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Abstract. A 2-stratified graph G is a graph whose vertex set has been partitioned into
two subsets, called the strata or color classes of G. Two 2-stratified graphs G and H are
isomorphic if there exists a color-preserving isomorphism ϕ from G to H. A 2-stratified
graph G is said to be homogeneously embedded in a 2-stratified graph H if for every vertex
x of G and every vertex y of H, where x and y are colored the same, there exists an
induced 2-stratified subgraph H ′ of H containing y and a color-preserving isomorphism ϕ
from G to H ′ such that ϕ(x) = y. A 2-stratified graph F of minimum order in which G
can be homogeneously embedded is called a frame of G and the order of F is called the
framing number fr(G) of G. It is shown that every 2-stratified graph can be homogeneously
embedded in some 2-stratified graph. For a graph G, a 2-stratified graph F of minimum
order in which every 2-stratification of G can be homogeneously embedded is called a fence
of G and the order of F is called the fencing number fe(G) of G. The fencing numbers of
some well-known classes of graphs are determined. It is shown that if G is a vertex-transitive
graph of order n that is not a complete graph then fe(G) = 2n.
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1. Introduction

A common problem in graph theory concerns embedding one graph in another
subject to certain conditions. For example, in 1936 König [8] showed that for every

graph G with maximum degree r, there exists an r-regular graph containing G as
an induced subgraph. In 1963 Erdös and Kelly [7] determined for each graph G and
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each integer r > ∆(G), the minimum order of an r-regular graph containing G as an

induced subgraph.

In 1992 a more restrictive embedding problem was introduced in [1]. A graph G

is said to be homogeneously embedded in a graph H if for each vertex x of G and
each vertex y of H , there exists an embedding of G in H as an induced subgraph

with x at y. Equivalently, a graph G is homogeneously embedded in a graph H if for
each vertex x of G and each vertex y of H there exists an induced subgraph H ′ of

H containing y and an isomorphism ϕ from G to H ′ such that ϕ(x) = y. A graph
F of minimum order in which G can be homogeneously embedded is called a frame

of (or for) G and the order of F is called the framing number fr(G) of G. In [1] it
was shown that every graph contains a frame and therefore a framing number.

For example, fr(P3) = 4 since P3 can be homogeneously embedded in C4 (but not

in any graph of order less than 4). Figure 1 shows homogeneous embeddings of P3

in C4 for two non-similar vertices of P3.

P3:

x y

P3: x

y

Figure 1. Homogeneously embedding P3 in C4

In 1995 the concept of stratified graphs was introduced, inspired by the observation
that in VLSI design, computer chips are designed so that its nodes are divided into

layers. A graph G whose vertex set has been partitioned is called a stratified graph.
If V (G) is partitioned into k subsets, then G is a k-stratified graph. The k subsets
are called the strata or color classes of G. If k = 2, then we customarily color the
vertices of one subset red and the vertices of the other subset blue. Two 2-stratified
graphs G and H are isomorphic if there exists a color-preserving isomorphism ϕ from

G to H . In this case, we write G ∼= H .

In [4] it was shown that there is a connection among embeddings, stratified graphs,
and the area of domination. A vertex v in a graph G dominates itself and all of its

neighbors. A set S of vertices in a graph G is a dominating set of G if every vertex of
G is dominated by some vertex in S. The minimum cardinality of a dominating set in

G is the domination number γ(G) of G. Although γ(G) is the standard domination
number of a graph G, there are many other domination parameters in graph theory,

whose definitions depend on how the term domination is being interpreted in each
case. For example, a vertex v in a graph G openly dominates (or totally dominates)

each of its neighbors, but a vertex does not openly dominate itself. A set S of vertices
in a graph G is an open dominating set if every vertex of G is openly dominated
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by some vertex of S. A graph G contains an open dominating set if and only if G

contains no isolated vertices. The minimum cardinality of an open dominating set
is the open domination number γo(G) of G.
A red-blue coloring of a graph G is an assignment of the colors red and blue to

