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Abstract
To every subset A of a complete lattice L we assign subsets J(A),M(A)

and define join-closed and meet-closed sets in L. Some properties of such
sets are proved. Join- and meet-closed sets in power-set lattices are char-
acterized. The connections about join-independent (meet-independent)
and join-closed (meet-closed) subsets are also presented in this paper.
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Let (L,≤) be a complete lattice in which
∨
A,

∧
A denote the supremum

and the infimum of any subset A ⊆ L, respectively. The least and the greatest
elements in (L,≤) are denoted by 0, 1, respectively. If A ⊆ L, A �= ∅, then we
put Ax := A \ {x} for x ∈ A and

J(A) =
{∨

Ax | x ∈ A
}
, M(A) =

{∧
Ax | x ∈ A

}
.

Instead of M(J(A)), J(M(A)) we write just MJ(A), JM(A). If we put Px =
(J(A))∨Ax

= {∨Aa | a ∈ Ax}, then MJ(A) = {∧Px | x ∈ A}. Dually,
Rx = (M(A))∧Ax

= {∧Aa | a ∈ Ax} and JM(A) = {∨Rx | x ∈ A}. It is easy
to see that x ≤ ∧

Px and
∨
Rx ≤ x for all x ∈ A, thus ∨

Rx ≤
∧
Px.
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114 F. MACHALA, V. SLEZÁK

Proposition 1 If A ⊆ L, |A| > 2, then
∨
M(A) ≤ ∧

J(A).

Proof Consider x ∈ A and z ∈ Ax. By assumption, there exists an element
y ∈ Ax distinct from z. From x, z ∈ Ay we get

∧
Az ≤

∨
Ry and

∧
Py ≤

∨
Ax,

thus
∧
Az ≤

∨
Ax. We also have

∧
Ax ≤

∨
Ax and hence

∧
Az ≤

∨
Ax for all

z ∈ A. We have obtained the relation
∨
M(A) ≤ ∨

Ax holding for all x ∈ A.
Thus

∨
M(A) ≤ ∧

J(A). �

Definition 1 A set A ⊆ L is said to be meet-closed iff MJ(A) = A. Similarly,
A ⊆ L is join-closed iff JM(A) = A. In brief, we call them M-closed and
J-closed, respectively.

Remark 1 A set A = {x} is M-closed (J-closed) if and only if x = 1 (x = 0).
If A = {x, y}, then J(A) = A = M(A) and A is both M-closed and J-closed.

Proposition 2 A subset A ⊆ L is M-closed if and only if x =
∧
Px for all

x ∈ A.

Proof 1. If x =
∧
Px for all x ∈ A, then MJ(A) = {x | x ∈ A} = A.

2. Assume that MJ(A) = A and consider x ∈ A. It follows from ∧
Px ∈ A

that
∧
Px = y for a certain y ∈ A and since x ≤ ∧

Px we have x ≤ y. Let
us suppose that x �= y. Then

∨
Ay ∈ Px which yields y ≤ ∨

Ay. From
y ≤ ∧

Py we obtain y ≤
∧
J(A). Consequently (with respect to Px ⊆ J(A)),∧

J(A) ≤ ∧
Px = y and y =

∧
J(A). There exists z ∈ A such that x =

∧
Pz .

Then y ≤ ∧
Pz , i. e. y ≤ x which contradicts the assumption x < y. Thus

x =
∧
Px. �

Remark 2 The notions of M-closed and J-closed sets are dual, hence each
assertion about M-closed and J-closed sets admits its corresponding dual one.
Therefore, a set A ⊆ L is J-closed iff x =

∨
Rx for all x ∈ A. In what follows

the dual results will not be stated explicitly.

Proposition 3 If A ⊆ L, then the set M(A) is M-closed.

Proof If we put Qx = (JM(A))∨Rx
= {∨Ry | y ∈ Ax}, then MJM(A) =

{∧Qx | x ∈ A}. Consider x ∈ A. Then
∧
Qx ≤

∨
Ry ≤ y for all y ∈ Ax

which implies
∧
Qx ≤

∧
Ax. Furthermore,

∧
Ax ∈ Ry, thus

∧
Ax ≤

∨
Ry and∧

Ax ≤
∧
Qx. We have obtained

∧
Qx =

∧
Ax and MJM(A) = {∧Ax | x ∈

A} = M(A). �

Proposition 4 If a set A ⊆ L, |A| > 1, is M-closed, then
∧
J(A) =

∧
A.

Proof Let us consider x ∈ A. Then there exists y ∈ Ax such that
∧
A ≤ y ≤∨

Ax. Thus
∧
A ≤ ∧

J(A). We also have Px ⊆ J(A) and x =
∧
Px which

yields
∧
J(A) ≤ x and

∧
J(A) ≤ ∧

A. �
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Remark 3 A set A ⊆ L is M-closed if and only if A ∪ {∧A} is M-closed.

