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Summary. Systems of parabolic differential equations are studied in the paper. Two 
a posteriori error estimates for the approximate solution obtained by the finite element 
method of lines are presented. A statement on the rate of convergence of the approximation 
of error by estimator to the error is proved. 
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1. INTRODUCTION 

Recently, a posteriori error estimates are widely used to adjust the grid and to 
reach the optimal number and optimal distribution of grid points in the finite element 
as well as finite difference methods. 

This approach is very suitable e.g. for solving parabolic partial differential equa
tions by the method of lines. The analysis of the approximate solution at the actual 
time level based on the calculation of an a posteriori error estimate yields a new grid 
to be used for the time step leading to the next time level. 

A posteriori error estimates have been treated by many authors in various ways 
(see, e.g., [3], [4]). In the present paper, the quality of error estimates, proposed by 
Adjerid et al. [1], [2] for a parabolic equation, is studied in the case of a general linear 

1 This research was supported by the Grant Agency of the Academy of Sciences of the 
Czech Republic under Grant No. 11919. 
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system of parabolic differential equations with one-dimensional space variable. Note 
that [2] has parabolic systems in its title but the statements of [2] are concerned 
only with a scalar equation and can be, of course, readily generalized to parabolic 
systems with an elliptic operator expressed by a diagonal matrix. Parabolic systems 
with an elliptic operator expressed by a general symmetric positive definite matrix 
are studied in the present paper. 

We formulate a model problem for a parabolic system in Section 2 and its dis
cretization by the finite element method and the method of lines in Section 3. A 
parabolic and elliptic error estimate is introduced, and some approximation and a 
priori estimation results are reviewed in Section 3, too. In Section 4, some auxiliary 
results are proved. The statements on the convergence rate of the approximation 
of error by the parabolic and elliptic estimate are presented in Section 5 and 6, 
respectively. 

2. MODEL PROBLEM 

The principal ideas as well as algorithmic procedures connected with the use of an 
adaptive grid for solving linear parabolic partial differential systems can be demon
strated with the help of a simple initial-boundary value model problem. We solve 
the system of equations 

(2.1) ^(X)t) = ̂ A(x)^(x,t))-B(x)u(x,t) + f(x,t), 0<x<l , 0 < ^ T , 

with a fixed T > 0 for an unknown vector function u = (u i , . . . ,u^ t)T , where A = 
(Aik) is a given smooth real N x N symmetric positive definite matrix, B -= (Bik) 
is a given smooth real N x N symmetric positive semidefinite matrix, and / = 
(/i , • • •, /rv)T is a given 1V-component vector. 

We further impose the homogeneous Dirichlet boundary condition 

(2.2) u(0, t) = u(l , *) = 0, O^t^T, 

and the initial condition 

(2.3) u(x, 0) = u°(x), 0 < x < 1, 

where u° = (u° , . . . ,u°N)T is a given smooth N-component vector. We assume that 
the boundary and initial conditions are consistent. 

We present the variational formulation of the model problem which is the starting 
point for the finite element discretization. First we introduce some notation. 
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Denote by 

(2.4) (v,w)0= vT(x)w(x)dx 
Jo 

the L2 inner product of two vector functions v = (v\,... ,vs)T and w = (w\,..., 
WN)T- Let s be a nonnegative integer. Then Hs = H8(0,1) is the Sobolev space of 
vector valued functions defined on the interval (0,1) with the inner product given by 

(M) ,.,.,.-£(£,g)o 
<drv dri 

r=0 

for v G Hs and w G Hs and with the norm 

(2.6) |HI2 = («>,«;).. 

The case of s = 1 is important for the variational formulation. We, moreover, 
introduce the subspace Ho = -^o(0,1) of vector functions w G Hx(0,1) satisfying 
the homogeneous Dirichlet boundary conditions, i.e. 

w(0) = 0, w(\) = 0. 

Finally we use the energy inner product 

(2.7) a(v, w) = / ("^---4-^- + vTBw) dx 

for v G H1, w G H1 and the energy norm 

(2.8) \\wfA = a(w,w). 

Notice that under our assumptions on A and B there are positive constants C\, 
C2 such that, in virtue of the Priedrichs inequality, 

(2.9) CilHU^IHU^CalNIi 

for any function w E HQ. Further, the second inequality in (2.9), i.e. 

(2.io) IHU<c2|Hli» 

holds for any function w G H1. 
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The constants C, Ci, C2> etc. are generic in the paper, i.e., they may represent 
different constant quantities in different occurrences. 

