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Abstract

The concept of monadic MV-algebra was recently introduced by A. Di
Nola and R. Grigolia as an algebraic formalization of the many-valued
predicate calculus described formerly by J. D. Rutledge [9]. This was also
genaralized by J. Rachůnek and F. Švrček for commutative residuated
�-monoids since MV-algebras form a particular case of this structure. Ba-
sic algebras serve as a tool for the investigations of much more wide class
of non-classical logics (including MV-algebras, orthomodular lattices and
their generalizations). This motivates us to introduce the monadic basic
algebra as a common generalization of the mentioned structures.

Key words: Basic algebra; monadic basic algebra; existential quan-
tifier; universal quantifier; lattice with section antitone involution.
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Having an MV-algebra A = (A;⊕,¬, 0), one can derive the structure of
bounded distributive lattice L(A) = (A;∨,∧, 0, 1) where 1 = ¬0, x∨y = ¬(¬x⊕
y)⊕y and x∧y = ¬(¬x∨¬y). Moreover, to any element a ∈ A one can assign an
antitone involution x �→ xa on the interval [a, 1] in L(A) given by xa = ¬x⊕ a
(for x ∈ [a, 1]). Hence, L(A) is a lattice equipped by a set (a)a∈A of partial
unary operations defined on the so-called sections where for each x ∈ [a, 1] we
have xaa = x and for x, y ∈ [a, 1] with x ≤ y we have ya ≤ xa (see e.g. [3] for
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details). Such an enriched lattice (not necessarily distributive) is denoted by
L = (L;∨,∧, (a)a∈L, 0, 1) and is called a lattice with section antitone involutions.

Although this structure plays a crucial role in some formalizations of non-
classical logics, it can be difficult to deal with since it is not a total algebra
and, moreover, its similarity type depends on the cardinality of its elements.
To improve this discrepancy, the following concept was introduced. Let us only
note that the following axiom system (BA1)–(BA4) was recently involved in [6]
as a simplification of the previous one (see e.g. [1, 2, 5]).

Definition 1 By a basic algebra is meant an algebra A = (A;⊕,¬, 0) of type
(2, 1, 0) satisfying the following axioms

(BA1) x⊕ 0 = x;

(BA2) ¬¬x = x (double negation);

(BA3) ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x (�Lukasiewicz axiom);

(BA4) ¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = ¬0.

In what follows we will denote ¬0 by 1 (as it is usual for MV-algebras). It
is plain to show that every basic algebra satisfies also the identities ¬1 = 0,
0⊕ x = x and ¬x ⊕ x = 1, see e.g. [4, 6].

As promised above, we can get the mutual relationship between lattices with
section antitone involutions and basic algebras. For the proof, see e.g. [1] or [5].

Proposition 1 (a) Let L = (L;∨,∧, (a)a∈L, 0, 1) be a lattice with section anti-
tone involutions. Then the assigned algebra A(L) = (L;⊕,¬, 0), where

x⊕ y = (x0 ∨ y)y and ¬x = x0

is a basic algebra.
(b) Conversely, given a basic algebra A = (A;⊕,¬, 0), we can assign a

bounded lattice with section antitone involutions L(A) = (A;∨,∧, (a)a∈A, 0, 1),
where 1 = ¬0,

x ∨ y = ¬(¬x ⊕ y)⊕ y, x ∧ y = ¬(¬x ∨ ¬y)

and for each a ∈ A, the mapping x �→ xa = ¬x⊕ a is an antitone involution on
the principal filter [a, 1], where the order is given by

x ≤ y if and only if ¬x ⊕ y = 1.

(c) The assignments are in a one-to-one correspondence, i.e. A(L(A)) = A
and L(A(L)) = L.

Hence, when investigating basic algebras, we can switch to lattices with
section antitone involutions whenever it is useful.

The lattice L(A) = (A;∨,∧, (a)a∈A, 0, 1) will be referred as an assigned
lattice of a basic algebra A = (A;⊕,¬, 0) and the order ≤ of L(A) as the
induced order of A.
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Definition 2 By amonadic basic algebra is meant an algebraA = (A;⊕,¬, ∃, 0)
of type (2, 1, 1, 0) where (A;⊕,¬, 0) is a basic algebra and the unary operation
∃ satisfies the following identities

(E1) x ≤ ∃x;

(E2) ∃(x ∨ y) = ∃x ∨ ∃y;

(E3) ∃(¬∃x) = ¬∃x;

(E4) ∃(∃x⊕ ∃y) = ∃x⊕ ∃y.

