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Abstract. For an ordered set W = {w1, w2, . . . , wk} of vertices and a vertex v in a
connected graph G, the (metric) representation of v with respect to W is the k-vector
r(v|W ) = (d(v,w1), d(v, w2), . . . , d(v, wk)), where d(x, y) represents the distance between
the vertices x and y. The setW is a resolving set for G if distinct vertices of G have distinct
representations. A resolving set of minimum cardinality is a basis for G and the number
of vertices in a basis is its (metric) dimension dim(G). For a basis W of G, a subset S
of W is called a forcing subset of W if W is the unique basis containing S. The forcing
number fG(W,dim) of W in G is the minimum cardinality of a forcing subset for W , while
the forcing dimension f(G, dim) of G is the smallest forcing number among all bases of G.
The forcing dimensions of some well-known graphs are determined. It is shown that for all
integers a, b with 0 � a � b and b � 1, there exists a nontrivial connected graph G with
f(G) = a and dim(G) = b if and only if {a, b} �= {0, 1}.
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1. Introduction

The distance d(u, v) between two vertices u and v in a connected graph G is the
length of a shortest u−v path inG. For an ordered setW = {w1, w2, . . . , wk} ⊆ V (G)

and a vertex v of G, we refer to the k-vector

r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk))

as the (metric) representation of v with respect to W . The setW is called a resolving
set for G if distinct vertices have distinct representations. A resolving set containing

a minimum number of vertices is called a minimum resolving set or a basis for G.

1Research supported in part by the Western Michigan University Research Development
Award Program
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The (metric) dimension dim(G) is the number of vertices in a basis for G. For

example, the graph G of Figure 1 has the basis W = {u, z} and so dim(G) = 2.
The representations for the vertices of G with respect to W are r(u|W ) = (0, 1),
r(v|W ) = (2, 1), r(x|W ) = (1, 2), r(y|W ) = (1, 1), r(z|W ) = (1, 0).

x v

zu

y
G : �
Figure 1. A graph G with dim(G) = 2

The example just presented also illustrates an important point. When determining
whether a given set W of vertices of a graph G is a resolving set for G, we need only
investigate the vertices of V (G) − W since w ∈ W is the only vertex of G whose

distance from w is 0. The following lemma will be used on several occasions. The
proof of this lemma is routine and is therefore omitted.

Lemma 1.1. Let G be a nontrivial connected graph. For u, v ∈ V (G), if d(u, w) =
d(v, w) for all w ∈ V (G)− {u, v}, then u and v belong to every resolving set of G.

The inspiration for these concepts stems from chemistry. A basic problem in

chemistry is to provide mathematical representations for a set of chemical compounds
in a way that gives distinct representations to distinct compounds. The structure

of a chemical compound can be represented by a labeled graph whose vertex and
edge labels specify the atom and bond types, respectively. Thus, a graph-theoretic

interpretation of this problem is to provide representations for the vertices of a graph
in such a way that distinct vertices have distinct representations. This is the subject

of the papers [1, 2]. The dimension of directed graphs has been studied in [5, 6].

The concepts of resolving set and minimum resolving set have previously appeared
in the literature. In [14] and later in [15], Slater introduced these ideas and used

locating set for what we have called resolving set. He referred to the cardinality of a
minimum resolving set in a graph G as its location number. Independently, Harary

and Melter [11] investigated these concepts as well, but used metric dimension rather
than location number, the terminology that we have adopted.

For a basis W of G, a subset S of W with the property that W is the unique basis

containing S is called a forcing subset ofW . The forcing number fG(W, dim) ofW in
G is the minimum cardinality of a forcing subset for W , while the forcing dimension

f(G, dim) of G is the smallest forcing number among all bases of G. Since the
parameter dimension is understood in this context, we write fG(W ) for fG(W, dim)
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and f(G) for f(G, dim). Hence if G is a graph with f(G) = a and dim(G) = b, then

0 � a � b and there exists a basis W of cardinality b containing a forcing subset
of cardinality a. Forcing concepts have been studied for a various of subjects in
graph theory, including such diverse parameters as the chromatic number [9], the

graph reconstruction number [12], and geodetic concepts in graphs [3, 7, 8]. Also,
many invariants arising from the study of forcing in graph theory offer abundant new

subjects for new and applicable research. A survey of graphical forcing parameters
is discussed in [10].

