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ORDER CONVERGENCE OF VECTOR MEASURES ON

TOPOLOGICAL SPACES
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Abstract. Let X be a completely regular Hausdorff space, E a boundedly complete
vector lattice, Cb(X) the space of all, bounded, real-valued continuous functions on X, F
the algebra generated by the zero-sets of X, and µ : Cb(X) → E a positive linear map.
First we give a new proof that µ extends to a unique, finitely additive measure µ : F → E+

such that ν is inner regular by zero-sets and outer regular by cozero sets. Then some
order-convergence theorems about nets of E+-valued finitely additive measures on F are
proved, which extend some known results. Also, under certain conditions, the well-known
Alexandrov’s theorem about the convergent sequences of σ-additive measures is extended
to the case of order convergence.

Keywords: order convergence, tight and τ -smooth lattice-valued vector measures, mea-
sure representation of positive linear operators, Alexandrov’s theorem
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1. Introduction and notation

All vector spaces are taken over reals. E, in this paper, is always assumed to be a

boundedly complete vector lattice (and so, necessarily Archimedean) ([??], [??], [??]).

If E is a locally convex space and E′ its topological dual, then 〈·, ·〉 : E × E′ → R
will stand for the bilinear mapping 〈x, f〉 = f(x). For a completely regular Hausdorff

space X , B(X) and B1(X) are the classes of Borel and Baire subsets of X, C(X) and

Cb(X) are the spaces of all real-valued, and real-valued and bounded, continuous

functions on X and X̃ is the Stone-Čech compactification of X respectively. For an

f ∈ Cb(X), f̃ is its unique continuous extension to X̃. The sets {f−1(0) : f ∈ Cb(X)}

are called the zero-sets of X and their complements the cozero sets of X .

For a compact Hausdorff spaceX and a boundedly complete vector lattice G, let µ :

B(X) → G+ be a countably additive (countable additivity in the order convergence
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of G) Borel measure; then µ is said to be quasi-regular if for any open V ⊂ X ,

µ(V ) = sup{µ(C) : C compact, C ⊂ V }. Integration with respect to these measures

is taken in the sense of ([??], [??]). There is a 1-1 correspondence between these

quasi-regular, positive, G-valued Borel measures on X and positive linear mappings

µ : C(X) → G ([??], [??], [??]); M+
(o)(X, G) will denote the set of all these measures.

Now suppose that X is a completely regular Hausdorff space. A positive countably

additive Borel measure µ : B(X) → G+ is said to be tight if for any open V ⊂ X ,

µ(V ) = sup{µ(C) : C compact, C ⊂ V } ( [??], p. 207). This measure gives a positive

linear mapping µ̃ : C(X̃) → G, µ̃(f) = µ(f|X) and the corresponding quasi-regular,

positive, G-valued Borel measure on X̃ is given by µ̃(B) = µ(X ∩B) for every Borel

B ⊂ X̃. M+
(o,t)(X, G) will denote the set of all tight measures.

If µ : B(X) → G+ is a countably additive Borel measure, then µ is said to be

τ -smooth if for any increasing net {Uα} of open subsets of X , µ
( ⋃

Uα

)
= supµ(Uα)

(some properties of these measures are given in [??], p. 207). Any such measure gives

a positive linear mapping µ̃ : C(X̃) → G, µ̃(f) = µ(f|X) and the corresponding

quasi-regular, positive, G-valued Borel measure on X̃ is given by µ̃(B) = µ(X ∩ B)

for every Borel set B ⊂ X̃. M+
(o,τ)(X, G) will denote the set of all τ -smooth measures.

If µ : B1(X) → G+ is a countably additive Baire measure then, as in the case of τ -

smooth measure, we get µ̃ : C(X̃) → G, µ̃(f) = µ(f|X); M+
(o,σ)(X, G) will denote the

set of all these Baire measures.