Proposition 5 Every subset of an M-closed set containing at least two elements
is M-closed.

Proof Let X be a subset of an M-closed set A ⊆ L. If |X | = 2, then X is
M-closed by Remark 1. Let |X | > 2. Consider x ∈ X and denote Qx = {∨Xl |
l ∈ Xx}, y =

∧
Qx. Since x ≤

∨
Xl for all l ∈ Xx we have x ≤ y. Obviously,

Xl ⊆ Al for all l ∈ Xx, which yields y ≤
∨
Xl ≤

∨
Al. If m ∈ A \ X , then

Xl ⊆ X ⊆ Am and y ≤
∨
Xl ≤

∨
Am for any l ∈ Xx. If a ∈ Ax, then either

a ∈ Xx or a ∈ A \ X . Thus y ≤ ∨
Aa and y ≤

∧
Px = x. It means that

x =
∧
Qx and the set X is M-closed. �

Proposition 6 Let A ⊆ L, |A| > 1, be an M-closed set, Xi, i ∈ J , be non-
empty subsets of A such that

⋂
i∈J Xi = ∅ and X = {∨Xi | i ∈ J}. Then∧X =

∧
A.

Proof It is easy to see that
∧
A ≤ ∧X . For each i ∈ J and x ∈ A \ Xi

we have Xi ⊆ Ax and hence
∨
Xi ≤

∨
Ax. It follows from

⋂
i∈J Xi = ∅ that⋃

i∈J(A \ Xi) = A and
∧X ≤ ∨

Ay for all y ∈ A. Thus
∧X ≤ ∧

J(A) and,
according to Proposition 4,

∧X ≤ ∧
A. �

Corollary 1 Let A ⊆ L, |A| > 1, be an M-closed set. Then
∧
X =

∧
A for

any X ⊆ A, |X | ≥ 2.

Definition 2 A subset A ⊆ L is said to be join-independent (meet-independent)
if and only if x �≤ ∨

Ax (
∧
Ax �≤ x) for all x ∈ A.

Remark 4 The concept of independence have been studied in various types of
lattices motivated by applications in algebra and geometry (refer to [1, 2, 3, 4,
8]). Definition 2 is given in [5] and some other related results are presented in
[6, 7].

Remark 5 Join- and meet-independence are dual notions, hence each of the
following results holds also dually.

Remark 6 If a set A ⊆ L is join-independent, then J(A) is meet-independent.
(See [5, 6].)

Proposition 7 If a set A ⊆ L, |A| > 2, is meet-independent, then it is not
M-closed.

Proof Let A be a meet-independent set. Suppose that it is also M-closed. Then
x =

∧
Px for all x ∈ A. It follows from Px ⊆ J(A) that

∧
J(A) ≤ ∧

Px. Since∨
M(A) ≤ ∧

J(A) (Proposition 1) we have
∧
Ax ≤

∨
M(A) ≤ ∧

J(A) ≤ x
which contradicts the meet-independence of A. �

Let A be a set. In what follows we denote the power set of A by P(A). Then
(P(A),⊆) is a complete lattice with lattice operations ∪,∩.
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Proposition 8 Let A be a set and X = {Xi | i ∈ J} ⊆ P(A) where |J | > 1.
The set X is M-closed in (P(A),⊆) if and only if Xk ∩Xl =

⋂
X for every two

distinct elements k, l of J .

Proof It is evident that J(X) = {⋃XXi | i ∈ J} = {⋃j∈J\{i}Xj | i ∈ J},
PXi = {⋃XXj | j ∈ J \ {i}} = {⋃m∈J\{j}Xm | j ∈ J \ {i}} and MJ(X) =
{⋂PXi | i ∈ J}.
1. Assume that X = MJ(X). If |J | = 2, then X = {X1, X2} and

⋂
X =

X1 ∩ X2. For |J | > 2 we have Xi =
⋂
PXi for all i ∈ J by Proposition

2. Consider any two distinct elements k, l ∈ J . Then
⋂
X ⊆ Xk ∩ Xl. Let

x ∈ Xk ∩ Xl. If i ∈ J is distinct from k, l, then for each j ∈ J \ {i} either
Xk ⊆

⋃
XXj or Xl ⊆

⋃
XXj and hence x ∈

⋂
PXi and x ∈ Xi. Since it holds

for all i ∈ J distinct from k, l we have x ∈ ⋂
X which yields

⋂
X = Xk ∩Xl.