the vertices of G, one color to each vertex. If there is at least one red vertex and at
least one blue vertex, then a 2-stratified graph results. Let F be a 2-stratified graph,
where some blue vertex v of F has been designated as the root. An F -coloring of
a graph G is a red-blue coloring of G such that every blue vertex v of G belongs to

a copy of F rooted at v. The F -domination number γF (G) of G is the minimum
number of red vertices in an F -coloring of G. For the 2-stratified rooted graphs F0,
F1, and F2 shown in Figure 2, it was shown in [4] that for every graph G of order at

least 3 containing no isolated vertices,

γF0(G) = γF1(G) = γ(G) and γF2(G) = γo(G).

Other domination parameters can be expressed as γF (G) for some 2-stratified rooted
graph F . Furthermore, for every 2-stratified graph F , there is a domination theory

corresponding to F .

F0:

v�
F1:

v�
F2:

v�
Figure 2. Three 2-stratified rooted graphs

This suggests the idea of homogeneously embedding one 2-stratified graph in an-
other. A 2-stratified graph G is said to be homogeneously embedded in a 2-stratified
graph H if for every vertex x of G and every vertex y of H , where x and y are colored
the same, there exists an induced 2-stratified subgraph H ′ of H containing y and

a color-preserving isomorphism ϕ from G to H ′ such that ϕ(x) = y. A 2-stratified
graph F of minimum order in which G can be homogeneously embedded is called a

frame of (or for) G and the order of F is called the framing number fr(G) of G.

2. Frames

First we show that every 2-stratified graph has a frame and therefore a framing
number.
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Theorem 1. Every 2-stratified graph can be homogeneously embedded in some
2-stratified graph.��� �!�#"

. Let G be a 2-stratified graph of order n, where V (G) = {v1, v2, . . . , vn}
such that v1, v2, . . . , vr are red and vr+1, vr+2, . . . , vr+b are blue, where r + b = n.

We may assume that r > b. We construct a 2-stratified graph H in which G can
be homogeneously embedded. We begin with 2r − 1 copies G1, G2, . . . G2r−1 of G

with V (Gj) = {v1,j , v2,j , . . . , vn,j} for 1 6 j 6 2r − 1, as shown below, where vi,j

(1 6 i 6 n) denotes the vertex vi of G in the graph Gj .

Gj

G2

G1G2r−1

G2r−2

Figure 3. The 2r − 1 copies of G

The vertex set of H is
2r−1⋃
j=1

V (Gj) and every edge in Gj (1 6 j 6 2r − 1) is an

edge of H . Additional edges are added to complete the construction of H . For each

vertex vi,j where 1 6 i 6 n and 1 6 j 6 2r − 1, the vertex vi,j is joined to vertices
of H not in Gj as follows:

(1) First, suppose that vi,j is a red vertex, that is, 1 6 i 6 r. For each integer k

with 1 6 k < i, the vertex vi,j is joined to the neighbors of vk,j+k in Gj+k .

For each integer k with i < k 6 r, the vertex vi,j is joined to the neighbors of
vk,j+k−1 in Gj+k−1. (The subscripts j + k and j + k − 1 are expressed modulo
2r − 1.)

(2) Next, suppose that vi,j is a blue vertex, that is, r + 1 6 i 6 n. For each integer

k with r + 1 6 k < i, the vertex vi,j is joined to the neighbors of vk,j+k−r in
Gj+k−r . For each integer k with i < k 6 n, the vertex vi,j is joined to the

neighbors of vk,j+k−r−1 in Gj+k−r−1. (Again, the subscripts j + k − r and
j + k − r − 1 are expressed modulo 2r − 1.)