To illustrate these concepts, we consider the graph G of Figure 2. The graph

G has dimension 2 and so f(G) � 2. Let W = {x, z} and W ′ = {v, z}. Since
r(s|W ) = (2, 1), r(t|W ) = (1, 2), r(u|W ) = (1, 3), r(v|W ) = (2, 2), and r(y|W ) =
(1, 1), it follows thatW is a basis of G. Also, since r(s|W ′) = (1, 1), r(t|W ′) = (1, 2),
r(u|W ′) = (1, 3), r(x|W ′) = (2, 2), and r(y|W ′) = (3, 1), the set W ′ is a basis of G.
Hence 1 � f(G) � 2 by Lemma 1.2. Next we show that fG(W ) = 1 and fG(W ′) = 2.

Let S1 = {x, s}, S2 = {x, t}, S3 = {x, u}, S4 = {x, v}, and S5 = {x, y}. Observe
that r(u|S1) = r(y|S1) = (1, 2), r(s|S2) = r(v|S1) = (2, 1), r(t|S3) = r(y|S3) =
(1, 2), r(t|S4) = r(u|S4) = (1, 1), and r(u|S5) = r(t|S5) = (1, 2). Hence W is the
unique basis containing x and so fG(W ) = 1. Certainly, W ′ is not the unique basis

containing z since z ∈ W . Moreover,W ′′ = {v, s} is a basis in G containing v and so
W ′ is not the unique basis containing v. HenceW ′ is not the unique basis containing

any of its proper subset and so fG(W ′) = 2. Now the forcing dimension f(G) of G
is the smallest forcing number among all bases of G an so f(G) = 1.

s u

xt

v

z y
G :�

Figure 2. A graph G with dim(G) = 2 and f(G) = 1

It is immediate that f(G) = 0 if and only if G has a unique basis. If G has
no unique basis but contains a vertex belonging to only one basis, then f(G) = 1.

Moreover, if for every basis W of G and every proper subset S of W , the set W

is not the unique basis containing S, then f(G) = dim(G). We summarize these

observations below.

Lemma 1.2. For a graph G, the forcing dimension f(G) = 0 if and only if G has
a unique basis, f(G) = 1 if and only if G has at least two distinct bases but some
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vertex of G belongs to exactly one basis, and f(G) = dim(G) if and only if no basis

of G is the unique basis containing any of its proper subsets.

2. Forcing dimensions of certain graphs

The following three theorems (see [2], [11], [14], [15]) give the dimensions of some
well-known classes of graphs. In this section, we determine the forcing dimensions

of these graphs.

Theorem A. Let G be a connected graph of order n � 2.
(a) Then dim(G) = 1 if and only if G = Pn.

(b) Then dim(G) = n − 1 if and only if G = Kn.

(c) For n � 3, dim(Cn) = 2.

(d) For n � 4, dim(G) = n − 2 if and only if G = Kr,s (r, s � 1), G = Kr + Ks

(r � 1, s � 2), or G = Kr + (K1 ∪ Ks) (r, s � 1).

A vertex of degree at least 3 in a tree T is called a major vertex. An end-vertex

u of T is said to be a terminal vertex of a major vertex v of T if d(u, v) < d(u, w)
for every other major vertex w of T . The terminal degree ter(v) of a major vertex

v is the number of terminal vertices of v. A major vertex v of T is an exterior
major vertex of T if it has positive terminal degree. Let σ(T ) denote the sum of

the terminal degrees of the major vertices of T and let ex(T ) denote the number of
exterior major vertices of T .

Theorem B. If T is a tree that is not a path, then dim(G) = σ(T )− ex(T ).

Theorem C. Let T be a tree of order n � 3 that is not a path having p exterior

major vertices v1, v2, . . . , vp. For 1 � i � p, let ui,1, ui,2, . . . , ui,ki be the terminal

vertices of vi, and let Pij be the vi − uij path (1 � j � ki). Suppose that W is a

set of vertices of T . Then W is a basis of T if and only if W contains exactly one

vertex from each of the paths Pij − vi (1 � j � ki and 1 � i � p) with exactly one

exception for each i with 1 � i � p and ki � 2, and W contains no other vertices

of T .

Proposition 2.1. Let G be a nontrivial connected graph. If G is a complete

graph, cycle, or tree, then f(G) = dim(G).

�����. First assume that G is the complete graph Kn of order n � 2. Since
every set W of n − 1 vertices in Kn is a basis of Kn, it follows that W is not the
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unique basis containing any of its proper subset. By Lemma 1.2, f(Kn) = dim(Kn).

