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Abstract. A perfect independent set I of a graph G is defined to be an independent set
with the property that any vertex not in I has at least two neighbors in I. For a nonnegative
integer k, a subset I of the vertex set V (G) of a graph G is said to be k-independent, if I
is independent and every independent subset I ′ of G with |I ′| > |I| − (k − 1) is a subset
of I. A set I of vertices of G is a super k-independent set of G if I is k-independent in
the graph G[I, V (G)− I], where G[I, V (G)− I] is the bipartite graph obtained from G by
deleting all edges which are not incident with vertices of I. It is easy to see that a set I
is 0-independent if and only if it is a maximum independent set and 1-independent if and
only if it is a unique maximum independent set of G.
In this paper we mainly investigate connections between perfect independent sets and

k-independent as well as super k-independent sets for k = 0 and k = 1.

Keywords: independent sets, perfect independent sets, unique independent sets, strong
unique independent sets, super unique independent sets

MSC 2000 : 05C70

1. Terminology and introduction

We will assume that the reader is familiar with standard terminology on graphs
(see, e.g., Chartrand and Lesniak [2] or Lovász and Plummer [11]). In this paper, all
graphs are finite, undirected, and simple. The vertex set and edge set of a graph G

are denoted by V (G) and E(G), respectively. The neighborhood NG(x) of a vertex
x is the set of vertices adjacent to x, and the number dG(x) = |NG(x)| is the degree
of x. If S ⊆ V (G), then we define the neighborhood of S by NG(S) =

⋃
x∈S

NG(x).

If S and T are two disjoint subsets of V (G), then let G[S, T ] be the bipartite graph
consisting of the partite sets S and T and all edges of G with one end in S and the
other one in T , and we define eG(S, T ) = |E(G[S, T ])|. A graph without any cycle
is called a forest.
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A set I of vertices is independent if no two vertices of I are adjacent. The indepen-
dence number α(G) of a graphG is the maximum cardinality among the independent
sets of vertices of G. Croitoru and Suditu [3] call an independent set I of a graph G

a perfect independent set if any vertex not in I has at least two neighbors in I .

For a nonnegative integer k, by Siemes, Topp, Volkmann [12], an independent set I
of the vertex set V (G) of a graph G is said to be k-independent, if every independent
subset I ′ of G with |I ′| > |I | − (k − 1) is a subset of I . Furthermore, a set I of
vertices of G is super k-independent if I is k-independent in the bipartite graph
G[I, V (G) − I ]. Obviously, a set I is 0-independent if and only if it is maximum
independent and 1-independent if and only if it is a unique maximum independent
set of G. In this paper we mainly deal with super k-independent sets for k = 0, 1.
We call a super 0-independent and super 1-independent set also a super independent
and super unique independent set, respectively.

If a bipartite graph G has partite sets A and B such that B is a unique maxi-
mum independent set of G, then Hopkins and Staton [5] speak of a strong unique
independence graph. If a bipartite graph G has partite sets A and B such that
B is a maximum independent set of G, then G will be called a strong maximum
independence graph.

A vertex cover in G is a set of vertices that are incident with all edges of G. The
minimum cardinality of a vertex cover in a graph G is called the covering number
and is denoted by τ(G). A set of edges in a graph is called a matching if no two edges
are incident. The size of any largest matching in G is called the matching number of
G and is denoted by ν(G). It is easy to see and well-known that ν(G) 6 τ(G) and
α(G) + τ(G) = |V (G)| for any graph G.

A block of a graph is a maximal connected subgraph having no cut-vertex. A
block-cactus graph is a graph whose blocks are either complete graphs or cycles.

In this paper we investigate connections between perfect independent sets and k-
independent as well as super k-independent sets for k = 0 and k = 1. In addition, we
present various families of graphs with a strong unique (or maximum) independence
spanning forest.

2. Preliminary results

In [1], p. 272, Berge proved that an independent set I in a graphG is 0-independent
if and only if |NG(J) ∩ I | > |J | for every independent subset J of V (G)− I . In [12],
the authors presented the following extensions of Berge’s result.