In ([??], [??]) some interesting results are derived about the weak order conver-

gence of nets of positive lattice-valued measures. In this paper we extend some of

those results to a more general setting. Before doing that we need Alexandrov’s

Theorem.

2. Alexandrov’s theorem

Suppose X is a completely regular Hausdorff space and F is the algebra generated

by the zero-sets of X . Assume that µ : Cb(X) → R is a positive linear mapping. By
well-known Alexandrov’s Theorem, there exists a unique finitely additive measure ν,

ν : F → R+ , such that

(i) ν is inner regular by zero-sets and outer regular by cozero sets; (ii)
∫

f dν = µ(f)

for all f ∈ Cb(X) ([??], Theorem 5, p. 165; [??]) (Note that Cb(X) is contained in

the uniform closure of F -simple functions on X in the space of all bounded functions

on X and so each f ∈ Cb(X) is ν-integrable; ν is also generally denoted by µ.) This

theorem has been extended to the vector case (e.g. [??], p. 353). The proof is quite

sophisticated. We give a quite different proof based on the regularity properties of

the corresponding quasi-regular Borel measure on X̃; this also provides a relation
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between this finitely additive measure and the corresponding quasi-regular Borel

measure on X̃. We start with a lemma.

Lemma 1. If Z1 and Z2 are zero-sets in X then (Z1 ∩ Z2) = Z1∩Z2 (for a subset

A ⊂ X , Ā denotes the closure of A in X̃ ).

P r o o f. Suppose this is not true. Take a point a ∈ Z1 ∩ Z2 \ (Z1 ∩ Z2) (note

that Z1 ∩ Z2 can be empty). Take an f ∈ Cb(X), 0 6 f 6 1, such that f̃(a) = 1

and f = 0 on (Z1 ∩ Z2). For i = 1, 2, take hi ∈ Cb(X) such that 0 6 hi 6 1 and

Zi = h−1
i (0). Define fi(x) = f(x)hi(x)/(h1(x) + h2(x)) for x /∈ (Z1 ∩ Z2) and 0

otherwise. These functions are continuous and f = f1 + f2. Thus f̃ = f̃1 + f̃2. Since

fi = 0 on Zi, f̃i = 0 on Zi and so f̃1 + f̃2 = 0 on Z1 ∩ Z2. This means f̃(a) = 0, a

contradiction. �

Now we come to the main theorem.

Theorem 2 ([??], p. 353). Suppose X is a completely regular Hausdorff space, E

is a boundedly order-complete vector lattice and µ : Cb(X) → E is a positive linear

mapping. Then there exist a unique finitely additive measure ν : F → E+ such that,

in terms of order convergence,

(i) ν is inner regular by zero-sets and outer regular by cozero sets;

(ii)
∫

f dν = µ(f) for all f ∈ Cb(X);

(iii) For any zero-set Z ⊂ X we have ν(Z) = µ̃(Z), Z being the closure of Z in X̃.

P r o o f. There is no loss of generality if we assume that E = C(S), S being a

Stonian space. The given mapping gives a positive linear mapping µ̃ : C(X̃) → E; by

([??], [??]) we get an E-valued, positive quasi-regular Borel measure µ̃ : B(X̃) → E+.

If A is a subset ofX or X̃, Ā will denote the closure of A in X̃ . We prove this theorem

in several steps.

I. Let Z = {Ā : A a zero-set in X}. Then for every Q ∈ Z, inf{µ̃((X̃ \ Q) \ W ) :

W ∈ Z} = 0.

P r o o f. Using the quasi-regularity of µ̃, take an increasing net {Cα} of compact

subsets of (X̃ \ Q) such that inf(µ̃((X̃ \ Q) \ Cα)) = 0. Fix α and take a g ∈ C(X̃),

0 6 g 6 1, such that g = 1 on Cα and g = 0 outside X̃ \Q. Let V = {x ∈ X̃ : g(x) >
1
2}, Z = {x ∈ X̃ : g(x) > 1

3}. We have Z ⊃ (Z ∩ X) ⊃ (V ∩ X) ⊃ V ⊃ Cα (note

that X is dense in X̃). Now Z ∩ X is a zero-set in X and taking W = (Z ∩ X), we

have Cα ⊂ W ⊂ (X̃ \ Q). Since Z is closed under finite unions, the result follows.

