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Abstract

In this paper we find the metric in an explicit shape of special 2F -flat
Riemannian spaces Vn, i.e. spaces, which are 2F -planar mapped on flat
spaces. In this case it is supposed, that F is the cubic structure: F 3 = I.
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1 Introduction

2F - and pF -planar mappings are studied in these papers [4, 5, 17]. The men-
tioned mappings are the generalization of geodesic, holomorphically projective
and F -planar mappings [1, 2, 6, 7, 8, 9, 10, 11, 14, 15, 16, 18].
As it is known, the Riemannian space with the constant curvature, resp. the

Kählerian space with the constant holomorphically projective curvature, admits
a geodesic, resp. holomorphically projective, mapping onto a flat space, i.e. the
space with a vanishing curvature tensor.
The consideration in the present paper is perfomed in the tensor form, lo-

cally, in a class of substantial real smooth functions. The dimension n of the
spaces under consideration, as a rule, is greater then 3. All the spaces are
supposed to be connected.
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We consider a (pseudo-) Riemannian space Vn with a metric tensor g and
an affinor structure F , i.e. a tensor field of type

(
1
1

)
. We supposed, that F is

the cubic affinor structure, for which it holds

F 3 = I.

In our paper we find the metric in an explicit shape of special 2F -flat Rie-
mannian spaces Vn, i.e. spaces, which are 2F -planar mapped on flat spaces.
It was proved, that the Riemannian tensor of these spaces has the following

form [4]:

Rh
ijk =

2∑

σ=0

(
σ

F h
i

σ

S jk+
σ

F h
j

σ

T ik−
σ

F h
k

σ

T ij),

where
σ

S jk and
σ

T ik are tensors. Here and after

0

F h
i = δh

i ,
1

F h
i = Fh

i ,
2

F h
i = Fh

αFα
i ,

where δh
i is the Kronecker symbol, R

h
ijk and Fh

i are components of the Rieman-
nian tensor and the structure F , respectively.
Among other things it is known, that 2F -flat Riemannian spaces Vn are

symmetric, i.e. their Riemannian tensor is covariantly constant.

2 On special 2F -flat Rimannian space

As it was mentioned, the aim of our interest was to find the metric tensor of the
2F -flat Riemannian spaces Vn. This problem is considerably extensive, therefore
we narrow it by following assumptions.
In the following we study the 2F -flat Riemannian spaces Vn, for which the

Riemannian tensor has the form:

Rh
ijk = B (Gh

kGij −Gh
j Gik), (1)

where
Gh

k = δh
i + Fh

i + Fh
αFα

i , Gij = giαGα
j , B − const.

There gij are components of the metric g and Fh
i are components of the structure

F , which satisfies the conditions:

F 3 = I, trF = trF 2 = 0, (2)

as well the following characteristic is joined with the metric tensor:

1

F ij =
1

F ji and
2

F ij =
2

F ji, (3)

where
1

F ij = giαFα
j and

2

F ij = giα

2

F α
j .
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It is clear, that Vn with this Riemannian tensor is symmetric. Therefore we
use for the computation procedure of the metric tensor the formula by P. A. Shi-
rokov [14], in accordance with this formula the metric tensor of the symmetric
space in some point M(x0) ∈ Vn is calculate by sequences:

gij(y) =g
◦ ij +

1
2

∞∑

k=1

(−1)k 2k

(2k + 2)!
(k)
mij , (4)

where

(1)
m ij = mij ,

(k+1)
m ij =

(k)
m iαmjβ g

◦
αβ , mij =R

◦ iαβjy
αyβ , (5)

g
◦ ij , g◦

ij , R
◦ iαβj are values of components of the metric, inverse and Riemannian

tensors in a point x0, y ≡ (y1, y2, . . . , yn) are Riemannian coordinates in the
point x0.

3 The computation procedure of the metric of the 2F-flat
space

We substitute (1) to (5) in some point M(x0) and obtain:

mij =
(1)
m ij = B (yij+

1
y ij+

2
y ij),

where

yij = yiyj+
1
y i

2
y j+

2
y i

1
y j − y g

◦ ij−
2
y

1

F
◦ ij−

1
y

2

F
◦ ij ,

1
y ij = yαj F

◦
α
i ,

2
y ij =

1
y αj F

◦
α
i ,

yi =g
◦ iαyα,

1
y i = yα F

◦
α
i ,

2
y j =

1
y α F

◦
α
i ,

y =g
◦ αβyαyβ ,

1
y =

1

F
◦ αβyαyβ ,

2
y =

2

F
◦ αβyαyβ ,

and F
◦

h
i ,

1

F
◦

h
i ,

2

F
◦

h
i are components of the corresponding tensors in the point x0.

We notice, that

yij = yji,
1
y ij =

1
y ji,

2
y ij =

2
y ji,

yiα g
◦

αβyβj = −y yij−
1
y

2
y ij−

2
y

1
y ij .

Therefore

(2)
m ij = −3B2(y+

1
y+

2
y )(yij+

1
y ij+

2
y ij) = A

(1)
m ij = Amij ,
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where
A = −3B (y+

1
y+

2
y ).

By analogy we obtain

(3)
m ij = A

(2)
m ij = A2 mij , · · · ,

(k)
m ij = Ak−1 mij .

Then we substitute this one to (4) and we obtain

gij(y) = g
◦ ij +

1
2

mij

∞∑

k=1

(−1)k2kAk−1

(2k + 2)!
.

We make sure of the convergency of the sequences for an arbitrary value of
coordinates yh.
These sequences can be introduced in the following form

gij(y) = g
◦ ij +

1
4A2

mij

(
1−A−

∞∑

k=0

(−2A)k

(2k)!

)
,

which is easy to express such as

gij(y) =g
◦ ij +

1
4A2

mij

(
1−A−

{
cos

√
2A, A > 0,

ch
√

2|A|, A < 0,

})
. (6)

We can easily see that
lim
y→0

gij(y) =g
◦ ij

and above functions gij(y) are analytical onto domain.

Theorem 1 Let Vn be a 2F -flat Riemannian space and y its Riemannian co-
ordinates. Suppose that the conditions (1), (2) and (3) hold. Then the metric
Vn is expressed by the formula (6).
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