Theorem 2.1 (Siemes, Topp, Volkmann [12] 1994). For a nonnegative integer k,
an independent set I of vertices of a graph G is a k-independent set in G if and only
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if

|NG(J) ∩ I | > |J |+ k

for every independent subset J of V (G)− I with J 6= ∅ when k > 1.

Corollary 2.2. For a nonnegative integer k, an independent set I of vertices of
a graph G is a super k-independent set in G if and only if

|NG(J) ∩ I | > |J |+ k

for every subset J of V (G)− I with J 6= ∅ when k > 1.

���������
. In view of the definition, I is a super k-independent set in G if and

only if I is k-independent in the bipartite graph G∗ = G[I, V (G)− I ]. According to
Theorem 2.1, this is equivalent to

|NG∗(J) ∩ I | > |J |+ k

for every independent subset J of V (G∗)− I with J 6= ∅ when k > 1. However, this
is equivalent to

|NG(J) ∩ I | > |J |+ k

for every subset J of V (G)−I with J 6= ∅ when k > 1, and the proof is complete. �

Theorem 2.1 as well as Corollary 2.2 play an important role in our investigations.

Observation 2.3. If G is a claw-free graph, then every perfect independent set
is also a maximum independent set.

���������
. If I ⊆ V (G) is a perfect independent set and J ⊆ V (G) − I an

independent set, then eG(J, I) > 2|J |. Since G is claw-free, we observe that

2|J | 6 eG(J, I) = eG(J, I ∩NG(J)) 6 2|I ∩NG(J)|

and hence |J | 6 |I ∩NG(J)|. Theorem 2.1 with k = 0 yields the desired result. �

Theorem 2.4 (Listing [9] 1862, König [8] 1936). A graph G is a forest if and
only if |E(G)| − |V (G)|+ σ(G) = 0, where σ(G) denotes the number of components
of G.
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Theorem 2.5 (König [6] 1916). A graph is bipartite if and only if it contains no
cycle of odd length.

3. Perfect and super unique independent sets

Clearly, a super unique independent set is a unique maximum independent set, and
a unique maximum independent set is a perfect independent set. In this section we
will present some classes of graphs with the property that each perfect independent
set is also a super unique independent set.

Proposition 3.1. Let G be a graph with a perfect independent set I . If I is not
a super unique independent set, then the bipartite graph G[I, V (G) − I ] contains a
cycle.
���������

. Since I is not a super unique independent set, there exists, in view of
Corollary 2.2 with k = 1, a set ∅ 6= J ⊆ V (G) − I such that |NG(J) ∩ I | 6 |J |. Let
H = G[NG(J) ∩ I, J ] be the induced bipartite subgraph of G[I, V (G) − I ]. Since I

is a perfect independent set, it follows that |E(H)| > 2|J |, and this leads to

|V (H)| = |NG(J) ∩ I |+ |J | 6 2|J | 6 |E(H)|.

Therefore, Theorem 2.4 implies that the graph H and hence also the bipartite graph
G[I, V (G)− I ] contains a cycle. �

Proposition 3.1 and Theorem 2.5 immediately yield the following corollary.

Corollary 3.2. Let G be a graph without any even cycle, and let I be an inde-
pendent set. Then I is a perfect independent set if and only if I is a super unique
independent set.

Theorem 3.3. If G is a graph, then every even cycle of G induces a complete
subgraph of G if and only if the bipartite graph G[I, V (G) − I ] is a forest for each
independent set I ⊆ V (G).
���������

. Assume that every even cycle of G induces a complete graph. Suppose
that there exists an independent set I ⊆ V (G) such that G[I, V (G) − I ] contains a
cycle C. This implies |I ∩ V (C)| > 2. Since C induces a complete graph, we arrive
at the contradiction that I is an independent set.
Conversely, let G[I, V (G) − I ] be a forest for each independent set I ⊆ V (G).