II. Let A be the algebra in X̃ generated by Z and denote by A0 the elements

of A which have the property that these elements and their complements are inner

regular by the elements of Z. Then A0 = A.
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P r o o f. We use I and Lemma 1 to prove it. By I, A0 ⊃ Z. By definition, A0 is

closed under complements. Using Lemma 1, it is a routine verification that if A and

B are in A0 then A ∪ B and A ∩ B are also in A0. This proves the result.

III. Let F be the algebra in X generated by zero-sets in X . Then it is a simple

verification that A∩X ⊃ F . Also, if A ∈ A and A∩X = ∅, then µ̃(A) = 0. To prove

this, take any Z ∈ Z, Z being a zero-set in X , such that Z ⊂ A. This means Z is

empty and so µ̃(A) = 0. Now we can define a ν : F → E, ν(B) = µ̃(A), A being any

element in A with B = A∩X ; it is a trivial verification that ν is well-defined, finitely

additive and it is inner regular by zero-sets in X and outer regular by positive-sets

in X . We also have ν(Z) = µ̃(Z) for any zero-set Z ⊂ X .

IV. For any f ∈ Cb(X), µ(f) =
∫

f dν.

P r o o f. Let M be the vector space of all F -simple functions on X . With the

norm topology ‖ · ‖ on C(S), the mapping µ̃ : M → C(S), f →
∫

f dµ is positive

and continuous and Cb(X) lies in the norm completion ofM; this implies that every

f ∈ Cb(X) is ν-integrable. Put µ(1) = e ∈ C(S).

Take an f ∈ Cb(X), 0 6 f 6 1, and fix a large positive integer k. For i, 1 6 i 6 k,

let Zi = f−1[i/k, 1] and Wi = f̃−1[i/k, 1]. On X we get k−1
k∑

i=1

χZi
6 f 6 k−1 +

k−1
k∑

i=1

χZi
. From this we get 0 6 ν(f) − k−1

k∑
i=1

ν(Zi) 6 k−1e. On X̃ we get

f̃ > k−1
k∑

i=1

χWi
> k−1

k∑
i=1

χZi
. Define h : X̃ → R+ , h(x̃) = k−1 + k−1

k∑
i=1

χZi
.

Then h is usc (upper semi-continuous). Take an x̃ ∈ X̃ and a net {xα} ⊂ X

such that xα → x̃. Now f̃(x̃) = lim f(xα) 6 limh(xα) 6 h(x̃) (note that h is

usc). Thus k−1
k∑

i=1

χZi
6 f̃ 6 k−1 + k−1

k∑
i=1

χZi
. Integrating relative to µ̃, we have

0 6 µ(f) − k−1
k∑

i=1

ν(Zi) 6 k−1e (note µ̃(Zi) = ν(Zi)). Combining these results, we

have |µ(f) − ν(f)| 6 k−1e. Taking the limit over k, we get the result.

V. Uniqueness.

P r o o f. For i = 1, 2, let νi : F → E+ be two finitely additive regular (in-

ner regular by zero-sets and outer regular by positive-sets in X) measures such

that
∫

f dν1 =
∫

f dν2 for all f ∈ Cb(X). Fix a zero-set Z ⊂ X and take a de-

creasing net {Uα} of cozero sets in X such that νi(Uα \ Z) ↓ 0 for i = 1, 2. For

each α, take an fα ∈ Cb(X) with 0 6 fα 6 1, fα = 1 on Z, and fα = 0 outside

Uα. For i = 1, 2, νi(Uα) > νi(fα) > νi(Z). From this we get, since ν1(fα) = ν2(fα),

ν1(Uα) − ν2(Z) > 0 > ν1(Z) − ν2(Uα). Taking limits we get ν1(Z) = ν2(Z). By

regularity, we have ν1 = ν2. This proves the result. �
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We denote by M+
(o)(X, E) the set of all finitely additive µ : F → E+ which are

inner regular by zero-sets; they are just the positive linear operators µ : Cb(X) →

E+.