We say that a vector function t/(x, t) is the variational solution of the problem 
(2.1), (2.2), (2.3) if it maps, as a function of the variable £, the interval [0,T] into 
Ho, if the identity 

r\ 

(2.11) (v,-£)Q = -a(v,u) + {vJ)0 

holds for each t G (0,T] and all functions v € Ho, and if the identity 

(2.12) a(v,u) =a(u,u°) 

holds for t = 0 and all functions v € Ho. 
In this variational formulation as well as in the whole paper, the variable t appears 

as a parameter. Without explicitly stating, we assume that all the statements and, 
in particular, constants may depend on t. 

3. DISCRETIZATION 

Finite element solutions of the model problem (2.1), (2.2), (2.3) or, in the varia
tional formulation, (2.11), (2.12) are now constructed in finite dimensional subspaces 
of Ho. We first introduce a partition 

0 = XQ < X\ < ... < XM-I < XM = 1 

of the interval [0,1] into M subintervals (XJ-I, Xj), j = 1 , . . . , M. We choose a fixed 
positive integer p, put 

S M , P = {W= (^(x) , . . . ,^^)) 1 , \W£H\ Wk(x) € PP(x) 

for x£ [xj_i,Xj], j = 1, . . . ,M, fc = l , . . . , ] V } , 

where Pp(x) is the class of polynomials of degree p in x, and take 

50
M'P = {w | w e 5M 'P n Ho1} 

for the approximating finite dimensional subspace to H^. We further put 

hj = Xj - Xj-i, j = 1 , . . . , Af, 

418 



and 
1i= max ҺA. 

j=l,...,ЛÍ J 

We then say that a vector function U(x, t) = (U\,..., U/v)T is the finite element 

approximate solution of the model problem (2.11), (2.12) if it maps, as a function of 

the variable t, the interval [0,T] into 5<J*,P, if the identity 

(3.1) (y^)o=~a{v'u)+{VJ)o 

holds for each t € (0,T] and all functions V = (Vx,..., VN)T e 5 ^ , p , and if the 
identity 

(3.2) a(V,U) = a(V,u°) 

holds for t = 0 and all functions V £ 5<^,p. 

R e m a r k 3.1. Choosing a basis {^(r)}rl=1, £(r) = ( ^ r ) , . . . , ^ } ) T , for the finite 
dimensional space 5(f

f,p, putting 

R 

U(x,t) = Y,Cr(t)Q{r)(x) 
r=\ 

with scalar coefficients cr(t) depending on t, and introducing the test functions 

V(x) = g^(x), r = l,...,R, 

for (3.1), (3.2), we finally obtain an initial value problem for a system of ordinary 
differential equations with unknown functions cr(t). This procedure for constructing 
the approximate solution U(x,t) is called the method of lines. In what follows we 
assume that this ordinary differential system is integrated exactly. In practice, the 
system is solved by proper numerical software (e.g. LSODI [6] or DDASSL [8]) that 
works with a prescribed tolerance for the error of integration in t. 

To obtain an a posteriori error estimate, we denote the discretization error of the 
finite element solution U by 

(3.3) e(x, t) = u(x, t) - U(x, t), 

e = ( e i , . . . , ew)T- Then we can substitute 

u(x, t) = e(x, t) + U(x, t) 
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into (2.11), (2.12) to arrive at the identity 

^ (»• | ) 0 = -(».e> + (». /)o - «<«. tf) - («, f )o 

that holds for each £ G (0, T] and all functions v G Ho ^ d t^e identity 

(3.5) a(v,e) = a(v ,u°-U ) 

holding for t = 0 and all functions v € HQ. 
We construct a finite element approximation E(x, t) = (E\,..., EN)T of the dis

cretization error in the finite dimensional subspace 5U
W'P+1 defined as follows. A 

function W belongs to 5<f,p+1 if 

W(aO = £W(-r), 
3=1 

where the vector functions 3W belong to SQJ1 and 

SJ+1 = {Z = (Zx(o:), . . . ,ZN(x))T | Z 6 Ho1, Zfc(s) G Pp +i(x) 

for x G [tfj-i, Xj], Zfc = 0 elsewhere, A; = 1 , . . . , TV}, j = 1,..., M. 