2. Assume that
⋂
X = Xk∩Xl for any k, l ∈ J , k �= l. In case of |J | = 2 this

equality always holds and X is M-closed by Remark 1. Let |J | > 2. Consider
i ∈ J and denote Xj = {Xm | m ∈ J \ {i, j}} for all j ∈ J \ {i}. Then
PXi = {Xi ∪ (

⋃
Xj) | j ∈ J \ {i}}. Let x ∈ ⋂{⋃Xj | j ∈ J \ {i}}, i. e. x ∈ Xk

for a certain k ∈ J \{i}. However, x belongs to another set Xl, l ∈ J \{i}, l �= k.
Indeed, otherwise we get x /∈ ⋃

Xk which is a contradiction. Thus x ∈ Xk ∩Xl

and, by assumption, also x ∈ Xi. It follows from Xi ⊆
⋂
PXi that Xi =

⋂
PXi

and the set X is M-closed by Proposition 2. �

Let A ⊆ L be join-independent set. Consider a mapping ψ : P(A) → L
given by ψ(X) =

∨
X for all non-empty subsets X ∈ P(A) and ψ(∅) =

∧
A.

According to [5], (ψ(P(A)),≤) is a complete lattice isomorphic to (P(A),⊆)
which is also a complete join subsemilattice of (L,≤).

Proposition 9 Let a set A ⊆ L be join-independent and consider subsets X =
{Xi | i ∈ J} ⊆ P(A), X = {ψ(Xi) | i ∈ J} ⊆ L. The following statements are
equivalent:

(i) X is join-independent in (P(A),⊆).

(ii) Xi �⊆
⋃

j∈J\{i}
Xj for all i ∈ J .

(iii) X is join-independent in (L,≤).

Proof It is obvious.

Proposition 10 Let a join-independent set A ⊆ L, |A| > 2, be M-closed in
(L,≤). The following statements are equivalent:

(i) The set L1 = ψ(P(A)) is a sublattice in (L,≤).

(ii) The image of any M-closed set in (P(A),⊆) of cardinality 3 under the
mapping ψ is M-closed in (L,≤).

(iii) The image of any join-independent M-closed set in (P(A),⊆) of cardinal-
ity 3 under the mapping ψ is M-closed in (L,≤).
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Proof (i) ⇒ (ii) Let X = {X1, X2, X3} ⊆ P(A) be an M-closed set. According
to Proposition 2, for each i ∈ {1, 2, 3} we have ⋂

PXi = (Xi ∪ Xj) ∩ (Xi ∪
Xk) = Xi where j, k ∈ {1, 2, 3} and i, j, k are pairwise distinct. If ψ(X) =
{ψ(X1), ψ(X2), ψ(X3)}, then in (L,≤) there we have
∧
Pψ(Xi) = (ψ(Xi) ∨ ψ(Xj)) ∧ (ψ(Xi) ∨ ψ(Xk)) = ψ(Xi ∪Xj) ∧ ψ(Xi ∪Xk)

= ψ((Xi ∪Xj) ∩ (Xi ∪Xk)) = ψ(Xi).

Thus, by Proposition 2, the set ψ(X) is M-closed in (L,≤).
(ii) ⇒ (iii) Obvious.
(iii) ⇒ (i) Since ψ(P(A)) is a join subsemilattice in (L,≤) it suffices to

prove that the infimum of any two elements of L1 in (L,≤) belongs to L1.
Consider ψ(X1), ψ(X2) for X1, X2 ∈ P(A). Let us put Y = X1 ∩ X2. If for
instance Y = X1, then X1 ⊆ X2 and ψ(X1) = ψ(X1) ∧ ψ(X2). Further let
us suppose that Y �= X1, X2 which also means that X1, X2 �= ∅. If Y = ∅,
then ψ(X1) ∧ ψ(X2) =

∧
A by Proposition 6. Assume that Y �= ∅ and denote

X ′
1 = X1 \ Y , X ′

2 = X2 \ Y , X = {Y,X ′
1, X

′
2}. The set X is join-independent

in (P(A),⊆) by Proposition 9. It follows from Y ∩X ′
1 = Y ∩X ′

2 = X ′
1 ∩X ′

2 =⋂
X = ∅ that (by Proposition 8) X is M-closed in (P(A),⊆). According our
assumption, the set ψ(X) = {ψ(Y ), ψ(X ′

1), ψ(X ′
2)} is M-closed in (L,≤). Thus

ψ(X1)∧ψ(X2) = ψ(Y ∪X ′
1)∧ψ(Y ∪X ′

2) = (ψ(Y )∨ψ(X ′
1))∧ (ψ(Y )∨ψ(X ′

2)) =∧
Pψ(Y ) = ψ(Y ). �
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