The mapping ∃ : A → A is called an existential quantifier on A. By a strict
monadic basic algebra will be called a monadic basic algebra satisfying the
identity

(E5) ∃(x⊕ x) = ∃x⊕ ∃x.

Lemma 1 Let A = (A;⊕,¬, ∃, 0) be a monadic basic algebra. Then the follow-
ing conditions are satisfied:

(i) ∃1 = 1;

(ii) ∃0 = 0;

(iii) ∃∃x = ∃x;
(iv) x ≤ ∃y if and only if ∃x ≤ ∃y;
(v) if x ≤ y then ∃x ≤ ∃y;
(vi) ¬∃x ≤ ∃(¬x);

Proof Let x, y be arbitrary elements of A.
(i): By (E1), 1 ≤ ∃1, thus ∃1 = 1 as 1 is the greatest element of A.
(ii): By (i) and (E3), 0 = ¬1 = ¬∃1 = ∃(¬∃1) = ∃(¬1) = ∃0.
(iii): By (ii) and (E4), ∃∃x = ∃(∃x⊕ 0) = ∃(∃x⊕∃0) = ∃x⊕∃0 = ∃x⊕ 0 = ∃x.
(iv): If ∃x ≤ ∃y then by (E1) also x ≤ ∃y. On the other hand using (iii) and
(E2), if x ≤ ∃y then ∃y = ∃∃y = ∃(x ∨ ∃y) = ∃x ∨ ∃∃y = ∃x ∨ ∃y. Thus
∃y = ∃x ∨ ∃y, and therefore ∃x ≤ ∃y.
(v): Let x ≤ y. Then, by (E2), we obtain ∃y = ∃(x ∨ y) = ∃x ∨ ∃y, and hence
∃x ≤ ∃y.
(vi): Since x ≤ ∃x and hence ¬x ≥ ¬∃x, we conclude ∃(¬x) ≥ ¬x ≥ ¬∃x. �

In what follows let ∃ be a fixed existential quantifier defined on a basic
algebra A = (A;⊕,¬, 0). By means of ∃, a unary operation ∀ can be defined on
A by the rule

∀x := ¬(∃¬x). (1)

Lemma 2 Let A = (A;⊕,¬, ∃, 0) be a monadic basic algebra and ∀ is defined
by (R). Then the following conditions are satisfied

(A1) ∀x ≤ x;

(A2) ∀(x ∧ y) = ∀x ∧ ∀y;
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(A3) ∀(¬∀x) = ¬∀x;
(A4) ∀(∀x � ∀y) = ∀x� ∀y, where x� y = ¬(¬x ⊕ ¬y).

If, moreover, A is a strict monadic basic algebra, then it satisfies also
(A5) ∀(x� x) = ∀x� ∀x.

Proof By (E1), ¬x ≤ ∃¬x thus x = ¬¬x ≥ ¬(∃¬x) = ∀x proving (A1). To
prove (A2), we use (E2) and the De Morgan laws:

∀(x ∧ y) = ∀(¬(¬x ∨ ¬y)) = ¬∃(¬x ∨ ¬y)
= ¬((∃¬x) ∨ (∃¬y)) = ¬(∃¬x) ∧ ¬(∃¬y) = ∀x ∧ ∀y.

Prove (A3): ∀(¬∀x) = ¬∃(¬¬∀x) = ¬∃(¬(∃¬x)) = ¬¬(∃¬x) = ¬∀x by (E3).
For (A4) we compute by (E4)

∀(∀x� ∀y) = ¬(∃¬(¬(∃¬x) � ¬(∃¬y))) = ¬∃(∃¬x ⊕ ∃¬y)
= ¬(∃¬x ⊕ ∃¬y) = ¬(¬¬(∃¬x) ⊕ ¬¬(∃¬y)) = ∀x� ∀y.

Assume that ∃ satisfies also (E5). Then

∀(x � x) = ¬(∃¬(x � x)) = ¬(∃¬(¬¬x � ¬¬x))
¬(∃(¬x ⊕ ¬x)) = ¬(∃¬x ⊕ ∃¬x) = (¬(∃¬x)) � (¬(∃¬x)) = ∀x� ∀x.

�

A unary operation ∀ : A → A on a basic algebra A = (A;⊕,¬, 0) satisfying
(A1)–(A4) will be called a universal quantifier.

It is a routine way to prove also the converse:

Lemma 3 Let A = (A;⊕,¬, 0) be a basic algebra and ∀ be a universal quanti-
fier on A. Define

∃x := ¬(∀¬x).
Then A∃ = (A;⊕,¬, ∃, 0) is a monadic basic algebra. Moreover, if it satisfies
also (A5) then A∃ is a strict monadic basic algebra.
Remark 1 Let A = (A;⊕,¬, ∃, 0) be a monadic basic algebra. Then ∃ is a
closure operator and ∀ is an interior operator on the poset (A;≤), where the
relation ≤ is the induced order on A.