Analogically to the formulae (2.4) to (2.8), we introduce local function spaces 
Hj = HS(XJ-1,XJ) and HQJ = HQ(XJ-1,XJ) on the individual intervals (xj-llXj)i 

and also the corresponding inner products and norms. We put 

rXj 

(v,w)oj = / vTwdx, 
Jxj-i 

iv>w^ = T,(te'W)os 
r= l 

, . fXi fdv7
 A8w T „ \ . 

a > , w) = ^ \^A— + v^Bw) dx, 

\H\A,J =Oj(w,w) 

for functions of the respective spaces. Moreover, there are positive constants C\, Ci 
such that, due to the Priedrichs inequality, 

(3.6) oilHli,i^lklki<o2|Hli,i 
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for any function w G H0j. Further, the second inequality in (3.6), i.e. 

(3.7) IHUi^CalHIi j , 

holds for any function w G Hj. The approximation E e S0 'p~l~1 now satisfies a series 
of M uncoupled local parabolic problems: Find E G S0 'p + such that 

(3-8) (y> i s r X j = ~aj{v'E) + { v > / ) o , j " a j { v ' u ) " (v ' ^ )o , i ' ° < ^ T? 

(3.9) ^ ( F , ^ ) = a5(V,u° - U), * = 0, 

hold for all functions V G S ^ 1 and j = 1,..., M. Each problem (3.8), (3.9) for the 
a posteriori error estimate E on (XJ-I,XJ) is again solved by the method of lines. 
In what follows we assume that the corresponding ordinary differential system is 
integrated exactly. In practice it is solved by proper numerical software which yields 
the solution with sufficient accuracy. 

To save some computation we can neglect the time change of the approximate 
error and solve, instead of (3.8), (3.9), local elliptic problems: Find E G S^'^1 such 
that 

(3.10) 0 = -aj(VyE) + (VJ)0tj - aj(V,U) - (V, ^ ) Q / 0 < i < T, 

(3.11) aj(V,E) = aj(Vyu° - U), t = 0, 

hold for all functions V G S0j
X and j = 1 , . . . , M. 

In Sections 5 and 6 we will show that both the parabolic error estimate E given by 

(3.8) and (3.9), and the elliptic error estimate E given by (3.10) and (3.11) converge 
to the exact error e in the H1 norm as h -» 0. To this end we will use some known 
approximation and a priori error estimation results for finite element solutions. 

Lemma 3.1. Let W G 5M»P interpolate w G Hp+1 at Xj-i,Xj, and further p— 1 
distinct points on each (xj-i,Xj), j = 1 , . . . ,M (i.e., let each component of W 
interpolate the corresponding component ofw). Then there exists a positive constant 
C such that 

(3.12) ||u; - W\\s ^ C f c ^ - H u / I U i , s = 0 , 1 , . . . ,p. 

P r o o f . The scalar version of the statement is proved, e.g., in Oden and Carey 
[7]. The statement (3.12) is its simple consequence. D 
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Lemma 3.2. Let u and U be solutions of (2.11), (2.12) and (3.1), (3.2), respec

tively. Let U e S0

 lP be the energy projection ofu onto 50

V f 'p, i.e., let 

(3.13) а(V,Û) = а(V,u) 

hold for allV £ 50
w , p and 0 <. t < T. If u° € tf0

x n tfp+1 and ifdu(x, t)/dt € tfp+1 

as a function of x for 0 <. t <. T then there exists a positive constant C such that 

(3.14) | | U - U | | 2 ^ C / i 2 p + 2 j f | ^ ( . ) T ) 
P+l 

dт, 0 ^ * ^ T. 

P r o o f . The proof can be found, e.g., in Wait and Mitchell [11] and easily 

modified for the nonscalar case. • 

Lemma 3.3. Let u and U be solutions of (2.11), (2.12) and (3.1), (3.2), respec

tively. Ifu° G Ho n H p + 1 and ifu is smooth enough for all terms in (3.15), (3.16) to 

be bounded then there exist positive constants S and C such that 

(3.15) 
дre 

< Chp+1 

f 
Jt-6 

(IІU°IU1 +X; 
^ /=0 

-llд|u 
дtl (.,-)i 

P+l 

ґ 

(3.16) 

i l l<-4 d 0 ' {<t(T-
Џi-Mí*cҚt^,+±JSjŞfr.,т) 

(i:mU>r 
p+i 

л(l|u°||o + j ľ l l/llodт)), í < ť < T , 

where r is a nonnegative integer. 

P r o o f . The proof is a straightforward modification of the proofs of Theorems 
3 and 5 of Thomee [10]. • 
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4. ERROR ANALYSIS 

Let us start the error analysis with the following definition of a scalar interpolation 
operator possessing particular properties. We keep the assumption that p is an 
arbitrary but fixed positive integer throughout the paper. 