We now show that G can be homogeneously embedded in H . It suffices to show
that for each vertex vk of G, where 1 6 k 6 n, and each vertex y of H such that vk

and y are colored the same, the graph G can be embedded as an induced subgraph of
H with vk at y. We may assume that y = vi,j , where 1 6 i 6 n and 1 6 j 6 2r − 1.
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Thus, if 1 6 i 6 r, define

U =





V (Gj+k) ∪ {vi,j} − {vk,j+k} if 1 6 k < i

V (Gj) if i = k

V (Gj+k−1) ∪ {vi,j} − {vk,j+k−1} if i < k 6 r;

while if r + 1 6 i 6 n, define

U =





V (Gj+k−r) ∪ {vi,j} − {vk,j+k−r} if r + 1 6 k < i

V (Gj) if i = k

V (Gj+k−r−1) ∪ {vi,j} − {vk,j+k−r−1} if i < k 6 n.

In each case, 〈U〉H ∼= G, as desired. �

Figure 4 illustrates the construction of the 2-stratified graph H described in The-
orem 2.1 for a given graph G. Since G has two red vertices and two blue vertices,

the 2-stratified graph H is constructed from three copies G1, G2, G3 of G.

G:

v4

v2v1

v3

H :

v43

v23v13

v33

v42

v22
v12

v32

v41

v21v11

v31

G3 G2

G1

Figure 4. Constructing a 2-stratified graph H in which G can be homogeneously embedded

The construction of the 2-stratified graph H in Theorem 2.1 gives the following

upper bound for fr(G) in terms of the number of red vertices and the number of blue
vertices in a 2-stratified graph G.
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Corollary 2.2. Let G be a 2-stratified graph with r red vertices and b blue vertex.

Then

fr(G) 6 max{2r − 1, 2b− 1}|V (G)|.

The upper bound in Corollary 2.2 can be improved. In order to show this, we

need some additional definitions. Let G be a 2-stratified graph with coloring c. Two
vertices u and v with c(u) = c(v) in G are similar if there exists a color-preserving
automorphism ϕ of G such that ϕ(u) = v. A 2-stratified graph G is color vertex-

transitive if every two vertices of G having the same color are similar. Similarity is
an equivalence relation on the vertex set of G and the resulting equivalence classes

are referred to as the orbits of G. Clearly, every orbit contains vertices of a single
color. Suppose that G is 2-stratified graph with kr red orbits and kb blue orbits,

where say kr > kb. By an argument similar to the one described in Theorem 2.1, we
can construct a 2-stratified graph H from the 2kr − 1 copies G in which G can be

homogeneously embedded. Therefore, we have the following.

Corollary 2.3. Let G be a 2-stratified graph with kr red orbits and kb blue orbits.

Then

fr(G) 6 max{2kr − 1, 2kb − 1}|V (G)|.

Corollary 2.4. If G is a graph with two orbits and G′ is the 2-stratification
of G in which the vertices of one orbit are colored red and the vertices of the other

orbit are colored blue, then G′ is a frame of itself.

By Theorem 2.1, for every 2-stratified graph G, there exists a 2-stratified graph
in which G can be homogeneously embedded. In fact, more can be said.

Corollary 2.5. For every 2-stratified graph G, there exists a positive integer N

such that for every integer n > N , there exists a 2-stratified graph H of order n in

which G can be homogeneously embedded, while for each positive integer n < N , no

such graph H of order n exists.��� �!�#"
. Suppose that fr(G) = N . Then there exists a 2-stratified graph F of

order N in which G can be homogeneously embedded. Let v be a red vertex of F .
Define F1 be the 2-stratified graph of order N + 1 by adding a new red vertex v1

to F and joining v1 to the neighbors of v. Then v and v1 are color-similar vertices
and G can be homogeneously embedded in F1. Proceeding inductively, we see that

for each integer n > N , there is 2-stratified graph H of order n in which G can
be homogeneously embedded. On the other hand, by the definition of fr(G), there
exists no 2-stratified graph H of order n < N in which G can be homogeneously
embedded. �
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Using the construction devised by König to produce a regular graph containing a

given graph as an induced subgraph, we are able to show the following.

