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Abstract

In this paper, we shall give sufficient conditions for the ultimate bound-
edness of solutions for some system of third order non-linear ordinary
differential equations of the form

X+F(X)+G(X)+H(X) =Pt X,X,X)
where X, F(X), G(X), H(X), P(t,X, X, X) are real n-vectors with F, G,
H:R" — R"and P : R x R" x R" x R" — R"™ continuous in their
respective arguments. We do not necessarily require that F'(X), G(X) and
H(X) are differentiable. Using the basic tools of a complete Lyapunov

Function, earlier results are generalized.

Key words: Ultimate boundedness, complete Lyapunov functions,
nonlinear third order system.
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1 Introduction

In a sequence of results, Afuwape [1, 2, 3], Ezeilo [5], Ezeilo and Tejumola [8, 9],
Meng [10] and Tiryaki [12] studied particular cases of the third-order nonlinear
system of differential equations of the form

X+F(X)+GX)+H(X)=P(t, X, X, X) (1.1)
where X, F(X),G(X),H(X),P(t,X,X,X) are real n-vectors with F,G, H :
R" — R" and P : R x R" x R® x R” — R" continuous in the respective
arguments.

Boundedness and Periodicity results were discussed by imposing differentia-
bility conditions in [5, 8, 9, 12] on the nonlinear functions in the particular cases
of (1.1), while not necessarily differentiable conditions were imposed in [1, 3, 10]
for the study of ultimate boundedness of particular cases of (1.1). Furthermore,
the Lyapunov second method was used with the aid of a suitable differentiable
Lyapunov function.

For n =1 and f(&) = a&, g(&) = bd this reduces to

T +ai + bi + h(z) = p(t,z, &, %) (1.2)

which was studied by Ezeilo [6,7]. In [7], Ezeilo studied the ultimate bounded-
ness and convergence of solutions of (1.2) by assuming

h(€ +mn) — h(n)
£

for some designated &, n(# 0) with Iy = [d, kab] where 6 > 0 is an arbitrary
constant and 0 < k < 1. Iy is a subset of the generalized Routh—Hurwitz
interval (0, ab).

When n =0, £ #0 in (1.3) we have

€ Iy (1.3)

o s = LO 10 14
and
Hy = @ if h(0) = 0. (1.5)

On the other hand if F(X) = AX,G(X) = BX in (1.1) we have
X +AX +BX + H(X)=P(t, X, X, X) (1.6)

where A, B are real symmetric n X n matrices.
Afuwape [1] and Meng [10] studied (1.6) for the ultimate boundedness and
periodicity of solutions for which H is of class C'(R") by satisfying

H(X)=H(Y)+AX,Y)(X —Y) (1.7)
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where A(X,Y) is a real n x n operator for any X,Y in R", and having real
eigenvalues \;(A(X,Y)) (i =1,2,...,n).
It was assumed that these eigeuvalues satisfy

0< 6 < MAX, X)) < A, (1.8)

with 0, Ay, as fixed constants.
Moreover, the matrices A, B have real positive eigenvalues \;(A4) and \;(B)
respectively with §, = min \;(A4), d, = min \;(B), A, = max \;(A)
1

Ap = max \;(B),i = 1,2,...,n and that for some constant k(< 3 the “gener-
alized” Routh—Hurwitz condition,
Ap < kbaby (1.9)
was satisfied. Furthermore, when F(X) = AX in (1.1) we have
X +AX + G(X)+ H(X) = P(t, X, X, X) (1.10)

where A is a real symmetric n X n matrix.
In [3], Afuwape studied (1.10) for the ultimate boundedness of solutions for
which G, H are of class C'(R™) by satisfying

G(Y1) = G(Ya) + By (Y1, Ya) (Vi — Ya) (L11a)

H(X1) = H(X3) + Ch(X1, X2)(X1 — X2) (1.11d)

where By(Y1,Y2), Ch(X1, X2) are n x n real continuous operators, having real
eigenvalues \;(By(Y1,Y2)), Xi(Ch(X1,X2)), (i = 1,2,...,n) respectively and
which satisfy

0< 59 < )\i(Bg(Y17Y2)) < Ag (112&)

0< oy < )\i(ch(Xl,Xg)) < Ap (112[))

with dg,60n, Ag, Ay as fixed constants.