Definition 4.1. Consider the interval [—1,1]. Denote by 77 an interpolation op
erator that maps a scalar function onto Pp(f), f € [—1,1]. Let the p+1 interpolation 
nodes of 77 be determined as follows: 

Put p = 21 — 1 if p is odd or p = 2/ if p is even. The 21 interpolation nodes {-tfi}'=i 
are placed symmetrically with respect to the origin. If p = 2/ is even then they are 
augmented with the node £n = 0. In both the cases we put 6 = 1. We introduce a 
scalar function 

(4.i) $(o = e+1-n?+i, £€[-1,1], 

and determine the remaining 21 — 2 interpolation nodes {±ft}i=l so that 

(4.2) J !P'(0£'d£=O, 5 = 0 , l , . . . ,p- l , 

where the prime denotes the total differentiation since & depends on only one scalar 
variable. 

The dependence of 77 and # on p is not explicitly expressed, the value of p being 
assumed fixed. The existence of the operator 77 and an explicit formula for the 
function & together with some its properties are presented in the following lemma. 

Lemma 4.1. There exists the interpolation operator II of Definition 4.1. More-
over, for the scalar function & given by (4.1) we have 

(4'3) * « ) = 7 5 ( 5 T l ) ( P ' + , « ) - P ' - « ) ) ' 
where P r is the Legendre polynomial of degree r. Further 

(4-4) *'(£) = y ^ p P p ( í ) 

and 

(4-5) S/^ = (2P-mP+,y 
(4.6) y%'2(0d£=l. 
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P r o o f . The existence of II is proved in [2]. Briefly, if p = 2/ — 1 is odd, \P can 
be shown to be an even function, &' is odd, and the conditions (4.2) for s = 0 and s 

even are satisfied identically. The remaining I — 1 conditions with s odd determine 
the I - 1 interpolation nodes &, i = l , . . . , Z - l . Similarly, if p = 2/ is even, 1? is an 
odd function, &' is even and the conditions (4.2) for s odd are satisfied identically. 
For 5 = 0, (4.2) is fulfilled, too, with regard to (4.1) and the symmetry of the 
interpolation nodes. The remaining I — 1 conditions with s even determine the / — 1 
interpolation nodes &, i = 1 , . . . , / — 1. 

Comparing the conditions (4.1) and (4.2) with the properties of Legendre polyno
mials PP(0> w e find out (4.4). Integrating (4.4), observing that # ( - 1 ) = &(1) = 0 
(by placement of the nodes), and using the well-known recurrence formulae for Le
gendre polynomials, we finally obtain (4.3). A straightforward calculation yields 
(4.5), (4.6). D 

R e m a r k 4.L The functions \P defined by (4.1) and expressed by (4.3) form a 
hierarchical finite element basis for the increasing sequence of p, see [9]. 

Definition 4.2. Consider the interval [XJ-I,XJ], j = 1 , . . . ,M. Denote by IIj 

an interpolation operator that maps a scalar function onto Pp(x), x £ [XJ-\,XJ]. Let 
its p+1 interpolation nodes be obtained from the interpolation nodes of the operator 
II by a linear transformation of [—1,1] onto [XJ-\,XJ]. 

We further introduce a scalar function 

(4.7) 9j{x) = z p + 1 - njx^1, x e [xj-uXj], 

= 0 elsewhere. 

Let w = (WI,...,WN)T € Hj be a vector function. We introduce an interpo
lation operator TTJ which maps each component of a vector function onto Pp(x), 

x £ [XJ+I,XJ], with the help of the operator IIj, i.e. 

7TjW= (II5Wi,...,IIjWN)T. 

Finally we introduce an interpolation operator n which maps a vector function 
w £ Hl onto an interpolate nw that agrees with TTJW for x € [XJ-I, Xj], j = 1 , . . . , M. 

R e m a r k 4.2. The interpolation nodes are thus the same for interpolating the 
individual components of w. 