Next assume that G is a cycle Cn of order n � 4. If n is odd, then every pair
of vertices forms a basis of Cn. If n is even, then every pair u, v of vertices with
d(u, v) �= n/2 forms a basis of Cn. So in either cases, there is no basis of Cn that

is the unique basis containing any of its proper subset. Again, it then follows from
Lemma 1.2 that f(Cn) = dim(Cn).

Now let T be a tree. First assume that T is the path Pn of order n � 2. Since
each end-vertex of Pn forms a basis for Pn, it follows that f(Pn) � 1 = dim(Pn) by

Lemma 1.2. Hence f(Pn) = dim(Pn) = 1. Next assume that T is a tree of order n � 4
that is not a path and T has p exterior major vertices v1, v2, . . . , vp. For 1 � i � p,

let ui,1, ui,2, . . . , ui,ki be the terminal vertices of vi, and let Pij be the vi − uij path
(1 � j � ki). LetW be a basis ofG. It then follows from Theorem C thatW contains

exactly one vertex from each of the paths Pij − vi (1 � j � ki and 1 � i � p) with
exactly one exception for each i with 1 � i � p and ki � 2, and W contains no other

vertices of G. Let S be a proper subset of W and let x ∈ W − S. Then there exist
i, j with 1 � i � p and 1 � j � ki such that x is a vertex from the path Pij − vi, say

x is a vertex from P11 − v1. Since x ∈ W , it follows that ter(v1) = k1 � 2. Assume,
without loss of generality, that for each j with 1 � j � k1 − 1, there is a vertex xj

from P1j−v1 that belongs toW and there is no vertex of P1,k1−v1 that belongs toW .
So x1 = x. Let xk1 be a vertex of the path P1,k1−v1. ThenW ′ = (W −{x1})∪{xk1}
is a basis of T by Theorem C. Since W ′ contains S and W ′ �=W , it follows that W

is not the unique basis containing S. Therefore, f(T ) = dim(T ) by Lemma 1.2. �

Proposition 2.2. LetG be a connected graph of order n � 2 with dim(G) = n−2.
If G = Kr,s (r, s � 1) or G = Kr + Ks (r � 1, s � 2), then f(G) = dim(G). If

G = Kr + (K1 ∪ Ks) (r, s � 1), then f(G) = dim(G)− 1.
�����. By Theorem A, if dim(G) = n−2, then G = Kr,s (r, s � 1), G = Kr+Ks

(r � 1, s � 2), or G = Kr+(K1∪Ks) (r, s � 1). First let G = Kr,s whose the partite
sets are V1 = {u1, u2, . . . , ur} and V2 = {v1, v2, . . . , vs}. Then by Lemma 1.1 every
basisW of G has the formW =W1∪W2, whereWi ⊆ Vi (1 = 1, 2) with |W1| = r−1
and |W2| = s − 1. Assume, without loss of generality, that W = V (G) − {ur, vs}.
Let S be a proper subset of W . Then S = S1 ∪ S2, where Si ⊆ Wi (1 = 1, 2)
and |S1| � r − 2 or |S2| � s − 2, say |S1| � r − 2. Thus there is ui ∈ W , where

1 � i � r − 1, such that ui /∈ S1. Then W ′ = (W − {ui}) ∪ {ur} is a basis of G

containing S. Since W ′ �=W , it follows that W is not the unique basis containing S.

Therefore, f(G) = dimG. If G = Kr +Ks, let V1 = V (Kr) = {u1, u2, . . . , ur} and
V2 = V (Ks) = {v1, v2, . . . , vs}. Since every basisW of G has the formW =W1∪W2,

where Wi ⊆ Vi (1 = 1, 2) with |W1| = r − 1 and |W2| = s − 1, a similar argument
shows that f(G) = dimG.
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Now let G = Kr + (K1 ∪ Ks). Assume that V1 = V (Kr) = {u1, u2, . . . , ur},
V2 = V (Ks) = {v1, v2, . . . , vs}, and V (K1) = {x}. Then by Lemma 1.1 it can be
verified that every basis of G has the form W = W1 ∪ W2 ∪ {x}, where Wi ⊆ Vi

(i = 1, 2) and |W1| = r − 1 and |W2| = s − 1. Since the vertex x belongs to every

basis, f(G) � |W | − 1 = dim(G) − 1. On the other hand, let W be a basis of G,
say W = V (G) − {ur, vs}, and let S be a subset of W with |S| � |W | − 2. Then
there is a vertex y ∈ W − S such that y �= x. We may assume that y ∈ V1. Then
W ′ = (W − {y}) ∪ {ur} is a basis of G containing S. So W is not the unique basis

containing S. Thus f(G) � |W | − 1 = dim(G)− 1. Therefore, f(G) = dim(G)− 1.
�

3. Graphs with prescribed dimensions and forcing dimensions

We have already noted that if G is a graph with f(G) = a and dim(G) = b, then
0 � a � b and b � 1. We now determine which pairs a, b of integers with 0 � a � b

and b � 1 are realizable as the forcing dimension and dimension of some nontrivial
connected graph. In order to do this, we state the following result obtained in [1].