Also, the matrix A has real positive eigenvalues A;(A) with ¢, = min A;(A),
A, = max \;(A), i =1,2,...,n and that for some constant k(< 1) the “gener-
alized” Routh Hurwitz condition (1.9) was satisfied.

In this paper, we shall extend earlier results of [1, 3, 5, 8, 9, 10, 12] to systems
of the form (1.1) and for which generalized Routh-Hurwitz condition (1.9) is
satisfied. A new differentiable Lyapunov function which is a modification of the
one used in [10] is used to prove ultimate boundedness of solutions of (1.1). In
addition to (1.11a) and (1.11b) we assume that F is of class C(R™) and satisfies

F(Zl) :F(Z2)+Af(Zl,ZQ)(Z1 _ZQ) (].].].C)

where Af(Z1,Z2) is n x n real continuous operator having real eigenvalues
Ni(Af(Z1,Z2)) (i=1,2,...,n). These real eigenvalues satisfy

with 07, Ay as fixed constants.
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Furthermore, these eigenvalues satisfy, for some constant k(k < 1, defined
later) the “generalized” Routh-Hurtwitz condition (1.9).
Finally, we shall assume that P(t, X,Y, Z) satisfies

I[Pt XY, 2)| < pi(®) + o) {IX @I+ YOI + 12012}
+ () {IX DI + [V 02 + 121} (1.13)

for any XY, Z in R", where p;(¢), p2(t), p3(t) are continuous functions in ¢ and
0<p<1.

Remark 1 The estimate (1.13) reduces to [8, 1.3 (3)] if p3(¢t) = 9. When
specialized to the case n = 1, the estimate (1.13) reduces to estimate (4.96) of
[11, p. 339] if p3(¢) = q.

2 Notations

We shall use the notations as given in [1]. Throughout this paper, ¢§’s and
A’s with or without suffices will denote positive constants whose magnitudes
depend on vector functions F, G, H and P. The ¢’s and A’s with numerical or
alphabetical suffices shall retain fixed magnitudes, while those without suffices
are not necessarily the same at each occurrences.

Finally, we shall denote the scalar product (X,Y’) of any vectors X,Y in R",
with respective components (1,2, ...,2,) and (Y1,Y2, .-, Yn) By Doy TiYi-
In particular, (X, X) = || X|2.

3 Statement of the results

Our first main result in this paper is the following:
Theorem 1 Suppose F(0) = G(0) = H(0) =0, and that
(i) there exist n X n real continuous operators
Ap(Z1,Z5), Bg(Y1,Ya), Ch(Xi,Xo)

for any vectors X1, Xo,Y1,Ys, Z1, Zs in R™, such that the functions F, G, H
are of class C(R™), satisfy (1.11a,b,c), with the eigenvalues, \;(Af(Z1, Z2)),
Ai(Bg(Y1,Y2)), Mi(Ch(X1,X2)) (i=1,2,...,n) satisfying (1.12a,b,c);

(i1) the operators Ay, By and Cy, are associative and commute pairwise, and
(#1) the vector function P satisfies inequality (1.13) for all X,Y,Z in R",
where p1(t), p2(t) and p3(t) are continuous functions of t, with 0 < p < 1.

Then, there exist constants ps, A1, Ag, Ag such that if |ps(t)] < ps, for all t in
R, with p3 chosen small enough, then every solution X (t) of (1.1) with X (ty) =
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Xo, X(to) = Yo, X(to) = Zo, and for any constant r, whatever in the range
% <r <1, satisfies

{IX @I+ X O + 1X (@)1} < Avexp{—=Aa(t —to)}

8 [ {pr )+ 037000 fexp{-Aalt - ) dr: (3.1)

to

for all t >ty > 0, where A1 = A1(Xo, Yo, Zo)-

Remark 2 (1) When specialized to the case n = 1 with P dependent only on
t the above estimate (3.1) reduces to the estimate (4.86) of [11, Theorem (4.24)
p. 335].