Theorem 2.6. Every 2-stratified graph can be homogeneously embedded in some
2-stratified regular graph.��� �!�#"

. Let G be a 2-stratified graph. We show that G can be homogeneously
embedded in a 2-stratified regular graph R. By Theorem 2.1, the graph G can be

homogeneously embedded in some 2-stratified graph H . If H is regular, then let
H = R. Thus, we may assume that H is not an regular graph. Suppose that

H has order n and V (H) = {v1, v2, . . . , vn}. Let H ′ be another copy of H with
V (H ′) = {v′1, v′2, . . . , v′n}, where each vertex v′i in H ′ corresponds to vi in H for

1 6 i 6 n. Construct the graph H1 from H and H ′ by adding the edges viv
′
i for all

vertices vi (1 6 i 6 n) such that deg vi < ∆(H). Then H is an induced subgraph

of H1 and δ(H1) = δ(H) + 1. If H1 is regular, then we let R = H1. If not, then we
continue this procedure until we obtain a regular graph Hk, where k = ∆(H)−δ(H).
It is routine to verify that G can be homogeneously embedded in Hk. �

We now determine frames and the framing numbers of the 2-stratifications of some
familiar graphs, beginning with a simple example.

Proposition 2.7. Every 2-stratification G of a complete graph Kn is its own

frame and so fr(G) = n.

We now turn to complete bipartite graphs.

Proposition 2.8. Let G be a 2-stratification of Ks,t with partite sets V1 and V2,

where |V1| = s and |V2| = t. For i = 1, 2, let ri be the number of red vertices in Vi

and bi the number of blue vertices in Vi and let

r = max{r1, r2} and b = max{b1, b2}.

Then fr(G) = s + t if the vertices of each set Vi, i = 1, 2, are colored the same and
fr(G) = 2(r + b) otherwise.��� �!�#"

. If the vertices of V1 are colored the same and the vertices of V2 are

colored the same, then G is the frame of itself by Corollary 2.4 and so fr(G) = s + t.
Thus, we may assume that there are vertices in either V1 or V2 that are colored

differently. Furthermore, we may assume, without loss of generality, that either V1

or V2 has all its vertices colored the same and this color is red.

Let F be a frame of G. Since G can be homogeneously embedded in F , every
red vertex of F is (1) adjacent to at least r red vertices in F and not adjacent to at

41



least r− 1 red vertices in F and (2) adjacent to at least b blue vertices in F and not

adjacent to at least b blue vertices in F . Hence F contains at least 2r red vertices
and at least 2b blue vertices and so fr(G) > 2(r + b). On the other hand, let F ′ be
the 2-stratification of the complete bipartite graph Kr+b,r+b in which each partite

sets of F ′ contains r red vertices and b blue vertices. Since G can be homogeneously
embedded in F ′, it follows that fr(G) 6 2(r + b). Therefore, fr(G) = 2(r + b). �

This gives us the framing numbers of all stars.

Corollary 2.9. For each integer n > 2, the framing number of a 2-stratification
of K1,n−1 is either n or 2(n− 1).

We now determine frames and the framing numbers of all connected 2-stratified
graphs of order 4 or less. Since every connected graph of order 3 or less is either
complete or a star, we know the framing numbers of the 2-stratifications of all such
graphs. The following result will be useful in determining the framing numbers of
2-stratifications of connected graphs of order 4.

Theorem 2.10. If F is a frame of a stratified graph G, then F is a frame of G.��� �!�#"
. Suppose that the order of F is n. Thus for every vertex x of G and every

vertex y of F , where x and y are colored the same, there exists an induced stratified
subgraph H of F containing y and a color-preserving isomorphism ϕ from G to H

such that ϕ(x) = y. Therefore, there exists a set U ⊆ V (F ) for which H = 〈U〉F .
Then U ⊆ V (F ) and 〈U〉F = H. Thus for each vertex x of G and each vertex y of

F , H is an induced stratified subgraph of F containing y and ϕ is a color-preserving
isomorphism from G to H such that ϕ(x) = y. Therefore, G can be homogeneously

embedded in F , implying that fr(G) 6 fr(G). Then we have fr(G) = fr(G) 6 fr(G).
Therefore, fr(G) = fr(G) = n. Since the order of F is n = fr(G), it follows that F is

a frame of G. �

First, we consider the paths P4 of order 4.