3. Order convergence of measures

In this section we consider the order convergence of these measures. A net {µα} ⊂

M+
(o)(X, E) is said to order-converge weakly to a µ ∈ M+

(o)(X, E) if µα(f) → µ(f)

in order-convergence for each f ∈ Cb(X); this is equivalent to µ̃α(f) → µ̃(f) in

order-convergence for each f ∈ C(X̃).

Theorem 3. SupposeX is a Hausdorff completely regular space, E is a boundedly

order-complete vector-lattice, {µα} is a uniformly order-bounded net in M+
(o)(X, E)

and µ ∈ M+
(o)(X, E) . Then, with order convergence, the following statements are

equivalent:

(i) µα → µ, pointwise on Cb(X);

(ii) limα µα(Z) 6 µ(Z) for every zero-set Z and µα(X) → µ(X);

(iii) lim
α

µα(U) > µ(U) for every positive-set U and µα(X) → µ(X);

If µ is τ -smooth, then each of the above statements is also equivalent to

(iv) µα → µ pointwise on Cub(X), where Cub(X) is the set of all uniformly contin-

uous functions on X relative to a uniformity U on X which gives the original

topology on X (if the uniformity U comes from a single metric, then it is enough

to assume that µ is σ-smooth).

P r o o f. The positive linear mappings µ : Cb(X) → E and µα : Cb(X) → E

give the positive linear mappings µ̃ : C(X̃) → E and µ̃α : C(X̃) → E. Since the net

{µα} is a uniformly order-bounded, we can assume that µα(1) 6 p for all α, for some

p ∈ E (p > 0).

(ii) and (iii) are easily seen to be equivalent.

(i) implies (ii). Fix a zero-set Z ⊂ X and let Z be its closure in X̃ . Take a

decreasing net {f̃γ} ⊂ C(X̃), 0 6 f̃γ 6 1 for every γ such that f̃γ ↓ χZ . This means

that, for some ηγ ↓ 0 in E we have µ(Z) = µ̃(Z) = µ̃(f̃γ) − ηγ > µ̃(f̃γ) − 2ηγ =

lim
α

µ̃α(f̃γ) − 2ηγ > limα(Z) − 2ηγ . Taking the limit over γ, we get the result.

(ii) implies (i). Take an f ∈ Cb(X), 0 6 f 6 1, and fix a large positive integer k.

For i, 1 6 i 6 k, put Zi = f−1[i/k, 1]. We get
k∑

i=1

χZi
6 f 6

k∑
i=1

χZi
+k−1. From this

we get µα(f) 6
k∑

i=1

µα(Zi) + k−1p. This means limα(µα(f)) 6 limα

( k∑
i=1

µα(Zi)
)

+

k−1p. Using (ii), this gives limα(µα(f)) 6

( k∑
i=1

µ(Zi)
)

+ k−1p. From this it follows
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that limα(µα(f)) 6 µ(f)+ k−1p. Taking the limit as k → ∞, we get limα(µα(f)) 6

µ(f). The same result holds for 1 − f also (note that µα(X) → µ(X)). Combining

these two results, we get the desired implication.

(i) implies (iv) trivially.

(iv) implies (ii). Fix a zero-set Z ⊂ X and take a decreasing net {fγ} ⊂ Cub(X)

such that fγ ↓ χZ (if the uniformity comes from a single metric then the net {fγ}

can be taken to be a sequence). Since µ is τ -smooth, µ(Z) = lim
γ

µ(fγ) (in case the

uniformity is metrizable, it is enough to assume µ to be σ-smooth). The rest of the

proof is identical with that given above in ((i) implies (ii)). �

R em a r k 4. This generalizes ([??], Theorem 7, p. 4).

