities of f also at inner points of the interval
(0, T ) which are not fixed. Therefore for proving the solvability of BVP (1.1),
(1.2) in the class of positive functions on (0, T ) it is very important to give a
localization analysis of zeros of derivatives up to order n−1 of positive solutions
to BVP (1.1), (1.2). This analysis have been presented for p = 1 in [3] and for
p = 2 in [6] under the assumption that f ≥ c on D with a positive constant c.
The aim of this paper is to complete this analysis for all values of p. We note
that the singular differential equation

(−1)px(n)(t) = φ(t)g(t, x(t)) (1.3)

together with the boundary conditions (1.2) have been discussed for φ(t)g(t, x) :
(0, 1) × (0,∞) → (0,∞) continuous in [1], [2], [4] and [5] (in [4] and [5] with
φ = 1). But for BVP (1.3), (1.2) singularities of g ‘appear’ in its positive
solutions only at the fixed points t = 0 and t = 1.

2 Localization analysis of zeros to solutions of BVP (1.1),
(1.2)

Let c be a positive constant and let f in (1.1) satisfy f ≥ c on D. Then the
localization analysis of zeros to solutions of BVP (1.1), (1.2) and their derivatives
up to order n−1 can be studied by the localization analysis of zeros to solutions
of the differential inequality

(−1)px(n)(t) ≥ c (2.1)

satisfying the boundary conditions (1.2). By a solution of problem (2.1), (1.2)
we understand a function x ∈ ACn−1([0, T ]) (functions having absolutely con-
tinuous (n − 1)st derivative on [0, T ]) satisfying (2.1) for a.e. t ∈ [0, T ] and
fulfilling (1.2).
Having a solution x of problem (2.1), (1.2) we are interested in zeros of x(k),

0 ≤ k ≤ n− 1, belonging to (0, T ). Without loss of generality we can suppose

p− 1 ≤ n− p− 1 (2.2)

that is p ≤ n/2, because by replacing t by T − t we can transform the case
n/2 < p to (2.2).
For p = 1, 2 we have already studied zeros of x(k) and we have proved the

following results:
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Lemma 2.1 Let x be a solution of problem (2.1), (1.2) for p = 1. Then x > 0
on (0, T ) and x(k) has just one zero in (0, T ), 1 ≤ k ≤ n− 1.

Proof Lemma follows from [3], Lemmas 2.7 and 2.9. �

Lemma 2.2 Let x be a solution of problem (2.1), (1.2) for p = 2. Then

(i) x > 0 on (0, T ),

(ii) x(k) has just one zero in (0, T ) for k = 1 and k = n− 1,

(iii) x(k) has just two zeros in (0, T ) for 2 ≤ k ≤ n− 2.

Proof See [6], Lemmas 2.2. �

Decomposition analysis of zeros to solutions of BVP (2.1), (1.2) with p ≥ 3
is described in the next theorem.

Theorem 2.3 Let x be a solution of problem (2.1), (1.2) for p ≥ 3 and let
(2.2) hold. Then

(i) x > 0 on (0, T ),

(ii) x(k) has just j zeros in (0, T ) for k = j and k = n−j where j = 1, 2, . . . , p− 1,

(iii) x(k) has just p zeros in (0, T ) for p ≤ k ≤ n− p.

Proof The proof is divided into three parts.
I. Lower bounds for zeros. By (1.2) we see that x′ has at least one zero

t11 ∈ (0, T ). Hence x′(0) = x′(t11) = x′(T ) = 0, which implies that x′′ has
at least two zeros t21, t

2
2 ∈ (0, T ). So, we have x′′(0) = x′′(t21) = x′′(t22) =

x′′(T ) = 0. By induction we conclude that x(j), j = 3, . . . , p − 1, has at least
j zeros tj1, . . . , t

j
j ∈ (0, T ) and, due to (1.2) and (2.2) x(j)(0) = x(j)(tj1) = . . . =

x(j)(tjj) = x(j)(T ) = 0, j = 3, . . . , p − 1. Therefore x(p) hat at least p zeros in
(0, T ). Now we will distinguish two cases: p < n/2 and p = n/2.
1. Let p < n/2. Then p ≤ n− p− 1 and, by (1.2),

x(j)(0) = 0, j = p, . . . , n− p− 1.