Proposition 2.11. If G is a 2-stratification of P4, then fr(G) = 4 or fr(G) = 6��� �!�#"
. The graph P4 is self-complementary and has the five 2-stratifications

(up to color interchange) shown in Figure 5. Observe that G3
∼= G2 and G5

∼= G4. By
Corollary 2.4, the 2-stratification G1 is a frame of itself and so fr(G1) = 4. Moreover,
by Theorem 2.10, fr(G3) = fr(G2) and fr(G5) = fr(G4). Thus, it remains to consider
fr(G2) and fr(G4). Let H be a frame of G2. Then every red vertex of H is adjacent

to two independent blue vertices and is not adjacent to a blue vertex. This implies
that H contains at least three blue vertices. Similarly, H contains at least three red
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vertices. Therefore, the order of H is at least 6. Since G2 can be homogeneously

embedded in the 2-stratified graph H2 of order 6, it follows that H2 is a frame of G2

and fr(G2) = 6. By Theorem 2.10, H2 is a frame of G3 and fr(G3) = 6.

G1: $ G2: % G3
∼= G2: & G4: ' G5

∼= G4: (
H2: H2: H4: H4:

Figure 5. 2-stratifications of P4 and their frames

Next we consider G4. Let H be a frame of G4. Then every red vertex of H is

adjacent to two independent red vertices and is not adjacent to a red vertex. This
implies that H contains at least four red vertices. Furthermore, every red vertex of

H is adjacent to a blue vertex and not adjacent to a blue vertex, implying that H

has at least two blue vertices. Hence the order of H is at least 6. Since G4 can be

homogeneously embedded in the 2-stratified graph H4, it follows that H4 is a frame
of G4 and fr(G4) = 6. By Theorem 2.10, H4 is a frame of G5 and fr(G5) = 6. �

For the graphs K4 − e and K1 + (K2 ∪ K1) of order 4, we only state the framing
numbers and give a frame in Figures 6 and 7. For these next two results, Hi is a
frame of Gi in each case.

Proposition 2.12. If G is a 2-stratification of K4 − e, then fr(G) ∈ {4, 5, 6}.

G1 G2 G3 G4

H1 H2 H3 H4

Figure 6. 2-stratifications of K4 − e and their frames
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Proposition 2.13. If G is a 2-stratification of K1 + (K2 ∪ K1), then fr(G) = 5
or fr(G) = 6.

G1 G2 G3 G4 G5

H1 H2 H3 H4 H5

Figure 7. 2-stratifications of K1 + (K2 ∪K1) and their frames

Since we now know the framing number of every 2-stratification of every connected
graph of order 4 or less and since the complement of every disconnected graph is

connected, it follows by Theorem 2.10 that we know the framing number of every
2-stratification of every graph of order 4 or less.

3. Fences

For a graph G, a 2-stratified graph F of minimum order in which every 2-
stratification of G can be homogeneously embedded is called a fence of G and the
order of F is called the fencing number fe(G) of G. The following observation is

useful.

Observation 3.1. Let G1 and G2 be two 2-stratified connected graphs. If the
disconnected graph G1 ∪G2 can be homogeneously embedded in a 2-stratified graph
H , so can G1 and G2 individually. More generally, if a 2-stratified graph G can be

homogeneously embedded in a 2-stratified graph H , then every induced subgraph of

G can be homogeneously embedded in H .