In what follows, we are going to prove a connection between monadic basic
algebras and enriched lattices with section antitone involutions similarly as it
was done for basic algebras in the Proposition. For this, let us recall some
concepts.

For an algebra A = (A;F ), by a retraction is meant an idempotent endo-
morphism h of A, i.e. an endomorphism satisfying h(h(x)) = h(x) for every
x ∈ A. It is well-known that if h is a retraction of A then its image A0 = h(A)
is a subalgebra of A, the so-called retract of A.

In particular, if S = (S;∨, 0) is a join-semilattice with 0, by a retraction is
meant a self-mapping e of S satisfying
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(e1) e(x ∨ y) = e(x) ∨ e(y), e(0) = 0,

(e2) e(e(x)) = e(x).

This retraction is called extensive if it satisfies also

(e3) x ≤ e(x).

Example 1 Consider the bounded join-semilattice S = (A;∨, 0, 1), where A =
{0, a, b, 1}, depicted in Fig. 1.

�
�

�
�

�
��

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�

�

1

0

a b

Fig. 1

Define e : A→ A as follows

e(0) = 0, e(a) = 1, e(b) = b, e(1) = 1.

Then e is an extensive retraction of S and the retract S0 = e(S) is the chain
{0, b, 1}. Remark that the semilattice S can be considered also as a lattice but
this e is not a lattice retraction since

e(a ∧ b) = e(0) = 0 �= b = 1 ∧ b = e(a) ∧ e(b).

Now, let L = (L;∨,∧, (a)a∈L, 0, 1) be a lattice with section antitone involu-
tions. A mapping e : L → L will be called an e-retraction if it is an extensive
retraction of the join-semilattice reduct (L;∨, 0) satisfying one more condition

(e4) e(e(x)e(y)) = e(x)e(y) for every pair y ≤ x.

Let us note that y ≤ x implies e(y) ≤ e(x) just by (e1).
If e is an e-retraction on a lattice L = (L;∨,∧, (a)a∈L, 0, 1) with section

antitone involutions then the enriched structure Le = (L;∨,∧, (a)a∈L, e, 0, 1)
will be called a monadic lattice.

We are going to prove

Theorem 1 Let Le = (L;∨,∧, (a)a∈L, e, 0, 1) be a monadic lattice and Ae(L) =
(L;⊕,¬, e, 0) an algebra such that A(L) = (L;⊕,¬, 0) is a basic algebra assigned
to the reduct L = (L;∨,∧, (a)a∈L, 0, 1). Then Ae(L) is a monadic basic algebra.



32 Ivan CHAJDA, Miroslav KOLAŘÍK

Proof We need only to show that Ae(L) satisfies the conditions (E3) and (E4)
from Definition 2. To prove (E3) we compute:

e(¬e(x)) = e(e(x)0)
(e1)
= e(e(x)e(0))

(e4)
= e(x)e(0) (e1)

= e(x)0 = ¬e(x)

Further, we check the following identity

e(¬e(x) ∨ e(y)) = ¬e(x) ∨ e(y). (2)

For this, we compute

e(¬e(x) ∨ e(y)) (E3)
= e(e(¬e(x)) ∨ e(y))

(e1),(e2)
= e(¬e(x)) ∨ e(y) (E3)

= ¬e(x) ∨ e(y).
Now, we are ready to prove (E4):

e(x)⊕ e(y) = (¬e(x) ∨ e(y))e(y) (A)
= (e(¬e(x) ∨ e(y)))e(y)

(e4)
= e((e(¬e(x) ∨ e(y)))e(y))

(A)
= e((¬e(x) ∨ e(y))e(y)) = e(e(x)⊕ e(y)).

�

We can prove also the converse.

Theorem 2 Let A = (A;⊕,¬, ∃, 0) be a monadic basic algebra, let L(A) =
(A;∨,∧, (a)a∈A, 0, 1) be the assigned lattice of the reduct (A;⊕,¬, 0). Then
L∃(A) = (A;∨,∧, (a)a∈A, ∃, 0, 1) is a monadic lattice.