(2) In fact this result generalizes Theorem 1 of [3] if p3 = Jp : A number of
quite important results can be deduced from the above. For example, we have

Corollary 1 If P = 0 and all the conditions of Theorem 1 hold, then every
solution X (t) of (1.1) satisfies

{IX O+ 1X O + X (®?[} — 0 (3-2)
as t — oo, provided that ps is small enough.
Indeed by setting p1(t) = 0 = p2(t) in (1.13), we have that
{IXOIZ + IXOI + X @2} < Avexp{-D2(t —to)}, > to
from which (3.2) follows on letting ¢ — oo.

Remark 3 When specialized to the case n = 1 with pi(tf) = p2(t) = 0 i.e.
satisfying condition (C”') of [11, Theorem 4.25] then the above estimate (3.2)
reduces to the estimate (4.97) of [11, Theorem 4.25].

Further, if P # 0, but such that

[ o0} ar—a (33

as t — oo, then we have

Corollary 2 Suppose that there are some fized constants v (1 < v < 2), and
w >0, such that (3.8) is true, and all the conditions of Theorem 1 hold. Then,
every solution X (t) of (1.1) satisfies (3.2) as t — oo.

Remark 4 This result is a direct generalization of [6, Theorem 2] when spe-
cialized to the case n = 1. Its proof can be obtained from (3.1) by using an

obvious modification of the arguments in [6, §3.2].

The next result is on the ultimate boundedness of solutions of (1.1).
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Theorem 2 Suppose that F(0) = G(0) = H(0) = 0 and that all the conditions
of Theorem 1 hold. Suppose further that |ps(t)| < ps for all t in R with ps
sufficiently small and that the functions p1(t), p2(t) satisfy

1)) <do  and |pa(t)] < 01

for all t in R.
Then, there exists a constant Ay such that every solution X(t) of (1.1)
ultimately satisfies.

{IX @+ IX @ + I X @I} < Aq (3-4)

Remark 5 (1) If |p1(t)| < o, |p2(t)| < 01 and |ps(t)| < ps, with ps sufficiently
small, then Theorem 2 reduces to Corollary 3 of [8] for which equation (1.6) was
considered.

(2) If p = 0in (1.13) we have the estimates (3.6) of [1, Theorem 1] which im-
proves on estimates (3.4) of [1, Theorem 1] and (1.8) of [10, Theorem 1]. Thus,
Theorem 2 reduces to Theorem 1 of [1,10] for which (1.6) was considered. More-
over, the estimate (1.13) is a generalization of all the bounds on P(t, X,Y, Z)
mentioned earlier.

4 Some preliminary results

We shall state, for completeness, some standard results needed in the proofs of
our results.

Lemma 1 (1,84) Let Q, D be real symmetric commuting nxn matrices. Then,
(i) for any X in R",
8| X|* < (DX, X) < Al X (4.1)

where dq, Agq are respectively, the least and greatest eigenvalues, of ma-
triz D;

(ii) the eigenvalues \;(QD), (i =1,2,...,n) of the product matriz QD are all
real and satisfy

i X, (QM(D) £ X(@D) < max A(QM(D) (42

(iii) the eigenvalues \;(Q+ D), (i =1,2,...,n) of the sum of Q and D are all
real and satisfy

1<j<n

{ min \;(Q) + 1I<I}<:12n )\k(D)} <XN(Q+D)

< { max \;(Q)+ max /\k(D)} (4.3)

1<k<n 1<k<n

where Aj(Q) and A\(D) are respectively the eigenvalues of Q) and D.
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5 The function V

Our main tool in the proof of the results is the continuous function V =
V(X,Y, Z) defined for any X,Y, Z in R"™ by

2V = B(1 = )T IX > + B[V [|* + adydy Y |? + ad ;| 212
+Z+6;,Y + (1 - B)d, X ||, (5.1)

where 0 < f < 1and a >0
The following result is immediate from (5.1):

Lemma 2 Assume that all the hypothesis on vectors F(Z),G(Y) and H(X) in
Theorem 1 are satisfied. Then, there exist positive constants do and d3 such that

S(IXI*+IYI*+1Z]1°) <2V < s(IX 12+ [IYIP+1Z]%)  (5.2)
Proof The proof follows if we use Lemma 1 repeatedly and then choose
8, = min {5(1 — 8)62;84(8 + ad; ); aé;l}
and
Gy = max {8,(1 = B)(1+ 8, +87): 45 + 87 1) + 64[1 + 6, (1 = 6) + 6]

L+ ad7! +8; +6,(1- 9} O

6 Proof of Theorem 1

Let us replace system of differential equations of form (1.1) in the equivalent
system form

X=Y, Y=2%, Z=-F(Z)-GY)-H(X)+P(t,X,Y,Z) (6.1)

for which a typical solution will be (X (t),Y (¢), Z(t)).