Let C = v1v2 . . . vpv1 be an even cycle of length p > 4. We will prove by induction
on p that C induces a complete subgraph. Let A = {v1, v3, . . . , vp−1} and B =
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{v2, v4, . . . , vp}. Neither G[A, V (G) − A] nor G[B, V (G) − B] is a forest and thus,
neither A nor B is an independent set in G. Hence, there exist odd integers 1 6 i <

j 6 p − 1 and even integers 2 6 k < l 6 p such that vi and vj as well as vk and vl

are adjacent. In the case that p = 4, it follows that C induces a complete graph.
Let now p > 6 and assume, without loss of generality, that i < k. Then there are
the two possibilities, namely 1 6 i < k < l < j 6 p− 1 or 1 6 i < k < j < l 6 p. In
both cases we will show that C has a chord uw with u ∈ A and w ∈ B.
If 1 6 i < k < l < j 6 p− 1, then

C0 = vivi+1 . . . vkvlvl+1 . . . vjvi

is an even cycle with |V (C0)| < |V (C)|. Therefore, by the induction hypothesis, C0

induces a complete graph. In particular, vivl is a chord of C.
If 1 6 i < k < j < l 6 p, then

C1 = vivi+1 . . . vkvlvl−1 . . . vj+1vjvi,

C2 = vivjvj−1 . . . vk+1vkvlvl+1 . . . vi

are even cycles such that |V (C1)| + |V (C2)| = |V (C)| + 4 and hence |V (C1)| =
|V (C2)| = |V (C)| if and only if |V (C)| = 4. Since |V (C)| > 6, we conclude that
|V (C1)| < |V (C)| or |V (C2)| < |V (C)|. According to the induction hypothesis, the
cycle C1 or C2 induces a complete graph. In particular, vivk, vkvj , vjvl, vlvi ∈ E(G).
Since |V (C)| > 6, at least one of these four edges is a chord of C.
If C has a chord uw with u ∈ A and w ∈ B, then we will finally show that C

induces a complete graph. Let, without loss of generality, u = v1 and w = vq with
an even integer 4 6 q 6 p− 2. The cycles

C3 = v1v2 . . . vq−1vqv1, C4 = v1vqvq+1 . . . vp−1vpv1

are even and such that |V (C3)|, |V (C4)| < |V (C)|. By the induction hypothesis,
the cycles C3 and C4 induce complete graphs. Now let x and y be two arbitrary
vertices in V (C). If x, y ∈ V (C3) or x, y ∈ V (C4), then they are adjacent. If not,
then v1xvqyv1 is a cycle of length four, and by the induction hypothesis, the vertices
x and y are adjacent. Consequently, C induces a complete subgraph, and the proof
is complete. �

Proposition 3.1 and Theorem 3.3 immediately lead to the following results.

Corollary 3.4. LetG be a graph with the property that every even cycle induces a
complete subgraph, and let I be an independent set. Then I is a perfect independent
set if and only if I is a super unique independent set.
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Corollary 3.5. Let G be a block-cactus graph such that every even block is a
complete subgraph, and let I be an independent set. Then I is a perfect independent
set if and only if I is a super unique independent set.

Theorem 3.6. Let G be a bipartite graph, and let I ⊆ V (G) be an independent
set. Then I is a unique maximum independent set if and only if I is a super unique
independent set.

���������
. Let I be a unique maximum independent set. Theorem 2.1 implies that

|NG(J) ∩ I | > |J | for all independent sets ∅ 6= J ⊆ V (G) − I . Let A and B be the
partite sets of G and let L 6= ∅ be an arbitrary subset of V (G) − I . It follows that
L∩A and L∩B are independent sets such that, without loss of generality, L∩A 6= ∅.
We deduce from Theorem 2.1 that

|NG(L ∩ A) ∩ I | > |L ∩A|, |NG(L ∩ B) ∩ I | > |L ∩ B|.

Therefore, we obtain

|NG(L) ∩ I | = |NG(L ∩ A) ∩ I |+ |NG(L ∩ B) ∩ I | > |L ∩ A|+ |L ∩ B| = |L|.

Thus, with respect to Corollary 2.2, I is a super unique independent set, and the
proof is complete. �

4. Perfect and unique independent sets

Proposition 4.1. Let G be a graph with a perfect independent set I . If I is not
a unique maximum independent set, then there exists an induced bipartite subgraph
of G which is not a forest.