Proof We prove that the mapping e : x → ∃x is an e-retraction of L∃(A).
Trivially, we have: e(x∨y) = ∃(x∨y) = ∃x∨∃y = e(x)∨e(y) and e(0) = ∃0 = 0.
Further, e(e(x)) = ∃∃x = ∃x = e(x) by (iii) of Lemma 1 and x ≤ e(x) = ∃x by
(E1). We prove (e4): Since xy = ¬x⊕ y (for x ∈ [y, 1]), we have

e(e(x)e(y)) = ∃((∃x)(∃y)) = ∃((¬∃x) ⊕ ∃y) (E3)
= ∃((∃(¬∃x)) ⊕ ∃y)

(E4)
= (∃(¬∃x)) ⊕ ∃y (E3)

= (¬∃x) ⊕ ∃y = (∃x)(∃y) = e(x)e(y).

�

Remark 2 If A = (A;⊕,¬, ∃, 0) is a strict monadic basic algebra then the
assigned monadic lattice L(A) satisfies the condition

(e5) e((x0 ∨ x)x) = (e(x)0 ∨ e(x))e(x)

(where e(x) stands for ∃x in A) and vice versa, if a monadic lattice L satisfies
(e5) then the assigned monadic basic algebra A(L) is strict.
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Let A = (A;⊕,¬, 0) be a basic algebra. It is plain to check that the identity
mapping id(x) = x is an existential quantifier onA. Moreover, define a mapping
j : A→ A as follows

j(0) = 0 and j(x) = 1 for x �= 0.

Then also j is an existential quantifier on A. Hence, by Theorem 2, id and j are
e-retractions on the assigned lattice L(A).

Example 2 For a basic algebra H = (H ;⊕,¬, 0) with H = {0, a, b, 1}, where
¬0 = 1, ¬a = a, ¬b = b, ¬1 = 0, the assigned lattice is depicted in Fig. 2 (the
antitone involutions in at most two-elements sections are determined uniquely).
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Fig. 2

There are four of e-retractions, namely id, j and h1, h2 defined by

h1(0) = 0, h1(1) = 1, h1(a) = a, h1(b) = 1

and
h2(0) = 0, h2(1) = 1, h2(a) = 1, h2(b) = b.

In what follows, we can borrow the following concept of relatively complete
subalgebra, defined for MV-algebras in [7] and for residuated 
-monoids in [8]:

Definition 3 A subalgebra B of a basic algebra A = (A;⊕,¬, 0) is called rela-
tively complete if for every a ∈ A the set {b ∈ B; a ≤ b} has the least element.
Further, a relative complete subalgebra B is called m-relatively complete if

for all a ∈ A for all b ∈ B : b ≥ a⊕ a implies

that there exists v ∈ B : v ≥ a and b ≥ v ⊕ v. (3)

Theorem 3 Let A = (A;⊕,¬, ∃, 0) be a monadic basic algebra and A0 =
{∃x; x ∈ A}. Then A0 is a relatively complete subalgebra of A. If, more-
over, A is a strict monadic basic algebra then A0 is an m-relatively complete
subalgebra of A.
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Proof Due to (E3), (E4) and (ii), (iii) of Lemma 1, A0 is a subalgebra of A.
Let a ∈ A and Ba = {b ∈ A0; a ≤ b}. Then ∃a ∈ Ba and for any b ∈ Ba we have
b = ∃d for some d ∈ A. Hence, ∃a ≤ ∃∃d = ∃d = b, thus ∃a is the least element
of Ba. Hence, A0 is a relatively complete subalgebra of A. Assume that A is a
strict monadic basic algebra. Let a ∈ A, b ∈ A0 and b ≥ a⊕ a. Then for v = ∃a
we have v ≥ a due to (E1) and, due to (E5), b = ∃b ≥ ∃(a⊕a) = ∃a⊕∃a = v⊕v
proving (C). �

We have shown that any existential quantifier ∃ on a basic algebra A =
(A;⊕,¬, 0) induces a relatively complete subalgebra A0 = ∃A of A. Also con-
versely, every relatively complete subalgebra of A gives rise to an existential
quantifier.

We say that a basic algebra A is ⊕-monotonous if x ≥ y implies x ⊕ x ≥
y ⊕ y. Let us note that e.g. every MV-algebra or an effect algebra satisfies this
condition.

Theorem 4 Let A = (A;⊕,¬, 0) be a basic algebra and A0 its relatively com-
plete subalgebra. For any a ∈ A, define ∃a = inf{b ∈ A0; a ≤ b}. Then A∃ =
(A;⊕,¬, ∃, 0) is a monadic basic algebra. If, moreover, A is ⊕-monotonous and
A0 is an m-relatively complete subalgebra of A then A∃ = (A;⊕,¬, ∃, 0) is a
strict monadic basic algebra.