Suppose X is a uniform space. An H ⊂ Cub(X) is called ueb if it is uniformly

bounded and uniformly equicontinuous. Now we have the following theorem:

Theorem 5. Suppose X is a topological space having a uniformity U which gives

the same topology on X , E is a boundedly order-complete vector-lattice and {µα}

is a uniformly order-bounded net in M+
o (X, E). Suppose there is a µ ∈ M+

(o,t)(X, E)

such that µα → µ pointwise on Cub(X) and H is a ueb set in Cub(X). Then µα → µ

uniformly on H .

P r o o f. Because {µα} is uniformly order-bounded, we can take E = C(S) for

some Stonian compact Hausdorff space S and we can also assume that µα(1) 6 e

for every α, e being the unit function in C(S). Also assume H to be absolutely

convex and pointwise compact and ‖f‖ 6 1 for all f ∈ H . Take a compact K ⊂ X .

By the Arzelà-Ascoli theorem, H|K is norm compact in C(K). Further d(x, y) =

sup
f∈H

|f(x) − f(y)| is a uniformly continuous pseudometric on X . Fix c > 0. Define

h : X → R, h(x) = d(x, K); then h ∈ Cub(X). This means V = {x : h(x) < c} is

a positive set, it is open in X , V ⊃ K, and for an x ∈ V there is a y ∈ K such

that d(x, y) < c. By the Arzelà-Ascoli theorem, there is a finite subset {fi : 1 6

i 6 n} ⊂ H such that H =
n⋃

i=1

Hi where Hi = {f ∈ H : ‖f − fi‖|K < c}. Now

take an x ∈ V and f ∈ Hi. There is a y ∈ K such that d(x, y) < c. We get

|f(x)− fi(x)| 6 |f(x)− f(y)|+ |f(y)− fi(y)|+ |fi(y)− fi(x)| 6 3c. So |f − fi| 6 3c

on V . From the given hypothesis, µα → µ uniformly on finite subsets of Cub(X).

Thus there exists a net {ηα} ⊂ E such that ηα ↓ 0 and |µα(fi) − µ(fi)| 6 ηα for

1 6 i 6 n. Fix i and take an f ∈ Hi. We have |
∫

f dµα −
∫

f dµ| 6 |
∫
(f − fi) dµα −∫

(f −fi) dµ|+ |
∫

fi dµα−
∫

fi dµ| 6 |
∫

V
(f −fi) dµα|+ |

∫
X\V

(f −fi) dµα|+
∫

K
(f −

fi) dµ|+
∫

X\K
(f − fi) dµ| + ηα 6 3ce + 2µα(X \ V ) + 3ce + 2µ(X \ K) + ηα. Since

this is true for each i, 1 6 i 6 n, the above result holds for every f ∈ H . So we get
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sup
f∈H

|
∫

f dµα −
∫

f dµ| 6 6ce+2µα(X \V )+2µ(X \K)+ ηα. Taking limit superior,

we get limα(sup
f∈H

|
∫

f dµα −
∫

f dµ|) 6 2µ(X \ V ) + 2µ(X \ K) + 6ce. Letting c ↓ 0,

we get limα(sup
f∈H

|
∫

f dµα −
∫

f dµ|) 6 4µ(X \K). Since µ ∈ M+
(o,t)(X, E), the result

follows. �

Corollary 6. Suppose X is a Hausdorff completely regular space, E is a bound-

edly order-complete vector-lattice and {µα} is a uniformly order-bounded net in

M+
o (X, E). Suppose there is a µ ∈ M+

(o,t)(X, E) such that µα → µ pointwise on

Cb(X) and H is a uniformly bounded and pointwise equicontinuous subset of Cb(X).