���������
. Since I is not a unique maximum independent set, there exists, in

view of Theorem 2.1 with k = 1, an independent set ∅ 6= J ⊆ V (G) − I such that
|NG(J) ∩ I | 6 |J |. If we define the induced bipartite graph H = G[NG(J) ∩ I, J ],
then, since I is a perfect independent set, it follows that |E(H)| > 2|J |. This yields

|V (H)| = |NG(J) ∩ I |+ |J | 6 2|J | 6 |E(H)|.

Therefore, Theorem 2.4 implies that the induced bipartite subgraphH is not a forest.
�
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Observation 4.2. If G is a graph, then every even cycle of G contains a chord if
and only if every induced bipartite subgraph of G is a forest.
���������

. Assume that every even cycle contains a chord. Suppose that there
exists an induced bipartite subgraph H with a cycle. Let C be a shortest cycle in
H . Since C has a chord in G, this chord also belongs to H , a contradiction to the
minimum length of C.
Conversely, assume that every induced bipartite subgraph of G is a forest. Let C

be an even cycle in G. Suppose that C has no chord. Then C is an induced bipartite
subgraph of G but no forest. This contradiction completes the proof. �
Proposition 4.1 and Observation 4.1 immediately lead to the next result.

Corollary 4.3. Let G be a graph with the property that every even cycle contains
a chord, and let I be an independent set. Then I is a perfect independent set if and
only if I is a unique maximum independent set.

5. Strong (unique) maximum independence spanning forests

In view of Theorem 2.1, we establish easily the following facts.

Corollary 5.1. Let G be a bipartite graph.
The graph G is a strong maximum independence graph if and only if there exist

partite sets A and B such that |NG(S)| > |S| for all S ⊆ A.
The graph G is a strong unique independence graph if and only if there exist

partite sets A and B such that |NG(S)| > |S| for all ∅ 6= S ⊆ A.

Theorem 5.2 (König [7] 1931). If G is a bipartite graph, then

τ(G) = ν(G).

Theorem 5.3 (König-Hall, König [7] 1931, Hall [4] 1935). Let G be a bipartite
graph with partite sets A and B. Then G contains a matching M with the property
that every vertex in A is incident with an edge in M if and only if |NG(S)| > |S| for
all S ⊆ A.

Theorem 5.4 (Lovász [10] 1970). Let G be a bipartite graph with partite sets A

and B. Then G contains a spanning forest F such that dF (v) = 2 for all v ∈ A if
and only if |NG(S)| > |S| for all ∅ 6= S ⊆ A.

A proof of Theorem 5.4 can also be find in [11] on p. 20. Corollary 5.1 shows
that Theorem 5.3 and Theorem 5.4 characterize the strong maximum and the strong
unique independence graphs, respectively.
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Theorem 5.5. If G is a graph, then the following statements are equivalent.
(a) ν(G) = τ(G).
(b) There exists a super independent set in G.
(c) Every maximum independent set in G is a super independent set.
���������

. (a) ⇒ (c): Let I be a maximum independent set, and let M be a
maximum matching in G. This leads to

|V (G)− I | = τ(G) = ν(G) = |M |.

This implies that M is a matching in the bipartite graph G[I, V (G) − I ] with the
property that every vertex in V (G) − I is incident with an edge in M . It follows
that |NG(S) ∩ I | > |S| for all S ⊆ V (G) − I . Hence, by Corollary 2.2, I is a super
independent set in G.
(b)⇒ (a): Let I be a super independent set inG. As a consequence of Corollary 2.2

we obtain |NG(S) ∩ I | > |S| for all S ⊆ V (G) − I . Hence, by Theorem 5.3, there
exists a matching M in the bipartite graph G[I, V (G) − I ] with the property that
every vertex in V (G) − I is incident with an edge in M . It follows that τ(G) =
|V (G)− I | = |M | 6 ν(G). Because of ν(G) 6 τ(G), we deduce that ν(G) = τ(G).
Since (c) ⇒ (b) is immediate, the proof is complete. �

For reason of completeness, we will give a short proof of the next theorem by
Hopkins and Staton [5].