We will be interested in the norm of scalar functions, too. For ease, we denote by 

I^l*,i t n e Hs n o r m of a scalar function <£ on (XJ-I,Xj), j = 1 , . . . , M. 
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Lemma 4.2. Let <Pj, j = 1 , . . . , M, be the functions defined by (4.7). Then 

(4.S) nO, - £ i?W* - (irV.)(2r + 3V 

(4.9) |s>;i5j=£' !p';( I)d I = ( | ) i ,2p+ l 

Proo f . Due to (4.1), & is a polynomial of degree p+1 and its p + 1 zeros are the 
interpolation nodes & of II on the interval [—1,1] (see Definition 4.1). Renumbering 
the nodes properly, we can write 

P+i 

(4.10) * ( 0 = ]!(«-&•>• 
r = l 

The linear transformation 

(4.11) x = -(/ijf + Xj-i + Xj) 

maps [—1,1] onto [XJ~I,XJ]. This transformation maps the interpolation nodes £r of 
II into the interpolation nodes 

(4.12) flr = l{hjtr + xj-1+xj) 

of IIj. The corresponding substitution in & yields 

2 \p+1 

žij) *'(as) 

with regard to (4.10), (4.12). 
Similarly, 

P+I P+I 

^(O=EII«-*-> 
g = l r = l 

r * g 

and the substitution (4.11) gives 

2 V.r.n *'(« = ( ^ ) Vj(x). 

Performing now the substitution (4.11) with dx = §/*jdf in (4.8) and (4.9) and 
employing (4.5), (4.6) of Lemma 4.1, we arrive at the statement of the lemma by 
straightforward calculation. • 
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The difference between u and its interpolate TTJU on [XJ~I,XJ] can be expressed 

with the help of the scalar function &j. 

Lemma 4.3. Let u E HJ+2, j = 1,. . . , M. Then 

(4.13) u-7rju = vj+<yj, 

where <pj = (<pxj,..., (pNj)
T, 7,- = (7ij, • • •, 7.VJ) T , and 

(4-14) <Pkj(x,t) = fajW^x), fc = l , . . . ,N , 

(4.15) /Ji = (/Jii,...,/JNi)T. 

Rirther, there exists a positive constant C such that, forO^t^T, 

(4.16) 
дtr 

* . j 
< chү1-* 

дru 
дlr 

P+1.І 
where s = 0,1 

and r is an arbitrary integer for which the expressions exist, 

l_Vti (4.17) 

(4.18) 

(4.19) 

ðx* o,j 
.<cfcJW P+I,j> 

IbilUj ^ ch?+*-a\\u\\p+2!J, s = o, i , . . . ,P +1 , 

|___. 
I ðx S.J 

ŚCҺ^-MUЧ, » = o,i. 

P r o o f . Let V = (Vi, . . . ,V N ) T , Vk(x) E Pp+i(x), x G [.TJ-I,XJ] and fc = 

l,...,iV, be such that 7TjV = TTJU and, moreover, interpolate _ at one additional 

node on (XJ-1,XJ). Putting 

(4.20) 

(4.21) Ц=u- V, 

we obtain (4.13). We further have Vk(x) = fax**1 + Wk(x) where Wk = n5Wk G 

Pp(x), x € [XJ-1,XJ], k = l,...,N. Substituting into (4.20) and taking (4.7) into 

account, we arrive at (4.14). 

In the same way as in the proof of Lemma 3.3 of [2], we find from (4.21) and from 

Lemma 3.1 that 

Il7ilk; = \\u - V\\sJ ^ CfcJ+2-||ti||p+2ii> s = 0 , 1 , . . . ,p + 1, 

which is (4.18). Moreover, from (4.18) and (4.21) we deduce 

(4.22) ||V||p+ lfi = | |V-ti | |p+ l f i + |Hlp+ij ^ C'fcilltiHp+aj + lluHp+x.i < C||u||p+i,i. 

The bound (4.22), (4.20), and Lemma 3.1 then yield the statements (4.16) for r = 0, 

(4.17), and (4.19). Since, due to (4.14), t in (pj(x, t) can be considered as a parameter 

we easily prove (4.16) for r > 0, too. • 
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The next lemma is concerned with a bound for the bilinear form a(v, w) defined 

in (2.7). 

Lemma 4.4. Let nv G S M , P be an interpolate ofve i? p+ 2(0,1) that agrees with 

TTJV for x G [XJ-I , Xj], j = 1,..., M. Then 

Hw^-Trv^^ch^WvW^Www, 

holds for all W G S M ' P . 