To prove Theorem 1, it suffices to show that the function V' (defined in (5.1))
satisfies for any solution (X (t),Y(¢), Z(t)) of (6.1) and for any r in the range
L<r<it
2 — —

vﬁ—&W+&{ﬁwwu§?uﬁwmr> (6.2)

for some constants d4, 65 where 9% = {|| X (¢)||> + [|[Y (®)||* + | Z(¢)]|*}. We note
that from Lemma 2, (6.2) becomes

. _2r
V< a0 {ar 0 ] 7 (0 f O (63)
with dg = 6204 and d7 = d305. If we choose U = V", this reduces to

Usﬂ%v+m{ﬁwmmfﬂm} (6.3)
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which can be solved for U to obtain

U(t) § U(t()) exp {—T56(t — t())}
85 [ () +577 ()} exp{—rio(t = )} dr (6:4)

for all t > .
Rewriting this with V" = U and applying Lemma 2, we shall obtain (3.1)
with

Ay = 5{IX (t)|I* + 1Y (to)lI* + 1220}
AQ = T66 and A3 = (5A5

Thus the proof of Theorem 1 is complete as soon as inequality (6.2) is proved.

7 The derivative of V and the proof of (6.2)

Let (X(¢),Y (t), Z(t)) be any solution of (6.1). The total derivative of V, with
respect to ¢ along the solution path after simplification is

V=W, — Wy — Wy — Wy — W5 — We — Wy + Wy (7.1)
where
Wi = {mdy(1 = B)(X, H(X)) +mos (Y, G(Y) = b,(1 = B)Y)
+ 6106712, F(2)) + (Z.F(Z) — 5fz>}
Wa = {328,(1 = )X, H(X)) + &067 (2, F(2)) + (1 + ad; ' )(Z, H(X)) }
Wi = {1399(1 = B)(X, H(X)) + 205 (Y, G(Y) = 6(1 = B)Y) +6¢(Y, H(X))}
Wi = {ws (1= B)(X, H(X)) + &ad; (2, F(2))

d0g(1 = BUX, F(2) = 652}
Ws = {% (1= B) (X, H(X)) + 1304 (Y, G(Y) = 64(1 = B)Y)
dg(1 = B)X,G(Y) = 6,Y)}

W = {s4a6; (2, F(2)) +mids (Y, G(Y) = 6,(1 = A)Y)

+(1+as;)Z,G(Y) - 5gy>}
Wr = {&ad; (2, F(2)) + 1584 (Y, G(Y) = 6,(1 = B)Y) + 6,(Y, F(Z) - 8, 2)}
Ws = {<(1 — B)3,X + 65Y + (L +ad;1)Z, P(t,X,Y,Z))}

with &, mi,vi; (i =1,2,3,4,5) are strictly positive constants such that

i:fz‘ =1 i:m =1 and i:%‘ =1
i=1 i=1 i=1

To arrive at (6.2), we first prove the following;:
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Lemma 3 Subject to a conveniently chosen value of k in (1.9), we have for all
X,Y,Z in R"
W; >0, (j=2,3,4,5,6,7).

Proof For strictly positive constants ki1, ko, conveniently chosen later, we have
(14ad;")2,H(X)) =
= k(14 ad; )2 Z + 27 kM (1 + a6 ) PH(X))|1?
— (K +ad;")Z,Z) — (47 k2 (1+ ad; HH(X), H(X)) (7.2a)
and
(07Y, H(X)) = [[ka6*Y + 27 e 6"/ 2H (X))
— (k30;Y,Y) — (47 ky *6, H(X), H(X)). (7.20)
Now, using (1.11) and the assumptions that F(0) = G(0) = H(0) = 0, we have
Wy = [[k(1+ a6, )2 Z + 27k (1 + ad; )2 H(X)|?
+(Z,6067 ' F(Z) — k(1 +aé; 1) Z)
+ (H(X),7204(1 = B)X — 47k ?(1 4+ ad; Y H(X)) (7.3a)
and
Wi = [|k20}/?Y + 27 k5 1612 H (X2