Thus x(k) has at least p zeros in (0, T ) for k = p + 1, . . . , n− p.
2. Let p = n/2 (clearly n is even in this case). Then p = n− p and x(n−p)

has at least p zeros in (0, T ).
Hence we have shown that x(n−p) has at least p zeros in (0, T ) in the both

cases. Since for x(n−j), 1 ≤ j ≤ p − 1, we cannot already use (1.2), we deduce
that x(n−j) has at least j zeros in (0, T ) for j = 1, . . . , p−1. Particularly x(n−1)

has at least one zero in (0, T ).
II. Exact number of zeros. By (2.1), x(n−1) is strictly monotonous and hence

it has just one zero in (0, T ). Therefore, by I, we deduce that x(n−k) has just
k zeros in (0, T ) for 2 ≤ k ≤ p − 1 and x(k) has just p zeros in (0, T ) for
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p ≤ k ≤ n− p. Similarly, x(k) has just k zeros in (0, T ) for 1 ≤ k ≤ p− 1 and x
has no zero in (0, T ).
III. Positivity of x. Denote by tk1 the first zero of x

(k) in (0, T ), 1 ≤ k ≤ n−1.
Inequality (2.1) implies that (−1)px(n−1) < 0 on [0, tn−1

1 ) and (−1)px(n−2) > 0
on [0, tn−2

1 ). Therefore (−1)p+jx(n−j) > 0 on (0, tn−j
1 ) for j = 3, . . . , p. Partic-

ularly we have x(n−p) > 0 on (0, tp1), wherefrom, by virtue of (1.2), we obtain
x(k) > 0 on (0, tk1), 1 ≤ k ≤ n− p− 1, and consequently x > 0 on (0, T ). �

Our next theorem provides estimates from below of solutions to problem
(2.1), (1.2) and of the absolute value of their derivatives up to order n − 1
on the interval [0, T ]. These estimations are necessary to apply the general
existence principle of [6] to problem (1.1), (1.2) with f in (1.1) satisfying the
inequality f ≥ c on D.

Theorem 2.4 Let x be a solution of problem (2.1), (1.2). Then for any i ∈
{1, . . . , n − 1} there are pi + 1 disjoint intervals (ak, ak+1), 0 ≤ k ≤ pi, pi <
(n− 1)p, such that

pi⋃

k=0

[ak, ak+1] = [0, T ] (2.3)

and for each k ∈ {0, . . . , pi} one of the inequalities

|x(n−i)(t)| ≥ c

i!
(t− ak)i for t ∈ [ak, ak+1] (2.4)

or
|x(n−i)(t)| ≥ c

i!
(ak+1 − t)i for t ∈ [ak, ak+1] (2.5)

is satisfied.

Proof Let x be a solution of problem (2.1), (1.2) and let tji ∈ (0, T ) be zeros
of x(j) described in Lemmas 2.1, 2.2 and Theorem 2.3. Integrating (2.1) we get

(−1)p+1x(n−1)(t) ≥ c(tn−1
1 − t) for t ∈ [0, tn−1

1 ]

(−1)px(n−1)(t) ≥ c(t− tn−1
1 ) for t ∈ [tn−1

1 , T ].
(2.6)

Now, integrate the first inequality in (2.6) from t ∈ [0, tn−2
1 ) to tn−2

1 , we have

(−1)pxn−2(t) ≥ c

2

(
− (tn−1

1 − tn−2
1 )2 + (tn−1

1 − t)2
)
≥ c

2!
(tn−2

1 − t)2.

Hence, we get in such a way

(−1)px(n−2)(t) ≥ c
2! (t

n−2
1 − t)2 for t ∈ [0, tn−2

1 ]

(−1)p+1x(n−2)(t) ≥ c
2! (t− tn−1

1 )2 for t ∈ [tn−2
1 , tn−1

1 ]

(−1)p+1x(n−2)(t) ≥ c
2! (t

n−2
2 − t)2 for t ∈ [tn−1

1 , tn−2
2 ]

(−1)px(n−2)(t) ≥ c
2! (t− tn−2

2 )2 for t ∈ [tn−2
2 , T ].

(2.7)
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Choose i ∈ {1, . . . , n − 1} and take all different zeros of functions x(n−1), . . .,
x(n−i), which are in (0, T ). By Lemmas 2.1, 2.2 and Theorem 2.3, there is a
finite number pi < (n− 1)p of these zeros. Let us put them in order and denote
by a1, . . . , api . Set a0 = 0, api+1 = T . In this way we get pi +1 disjoint intervals
(ak, ak+1), 0 ≤ k ≤ pi, satisfying (2.3).
If i = 1, then for a1 = tn−1

1 , a2 = T , we get by (2.6) that |x(n−1)(t)| ≥
c(a1 − t) for t ∈ [a0, a1] and |x(n−1)(t)| ≥ c(t− a1) for t ∈ [a1, a2].
If i = 2, we put tn−1

1 = a1, tn−2
1 = a2, tn−2

2 = a3, T = a4, and then (2.7)
gives (2.4) or (2.5).
If i > 2 and we integrate the inequalities in (2.7) (i− 2)-times, we get that

on each [ak, ak+1], k ∈ {0, . . . , pi} either (2.4) or (2.5) has to be fulfilled. �
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