Theorem D. For k � 2, there exists a connected graph of dimension k with a

unique basis.

Theorem 3.1. For all integers a, b with 0 � a � b and b � 1, there exists
a nontrivial connected graph G with f(G) = a and dim(G) = b if and only if

{a, b} �= {0, 1}.

�����. By Theorem A, the path Pn of order n � 2 is the only nontrivial con-
nected graph of order n with dimension 1. However, f(Pn) = 1 for all n � 2 by
Proposition 2.1. Hence there is no nontrivial connected graph G with f(G) = 0 and
dim(G) = 1.

We now verify the converse. Let a = 0 and b � 2. By Theorem D there is a
connected graph G of dimension b with a unique basis. Thus f(G) = 0 by Lemma 1.2

and dim(G) = b. Hence the result is true for a = 0 and b � 2. So we may assume
that a > 0. First assume that b = a. When b = a = 1, each path Pn (n � 2) has the
desired property. When b = a = 2, the star K1,3 has the desired property. When
b = a � 3, then the complete graph Ka+1 has the desired property. So we now

assume that a < b. We consider two cases.
���� 1. b = a+ 1. Let G be the graph obtained from the 4-cycle u1, u2, u3, u4,

u1 by adding a new edge u2u4 and then joining b new vertices v1, v2, . . . , vb to u2 and
u3. The graph G is shown in Figure 3. First note every basis of G contains at least
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G :�
Figure 3. A graph G with dim(G) = b and f(G) = b − 1

b− 1 vertices from {v1, v2, . . . , vb} by Lemma 1.1. However, it can be verified that if
W is a basis of G, then W contains exactly b − 1 vertices from {v1, v2, . . . , vb} and
the vertex u1. Hence dim(G) = b. Next we show that f(G) = b−1. LetW be a basis

of G, say W = {u1, v1, v2, . . . , vb−1}. Since u1 belongs to every basis of G, it follows
that W is the unique basis containing the subset {v1, v2, . . . , vb−1}, which implies
that fG(W ) � b−1. On the other hand, if S is a subset of W with |S| � b−2, then,
without loss of generality, we assume that vb−1 /∈ S. ThenW ′ = (W −{vb−1})−{vb}
is a basis of G containing S. Thus W is not the unique basis containing S and so
fG(W ) � b−1. Hence fG(W ) = b−1 for every basisW of G and so f(G) = b−1 = a.

���� 2. b � a + 2. Let r = b − a. Then 2 � r � b − 1. First we construct a
graph H of order r + 2r with V (H) = U ∪ V , where U = {u0, u1, . . . , u2r−1} and
the ordered set V = {vr−1, vr−2, . . . , v0} are disjoint. The induced subgraph 〈U〉 of
H is complete, while V is independent. It remains to define the adjacencies between

V and U . Let each integer j (0 � j � 2r − 1) be expressed in its base 2 (binary)
representation. Thus, each such j can be expressed as a sequence of r coordinates,
that is, an r-vector, where the rightmost coordinate represents the value (either 0

or 1) in the 20 position, the coordinate to its immediate left is the value in the 21

position, etc. For integers i and j, with 0 � i � r − 1 and 0 � j � 2r − 1, we join
vi and uj if and only if the value in the 2i position in the binary representation of j
is 1. The structure of H is based on one given in the proof of Theorem D (see [1]),

where it was shown that H has dimension r and V is the unique basis of H . Now the
graph G is obtained from H by adding the a new vertices x1, x2, . . . , xa such that

each xi (1 � i � a) has the same neighborhood as u0 in V and the induced subgraph
〈U ∪ {x1, x2, . . . , xa}〉 is complete.
We first show that dimG = b. Let T = {u0, x1, x2, . . . , xa}. Note that if t1, t2 ∈ T

and v ∈ V (G), then d(t1, v) = d(t2, v). Hence every resolving set of G must contain