+ (Y, m264[G(Y) = 64(1 = B)Y] — k367Y)
+ (H(X),7364(1 — B)X — 47 'k; %6, H(X)). (7.3b)

Furthermore, by using Lemma 1 repeatedly, we obtain for all X, Z in R",

Ws >0 (7.4a)

if k7 < 225 with
472520[(1 — ,6')5]%59

Ap < .
"= (et oy (75e)
and for all X,Y in R",
W3 > 0. (7.4b)
If k2 < 1138, with
Ap < dyzmeB(1 = B)6; /55 (7.5b)

Combining all the inequalities in (7.3) and (7.4), we have for all X, Y, Z in R",
Wa > 0and W3 >0, if Ap < k5f5g with

(7.6)

) Apbea(l — B)0r AnaysB(1 — B)d
k—mm{ CETAEEE 6? 9}<1.
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To complete the proof of Lemma 3, we need to show that for all X,Y, Z in R"
W; >0 (i=4,56,7).

By hypothesis (1.11) the assumptions that F'(0) = G(0) = H(0) = 0, and for
strictly positive constants ks, k4, k5, kg conveniently chosen later, we have
(0g(1 = P)X, F(Z) =67 Z) = (64(1 = B) X, [A;(Z,0) = 6;1]2)
= (|27 k5 10,2 (1 — B)/2[Ap(Z,0) — 6,1)"/°X
+ksoh/2(1— B)2[Af(2,0) — 6,12 7|
— (47 k3%6,(1 — B)[Af(Z,0) — 6;11X, X)
— (k30,(1 = B)[As(Z,0) — 6112, Z) (7.7a)

69(1 - B)(X, G(Y) - 69Y> = <5g(1 - B)X, [Bg(Yv 0) - 591]Y>
= 127k 15572 (1 = B)!/2[By (Y, 0) — 6,112 X
+kad)2 (1~ 8)V/2[By (Y, 0) — 6,112V
— (47 k26,1 — BB, (Y, 0) — 6,11 X, X)
— (k§04(1 = B)[By(Y, 0) = 6,1}V, Y) (7.70)

(L+ad; )N Z,G(Y) = 8,Y) = (1 +ad; 1) Z,[By(Y,0) — §,1]Y)
=127 k5 (1 + @b )P By(Y, 0) — 6,112 Z
+ks(1+ad; ") 2By (Y, 0) — 6,11 °Y||?
— (47 k52 (14 067 ) [By(Y, 0) = 6,112, )
— (k3(1 4 ad; H)[B,y(Y,0) — 6,11Y,Y) (7.7¢)

31 (Y, F(Z) = 6;2) = (6;Y,[A;(Z.0) = 6;112)
= (127 kg 10,2 [A5(Z,0) = 65 11M?Y + koo *[Af(2,0) — 6;1) 2 Z]|?
— (47 k5 264[Af(Z,0) — §;11Y,Y)
— (k307[Af(Z,0) = 6;112, Z). (7.7d)
Thus,

Wy = [|27 k5 1022 (1 — B)/2[Af(Z,0) — ;1) /*X
+ k3o)/ (1= B)V?[Ap(Z,0) — 6,11 * Z|)?
+ (X, {1dy(1 = B)CH(X,0) — 47 k3 54(1 — B)[Af(Z,0) — 611} X)
+(Z,{&0ad, ' Af(2,0) — k36,(1 — B)[As(Z,0) — 6¢11} Z) (7.80)
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Ws = 127 %, 1632 (1 — B)V/2[By(Y, 0) — 8,112 X
+ ka6y/* (1= B)2[By (Y, 0) — 5,112V ||?
+ (X, {7504 (1 = B)CR(X,0) — 47 k; 26, (1 = B)[By (Y, 0) — 5,11} X)
+ (Y, {11367 [By (Y, 0) — 8 (1 = B)I] — k36, (1 — B)[By (Y, 0) — 6,11}Y) (7.8b)