Then µα → µ uniformly on H .

P r o o f. Consider X to be a uniform space with uniformity determined by all

continuous pseudo-metrics on X . In this uniformity, H is a ueb set and so the result

follows from Theorem 5. �

4. Alexandrov’s theorem for a σ-additive case

In this case we take E to be a boundedly complete vector lattice and, E∗ and E∗
n

to be its order dual and order continuous dual. E∗
n is a band in E∗ and we assume

that E∗
n separates the points of E. Take a sequence {µn} ⊂ M+

(o,σ)(X, E) and assume

that, in order convergence, µ(g) = limµn(g) exists for every g ∈ Cb(X). If E = R,
the well-known Alexandrov’s theorem says that µ ∈ M+

σ (X) ([??], p. 195); in ([??],

Theorem 2, p. 73), this result is extended to the case when E is a topological vector

space. In the next theorem we extend the result to the case when E is a boundedly

complete vector lattice.

Theorem 7. SupposeX is a Hausdorff completely regular space, E is a boundedly

order-complete vector lattice and E∗
n its order dual. Assume that E is weakly σ-

distributive ([??]) and E∗
n separates the points of E. Let {µn} ⊂ M+

(o,σ)(X, E)

be a sequence such that, in order convergence, µ(g) = limµn(g) exists for every

g ∈ Cb(X). Then the positive µ : Cb(X) → E is generated by the E+-valued Baire

measure on X .

P r o o f. E∗
n is a band in E∗ and so the order intervals of E∗

n are σ(E∗
n, E)-

compact and convex. Now the topology on E of uniform convergence on the order

intervals of E∗
n is a locally convex topology for which lattice operations are continuous

and so, in this topology, the positive cone E+ of E is closed and convex. Since this

topology is compatible with the duality 〈E, E∗
n〉, E+ is also closed in σ(E, E∗

n). Now
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we consider E to be a locally convex space with the topology σ(E, E∗
n). By given

hypothesis, µn : Cb(X) → E are countably additive measures (note that E∗
n is the

order continuous dual of E) and µ(g) = limµn(g) exists for every g ∈ Cb(X). By

([??], Theorem 2, p. 73), if gm ↓ 0 in Cb(X), then µn(gm) → 0 uniformly in n. So

we get µ(gm) → 0 in E. We claim that in order convergence in E, µ(gm) → 0.

This will be proved if we prove that infm µ(gm) = 0 (note that µ(gm) ↓). Let

infm µ(gm) = a > 0. Take a positive element f ∈ E∗
n such that f(a) > 0 (note that

E∗
n separates the points of E). This implies that lim 〈f, µ(gm)〉 = f(a) > 0. This

contradicts µ(gm) → 0 in (E, σ(E, E∗
n) and so the claim is proved. We get a positive

linear mapping µ̃ : C(X̃) → E, µ̃(f) = µ(f|X). For any zero-set Z ⊂ X̃ \ X , take

a sequence {gm} ⊂ C(X̃) and gm ↓ χZ . This means (gm)|X ↓ 0. By ([??]), µ̃ can

be considered a Baire measure on X̃ and so µ̃(Z) = lim µ̃(gm) = µ((gm)|X) = 0.

Since E is weakly σ-distributive, µ̃ is a regular Baire measure and so for any Baire

set B ⊂ X̃ \ X , µ̃(B) = 0. It is a simple verification that the class of Baire subsets

of X is equal to the class of Baire subsets of X̃ intersected with X . Now for any

Baire subset B0 of X , take a Baire subset B of X̃ such that B0 = B ∩ X ; define

µ(B0) = µ̃(B). It is a simple verification the µ is well-defined and µ ∈ M+
(o,σ)(X, E)

([??]). This proves the theorem. �

We are very thankful to the referee for pointing out typographical errors and also

making some very useful suggestions which have improved the paper.
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