Theorem 5.6 (Hopkins, Staton [5] 1985). Let G be a connected bipartite graph.
The graph G is a strong unique independence graph if and only if G has a strong
unique independence spanning tree T . In addition, the unique maximum independent
sets of G and T coincide.
���������

. Assume that G is a strong unique independence graph. Let A and B be
the partite sets such that B is a unique maximum independent set of G. Combining
Corollary 5.1 and Theorem 5.4, we find that G contains a spanning forest F such
that dF (v) = 2 for all v ∈ A. We now extend F to a spanning tree T of G by adding
as many edges as necessary. This yields dT (v) > 2 for all v ∈ A. Hence, B is a perfect
independent set in T , and Corollary 3.2 implies that B is a unique independent set
in T .
Conversely, assume that G has a strong unique independence spanning tree T with

the partite sets A and B such that B is the unique maximum independent set of
T . It follows easily from Theorem 2.5 that A and B are also independent sets in G.
Obviously, B is also a unique maximum independent set in G. �

Using Theorem 5.3 instead of Theorem 5.4, one can prove the next result similar
to Theorem 5.6. Its proof is therefore omitted.
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Theorem 5.7 (Volkmann [13] 1988). Let G be a connected bipartite graph. The
graph G is a strong maximum independence graph if and only if G has a strong
maximum independence spanning tree T . In addition, the maximum independent
sets of G and T coincide.

Theorem 5.8. If G is a graph, then the following statements are valid.
(a) If G has a super unique independent set, then G has a strong unique indepen-
dence spanning forest T with α(T ) = α(G).

(b) If G is a bipartite graph with a unique maximum independent set, then G has
a strong unique independence spanning forest T with α(T ) = α(G).

(c) If ν(G) = τ(G), then G has a strong maximum independence spanning forest T

with α(T ) = α(G).
(d) If G is a bipartite graph, then G has a strong maximum independence spanning
forest T with α(T ) = α(G).

���������
. (a) Let I be a super unique independent set in G. This means that I is

a unique maximum independent set in the bipartite graph H = G[I, V (G)− I ], and
thus H is a strong unique independence graph. If H1, H2, . . . , Hp are the components
of H , then I ∩ V (Hi) are strong unique independent sets in Hi for i = 1, 2, . . . , p.
In view of Theorem 5.6, each component Hi has a strong maximum independence
spanning tree Ti with a unique maximum independent set I∩V (Hi) for i = 1, 2, . . . , p.

Obviously, T =
p⋃

i=1

Ti is a strong maximum independence spanning forest of G with

α(T ) = α(G) = |I |.
(b) Let I be a unique maximum independent set in the bipartite graph G. Ac-

cording to Theorem 3.6, I is a super unique independent set in G and (a) yields the
desired result.

(c) Let ν(G) = τ(G). In view of Theorem 5.5, G has a super independent set.
Using Theorem 5.7 instead of Theorem 5.6, the proof is analogous to the proof of
(a) and is therefore omitted.

(d) If G is bipartite, then Theorem 5.2 yields ν(G) = τ(G). Now (c) leads to the
desired result. �

Theorem 5.9. Let G be a block-cactus graph such that every even block is a
complete subgraph. If I ⊆ V (G) is a perfect independent set, then F = G[I, V (G)−I ]
is a strong unique independence spanning forest of G.

���������
. In view of Theorem 3.3, F is a spanning forest of G. According to

Corollary 3.5, I is a super unique independent set in G. Altogether, we see that
F is a strong unique independence spanning forest of G with the unique maximum
independent set I . �

281



Theorem 5.8 (b) and Theorem 5.9 are generalizations of the following result by
Hopkins and Staton [5].

Corollary 5.10 (Hopkins, Staton [5] 1985). A tree T has a unique maximum
independent set I if and only if T has a spanning forest F such that each component
of F is a strong unique independence tree and each edge in T − E(F ) joins two
vertices not in I .
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