We = (127 k5 ' (1 + a8, )2 [By (Y, 0) - §,11'?Z
+ks(1+ ad; )2 [By(Y,0) — 5,1 /°Y||?
+(Z, {6100, A§(2,0) = 47 k32 (1 + a6 ") [By(Y, 0) — 6,11} 2)
+ (Y {nads[By (Y, 0) — 64(1 = B)1]
— k5(1 4 ab;)[B,(Y,0) — 6,11}Y) (7.8¢)

and

Wr = 127 ks 16 2[A4(Z,0) — 6, 11V2Y + ked} *[Ap(Z,0) — 6,12 22
+ (Y, {0507 [By(Y,0) — 64(1 — B)I] — 4™ kg 26 [Af(Z,0) — 641]}Y)

+(Z, {600, ' A1(Z,0) — k§o;[Af(Z,0) — 6411} Z). (7.84)
Thus, for all X, Z in R"
Wy>0 (7.9a)
if Af—96 £
L= <2 < 52 7.10a
4740p, 57 (1—B)(6, — p) ( )
For all X,Y in R"
Ws >0 (7.9b)
if
By 9 2 a0 (7.10b)

For all Y, Z in R"

We >0 (7.9¢)
! ) de)(A, — 6 B1adgd
a - 4
A <R Ay
Also, for all Y, Z in R"
Wy >0 (7.9d)
if Ay — 6y 9 als
< (7.10d)

< —
nsB0, — T 0p(Af —0y)
This completes the proof of Lemma 3. a
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We are now left with the estimates for W7 and Wjg.
From (7.1), we clearly have

Wi 2 710,00(1 = B)IX |17 + mrdgBIY |I* + &1l Z]J?

> (|1 X[+ Y1+ 121%) (7.11)

where dg = min {v18405;mJ¢040;1a}. For the remaining part of the proof of
(6.2); let us for convenience denote (|| X || + ||V + || Z]|?) by 2.
Since P(t, X,Y, Z) satisfies (1.5), Schwarz’s inequality gives for Ws.

(Ws| < {(1 = B3I X[ + 6,1Vl + (1 +ady DI Z] } | P(t, X, Y, Z)]|
< 325 {pa()? + pa()6 )+ pr (D)0 5 (7.12)
where §g = max{(l — B)dg;6¢; (1 + Q(S;l)}.

Combining inequalities (7.3), (7.11) and (7.13) with the assumption that
|ps(t)] < ps for all ¢ in R, we obtain from (7.1) that

V < _(58 — 31/259p3)¢2 + 31/259 {pg(t)1/1(1+p) +p1(t)1/1} . (7.14)
This we can rewrite as
V < =610¢% + 1 + U2 (7.15)
where
3010 = 0g — 312893, Y = {011p1(t) — S10¥} s
and

V2 = {511P2(t)¢(1+p) - 5101/12}'

If we choose p3 small enough such that d19 > 0 (following [6, p. 306]), with the
necessary modification we obtain

Y1 < 61292072 (1) (7.16a)

and
Wy < 61321 pa 070 1) (7.16b)

for any constant r in the range % <r<l.
Thus, (7.15) reduces to

V < _5101/}2 + 514 {p%r(t) _’_pgr/(l—ﬂ)(t)} ¢2(17T) (717)

with
014 = max {012; 013}

This is (62) with 54 = 510 and 55 = 514.
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8 Proof of Theorem 2

As pointed out in [1], to prove Theorem 2, if suffices to prove that the function
V satisfies

() V(X,Y,Z) — oo as (| X[+ [[Y]? +[|Z]|*) — o0; and
(i) V< -1

along paths of any solution (X (t),Y(t),Z(t)) of (6.1) for which (|| X(¢)|* +
Y (#)]|> + | Z(t)|?) is large enough. We only need to concern ourselves with
property (ii), since by Lemma 2, inequality (5.3), property (i) has been taken
care of.

If all the conditions of Theorem 1 are satisfied, then, for any solution (X (t),
Y (t), Z(t)) of (6.1), V satisfies inequality (7.17). That is

V < —610¢% + 614 {p%r(t) +py /) (t)} 2=

for any r in the range % <r<I.
Now, if p1(t) and pa(t) are bounded for all ¢ in R, then there exists some
constant 415 > 0 such that

V < —610%% 4 0159207 < —1

if
P > G165 > (75 015) /%"
Thus property (ii) is proved for V', and this completes the proof of Theorem 2.
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