It is a consequence of Theorem 2.1 and Observation 3.1 that every graph has a
fence and therefore a fencing number. For example, every 2-stratification of P3 can

be homogeneously embedded in the 2-stratification of Q3 shown in Figure 8. Thus,
fe(P3) 6 8.
To show that fe(P3) > 8, let F be a fence of P3. We show that F contains at least

4 blue vertices. Since G3 and G4 are homogeneously embedded in F , it follows that

every blue vertex in F must be adjacent to a blue vertex and not adjacent to a blue
vertex. Let u be a blue vertex of F . Suppose that u is adjacent to the blue vertex
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v and is not adjacent to the blue vertex w. If v and w are adjacent, then there is a

blue vertex x that is not adjacent to v; while if v and w are not adjacent, then there
exists a blue vertex x that is adjacent to w. In each case, x is distinct from u, v, and
w. Therefore, F contains at least four blue vertices. Similarly, F contains at least

four red vertices. Therefore, fe(P3) > 8 and so fe(P3) = 8. Hence the 2-stratification
of Q3 in Figure 8 is a fence of P3.

G1

)
G2

*
G3

+
G4

,
Figure 8. The four 2-stratifications of P3

First, we determine the fencing numbers of all complete graphs and complete
bipartite graphs.

Proposition 3.2. For each integer n > 2, the fencing number of Kn is 2n− 2.��� �!�#"
. First, we show that fe(Kn) 6 2n − 2. Let G0 be the 2-stratification

of K2n−2 that contains n − 1 red vertices and n − 1 blue vertices. Since every 2-
stratification of Kn can be homogeneously embedded in G0, it follows that fe(Kn) 6
2n− 2.
Next, we show that fe(Kn) > 2n − 2. Let F be a fence of Kn. We show that F

contains at least n−1 blue vertices. Let H be the 2-stratification of Kn with exactly
one red vertex. Since every blue vertex of H is adjacent to n−2 blue vertices in H , it

follows that F contains at least n−1 blue vertices. Similarly, F contains at least n−1
red vertices. Therefore, the order of F is at least 2n− 2 and so fe(Kn) > 2n− 2. �

Proposition 3.3. For each pair r, t of integers with 1 6 s 6 t, the fencing number

of Ks,t is 4t.��� �!�#"
. First, let G0 be the 2-stratification of the complete bipartite graph

K2t,2t for which each partite set of G0 has exactly t red vertices and t blue vertices.

Since every 2-stratification of Ks,t can be homogeneously embedded in G0, it follows
that fe(Ks,t) 6 4t.

Next, we show that fe(Ks,t) > 4t. Let F be a fence of Ks,t. We show that F

contains at least 2t blue vertices. Suppose that U and V are the partite sets of Ks,t

with |U | = s and |V | = t. Let H1 and H2 be the 2-stratifications of Ks,t containing

exactly one red vertex, where the red vertex of H1 is in V and the red vertex of H2

is in U . In H1, every blue vertex in U is adjacent to t − 1 blue vertices in V ; while
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in H2, every blue vertex in V is not adjacent to t − 1 blue vertices in V . Since H1

and H2 can be homogeneously embedded in F , every blue vertex in F is adjacent to
at least t − 1 blue vertices and not adjacent to at least t − 1 blue vertices. Thus, F
contains at least 2t− 1 blue vertices.
Suppose that F contains exactly 2t− 1 blue vertices. Since every blue vertex in F

is adjacent to at least t− 1 blue vertices, not adjacent to at least t− 1 blue vertices,
and F contains exactly 2t − 1 blue vertices, every blue vertex of F is adjacent to
exactly t − 1 blue vertices. Let B be the set of blue vertices of F and let 〈B〉 be
the subgraph of F induced by B. Then 〈B〉 is (t − 1)-regular. Let u be the red
vertex in H2. Then u ∈ U and u is adjacent to the t blue vertices in the independent

set V . Since H2 can be homogeneously embedded in F , every red vertex in F is
adjacent to at least t independent blue vertices. This implies that B contains an

independent subset B′ with |B′| = t. Since (1) 〈B〉 is (t − 1)-regular, (2) B′ is
independent, and (3) B − B′ contains exactly t − 1 vertices, each blue vertex in B ′

must be adjacent to every vertex in B − B′. However then, each vertex in B − B′

has degree t, contradicting the fact that 〈B〉 is (t−1)-regular. Therefore, as claimed,
F contains at least 2t blue vertices. Similarly, F contains at least 2t red vertices.
Therefore, fe(Ks,t) > 4t. �

In the case when s = t, then the fencing number of the regular graph Ks,t = Ks,s

is exactly twice of the order of Ks,t. We now show that the fencing number of every
regular graph G that is not complete is at least twice of the order of G.