at least a vertices from T by Lemma 1.1. Let W = V ∪ {x1, x2, . . . , xa}. We show
that W is a resolving set of G. It suffices to show that the metric representations

of vertices in U are distinct. Observe that the first r coordinates of the metric
representation for each uj (0 � j � 2r − 1) can be expressed as r(uj |V ). Since V
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is the basis of H , the metric representations r(uj |V ) (0 � j � 2r − 1) of uj with

respect to V are distinct. In fact, r(uj |V ) = (2− ar−1, 2− ar−2, . . . , 2 − a0), where
am (0 � m � r − 1) is the value in the 2m position of the binary representation
of j. Since the binary representations ar−1ar−2 . . . a1a0 are distinct for the vertices

of U , their metric representations (2 − ar−1, 2 − ar−2, . . . , 2 − a0) (with respect to
V ) are distinct. This implies that the metric representations r(uj |W ) are distinct
as well. Hence W is a resolving set of G and so dimG � |W | = (b − a) + a = b.
Next we show that dimG � b. Assume, to the contrary, that dim(G) � b − 1.
Let S be a basis of G with |S| = dim(G). Let S = S′ ∪ X , where X ⊆ T and
S′ ⊆ V (G) − T . Then |X | � a by Lemma 1.1. Let S∗ = S′ ∪ {u0}. Hence
|S∗| = |S| − |X |+ 1 � (b− 1)− a+ 1 = b− a. Since V is the unique basis of H and
u0 /∈ V , it follows that S∗ is not a basis of H . Thus there exist z, z′ ∈ V (H)− {u0}
such that r(z|S∗) = r(z′|S∗) and so d(z, u0) = d(z′, u0). Thus d(z, xi) = d(z′, xi)
for all i. This implies that r(z|S) = r(z′|S) and so S is not a basis, which is a

contradiction. Therefore, dim(G) � b and so dim(G) = b.

In order to determine f(G), we first show that V belongs to every basis of G.

Assume, to the contrary, there exists a basis W of G such that V �⊆ W . If T ⊆ W ,
thenW ′ = (W−T )∪{u0} �= V and soW ′ is not a basis of H . Thus there exist z, z′ ∈
V (H) − {u0} such that r(z|W ′) = r(z′|W ′). This implies that r(z|W ) = r(z′|W )
and so W is not a basis, a contradiction. Hence W contains exactly a vertices from

T . Assume, without loss of generality, that W = S ∪ X , where X = T − {u0} and
S ⊆ V (H)− T . A similar argument to the one employed in the proof of Theorem D

[1] shows that there exist two vertices z and z′ in U = V (H)−V such that r(z|S) =
r(z′|S). Since the distance between every two vertices in U ∪ T is 1, it follows that

r(z|W ) = r(z′|W ). This contradicts the fact that W is a basis. Therefore, V belongs
to every basis W of G.

We are now prepared to show that f(G) = a. Let W be a basis of G. Since
V must belong to W , it follows that W is the unique basis containing W − V .

Thus fG(W ) � |W − V | = b − (b − a) = a. This is true for every basis W of
G and so f(G) � a. On the other hand, let W be a basis and S be a subset of

W with |S| � a − 1. Without loss of generality, assume that W = V ∪ X with
X = {x1, x2, . . . , xa}. Since |S| � a − 1, there exists x ∈ W ∩ X such that x /∈ S.

Then W ′ = (W − {x}) ∪ {u0} is a basis of G that contains S. Hence W is not the
unique basis containing S and so fG(W ) � |S|+ 1 = a. Again, this is true for every

basisW in G and so f(G) � a. Therefore, f(G) = a and dim(G) = b, as desired. �
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4. Open problem

While the forcing dimension f(G) of a graph G is the minimum forcing number

among all bases of G, we define the upper forcing dimension f+(G) as the maximum
forcing number among all bases of G. Hence

0 � f(G) � f+(G) � dim(G).

If a graph G has a unique basis, then f(G) = f+(G) = 0. Also, there are numerous

examples of graphs G, such as complete graphs and trees, with f(G) = f+(G) =
dim(G). On the other hand, as we have seen, the graph G of Figure 1 contains

two bases with distinct forcing numbers and so f(G) = 1 and f+(G) = 2. Hence
f(G) < f+(G). We close with the following open problem.

����	�
 4.1. For which pairs a, b of integers with 0 � a � b, does there exist

a nontrivial connected graph G with f(G) = a and f+(G) = b?
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