Proof It is evident that x ≤ inf{b ∈ A0; x ≤ b} = ∃x and that x ≤ y implies
∃x ≤ ∃y, i.e. also ∃(x ∨ y) ≥ ∃x ∨ ∃y. Since A0 is a subalgebra of A and
∃x, ∃y ∈ A0, also ∃x ∨ ∃y ∈ A0 and x ≤ ∃x, y ≤ ∃y thus also x ∨ y ≤ ∃x ∨ ∃y.
Hence, ∃x∨∃y ∈ {b ∈ A0; x∨y ≤ b} = Bx∨y, i.e. ∃(x∨y) = inf Bx∨y ≤ ∃x∨∃y.

Evidently, ∃x = x for any x ∈ A0. Since ∃x ∈ A0 for each x ∈ A and A0 is
a subalgebra of A, it yields also ¬∃x ∈ A0 and hence ∃(¬∃x) = ¬∃x. We obtain
∃(∃x⊕ ∃y) = ∃x⊕ ∃y in a similar way.

Altogether, A = (A;⊕,¬, ∃, 0) is a monadic basic algebra.
Assume now that A0 is an m-relatively complete subalgebra of A. Let x ∈ A

and denote by D = {b ∈ A0; x ≤ b}. Then ∃(x ⊕ x) ≥ x ⊕ x as shown above
and, by the condition (C), there exists a v ∈ D with ∃(x ⊕ x) ≥ v ⊕ v. Since
v ∈ D and ∃x = infD, thus ∃(x ⊕ x) ≥ v ⊕ v ≥ ∃x ⊕ ∃x by ⊕-monotonicity.
Conversely, ∃x ≥ x yields ∃x ⊕ ∃x ≥ x ⊕ x by ⊕-monotonicity of A and, by
(E4),

∃x⊕ ∃x = ∃(∃x ⊕ ∃x) ≥ ∃(x ⊕ x).
�

Let Li (i ∈ I) be bounded lattices (or semilattices). By a horizontal sum is
meant a lattice (semilattice) L which is a union of Li (i ∈ I) such that

Li ∩ Lj = {0, 1} for i �= j.

Let Ai (i ∈ I) be basic algebras. By a horizontal sum of Ai is meant a basic
algebra A assigned to the lattice L which is the horizontal sum of the assigned
lattices L(Ai), i ∈ I.
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Theorem 5 Let a basic algebra A = (A;⊕,¬, 0) be a horizontal sum of ba-
sic algebras Ai (i ∈ I). Let ∃i be an existential quantifier on Ai, i.e. every
(Ai;⊕,¬, ∃i, 0) is a monadic basic algebra. Let ∃ : A → A be a mapping whose
restriction on each Ai is equal to ∃i. Then A∃ = (A;⊕,¬, ∃, 0) is a monadic
basic algebra.

Proof We must check the axioms (e1) – (e4) for ∃ on the assigned lattice
L(A). Trivially, we have ∃0 = 0, ∃(∃x) = ∃x and x ≤ ∃x. For x, y ∈ Ai we have
∃(x ∨ y) = ∃x ∨ ∃y by the definition. If x ∈ Ai, y ∈ Aj for i �= j then x ∨ y = 1
but also ∃x∨ ∃y = 1 thus, by (i) of Lemma 1, 1 = ∃(x∨ y) = ∃x∨ ∃y. To check
the condition (e4) is almost trivial since x ≤ y only if x, y ∈ Ai and, inside Ai,
it holds by the definition. �

Example 3 Consider the basic algebraA = (A;⊕,¬, 0),whereA = {0, a, b, c, 1},
whose assigned lattice L(A) is in Fig. 3.
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Fig. 3

Clearly, A is a horizontal sum of H (see Example 2) and the three element
chain MV-algebra {0, c, 1}. Let us note that also H is a horizontal sum of two
three element chain MV-algebras. One can easily verify that the mapping h
defined by

h(a) = a, h(b) = b, h(c) = 1, h(0) = 0, h(1) = 1

is an e-retraction on L(A). In fact, h is composed by the e-retraction id on H
and j on {0, c, 1}. The subalgebra A0 = h(A) is clearly {0, a, b, 1} (which is
isomorphic to H). It is an m-relatively complete subalgebra of A.

Example 4 Consider again the basic algebra from Example 3. LetB = {0, c, 1}.
It is a routine way to check that B is a relatively complete subalgebra of A and,
by Theorem 4, it induces an existential quantifier. Of course, ∃0 = 0, ∃1 = 1
and we can easily compute

∃a = inf{x ∈ B; a ≤ x} = 1,

∃b = inf{x ∈ B; b ≤ x} = 1,

∃c = inf{x ∈ B; c ≤ x} = c.
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