Proposition 3.4. If G is a regular graph of order n that is not a complete graph,
then

fe(G) > 2n.��� �!�#"
. Suppose that F is a fence of an r-regular graph G of order n such that

G is not complete. We show that F contains at least n blue vertices. Let v ∈ V (G).
Let H1 be the 2-stratification of G in which every vertex in N [v] is blue and the
remaining n− (r + 1) > 1 vertices are red, and let H2 be the 2-stratification of G in
which every vertex in N(v) is red and the remaining vertices are blue. Thus, in H1

the blue vertex v is adjacent to r blue vertices; while in H2, the blue vertex v is not

adjacent to n− (r +1) blue vertices. Since H1 and H2 are homogeneously embedded
in F , it follows that each blue vertex in F is adjacent to at least r blue vertices and

not adjacent to at least n− (r + 1) blue vertices. This implies that F has at least n

blue vertices. Similarly, F has at least n red vertices. Therefore, the order of F is

at least 2n. �

For a graph G with V (G) = {v1, v2, . . . , vn}, the reflection graph Ref(G) of G is
constructed from G by taking another copy G′ of G with V (G′) = {v′1, v′2, . . . , v′n},

46



where v′i corresponds to vi for 1 6 i 6 n, and (1) joining each vertex vi in G to the

neighbors of v′i in G′ and (2) assigning the color red to every vertex in G and the
color blue to every vertex in G′.

Theorem 3.5. If G is a vertex-transitive graph of order n that is not a complete

graph, then

fe(G) = 2n.��� �!�#"
. Since every vertex-transitive graph is regular, it follows by Proposi-

tion 3.4 that fe(G) > 2n. Let V (G) = {v1, v2, . . . , vn}. We show that every 2-
stratification of G can be homogeneously embedded in Ref(G), which has order 2n.

Let H be a 2-stratification of G and v ∈ V (H). Assume, without loss of generality,
that v is blue. Let y be a blue vertex in Ref(G). Then v = vi for some i (1 6 i 6 n)

and y = v′j for some j (1 6 j 6 n). Since G is vertex-transitive, there exists an
automorphism α of G such that α(vi) = vj . Let F be the 2-stratified subgraph of
Ref(G) with V (F ) = {v∗1 , v∗2 , . . . , v∗n}, where

v∗i =

{
α(vi) if vi is red

α(vi)′ if vi is blue.

Then 〈V (F )〉Ref(G)
∼= G. �

Corollary 3.6. For each integer n > 4, the fencing number of Cn is 2n.

The following observation is useful.

Observation 3.7. If H is an induced subgraph of a graph G, then

fe(H) 6 fe(G).

Proposition 3.8. For each integer n > 4, the fencing number of Pn is 2(n + 1).��� �!�#"
. By Observation 3.7 and Corollary 3.6, fe(Pn) 6 fe(Cn+1) = 2(n + 1).

To show that fe(Pn) > 2(n + 1), let F be a fence of Pn. We show that F contains

at least n + 1 blue vertices. Let Pn : v1, v2, . . . , vn, let H1 be the 2-stratification in
which v1 is the only red vertex, and let H2 be the 2-stratification in which v2 is the

only red vertex. In H1, the blue vertex v3 is adjacent to blue vertices v2 and v4, while
in H2, the blue vertex v1 is not adjacent to n − 2 blue vertices v3, v4, . . . , vn. Since

H1 and H2 are homogeneously embedded in F , each blue vertex in F is adjacent
to at least two blue vertices and not adjacent to at least n − 2 blue vertices. This
implies that F has at least n + 1 blue vertices. Similarly, F has at least n + 1 red
vertices. Therefore, the order of F is at least 2(n + 1). �
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