P r o o f . The statement of the lemma follows immediately from the Schwarz 

inequality, the inequality (2.10), and Lemma 3.1. • 

Lemma 4.5. Let u G H^ D Hp+2 and U G S M ' P and U G S M ' P be solutions of 

(2.11), (2.12) and (3.1), (3.2) and (3.13), respectively Further let nu G S M ' P be an 

interpolate of u that agrees with 7TjU for x G [XJ-\,XJ], j = 1,...,M, and let the 

assumptions of Lemma 3.3 be fulfilled. Then 

(4.23) 

(4.24) 

| | # - тmlli < oЛ^ЧMI.н.2, 

e(x, t) = џ>(x, t) + ш(x, t), 

where <p = (<Di,... ,ipN)T, u; = (wi,... , ^ N ) T and uLj = (u;^-,... ,uNj)
T with 

(4.25) ^jOM) = 7jOM) + 7Tjn(rc,t) - U(x,t), j = 1,.. .,M, 

and 

(4.26) 

(4.27) 

(4.28) 

Ә<p 

ða; 
ðu; 

дx 
дru 
дtr 

< C/ip||u||P+i, 

^C(u)hp+1, 

1 < 
Is 

\дtr\ 
+ 1 

s 1 дr 

for all nonnegative integers r and s for which the expressions in (4.28) exist. 

Further, let 6 > 0 be the constant from Lemma 3.3. Then 

(4.29) ----- < C(u)hp+1~s foró<t^T, s = 0,l, 
OtT lis 

and any nonnegative integer r for which the terms in (3.15), (3.16) exist, and 

(4.30) IMh < C(u)hp+1 for6<t^T. 
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P r o o f . Subtracting a(Vynu) from (3.13), using Lemma 4.4, replacing V by 

U — TTU in the result, and applying (2.9) establishes (4.23). 

Keeping the notation (3.3), (4.13) and putting 

e = U — 7TjU -h TTjU — U = <Pj + U)j, X E [Xj~i,Xj], 

we arrive at (4.25). If we define (p(x,t) and u)(x, t) as functions on [0,1] whose 

restrictions to [XJ-I,XJ] are (pj(xyt) and u)j(x,t), respectively, we obtain (4.24). 

Using Lemma 4.3, putting 

and employing again Lemma 4.3, Lemma 3.3, and the bound (4.23), we obtain the 

statements (4.26), (4.27) in the same way as in the proof of Lemma 3.5 of [2], 

Expressing 

u(x, t) = e(x, t) — <p(x, t) 

from (4.24), we obtain (4.28) for all values of r and s for which the expressions exist. 

We now use the estimates (3A5), (3.16) of Lemma 3.3 for e and (4.16) of Lemma 4.3 

for <p to show (4.29) for 6 < t^ T, r ^ 0, and 5 = 0,1. 

Further, (4.27) and (4.29) with r = s = 0 imply 

IMIЇ = §í|[+IMIS< адл2»+2 

for S < t^ T, which is (4.30). • 

5. PARABOLIC E R R O R ESTIMATION 

To calculate an approximation to error, we use the vector functions 

(5.1) a f ) = (0,.. ., !P j , . . . ,0) T 

whose fcth component is nonzero, fc = 1,...,JV, and that belong to S j j 1 , j = 

1,...,M. We put 

M N M 

(5.2) E(x,t) - - J J i y ^ W = £ (blj(t)Vj(x),...,bNj(t)Vj(x)f 
j=l k=l j=l 

and show that this function E(x, t) can be taken for an a posteriori approximation 
of the error e(x,t). 
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Substituting af^ for V into (3.8), (3.9), we obtain the equations 

(5.3) (af,^)o^aj(af,E) = Rj(af,t), 0 < t <_ T, 

(5.4) aj(af,E) = aj(af,u° -U), t = 0, I = 1,...,N, j = 1,...,M, 

where we denoted by 

(5.5) Rj(af,i) = (af,f)0>j-aj(af,U) - ( < f , f )Q . 

the residual of the equation (3.1) on (XJ-I,XJ) after substituting <rj ' for V. Substi
tuting now (5.2) into (5.3), (5.4), we finally obtain M uncoupled local initial value 
problems for systems of IV ordinary differential equations 

f>;y(.)(<7<0,<f > )0)j + f X - W a ^ ' V f ) = Rj(af,t), 
k=i fe=i 

0<*< .T , 1 = 1,...,N, j = l , . . . ,M, 

for the unknown coefficients bkj(t) of (5.2). By (4.8) and (5.1) we have 

M° ,^* ) )o j = 0 foil^k, 

(5.6) (af], af] )0tj = 2$. ,6 0 independently of k, 

where we used the notation 

(5.7) --".j = l*rf.,i, * = 0,1. 

We then arrive at 

Iv 

b'tj(t)S^ + *£bkj(t)aj(af,af) = R5(af,t), 0<t^T,l = 1,...,N, 
& = 1 

with the initial conditions 

Iv 
Y^Ma^^^a^^u^U), Z = l,...,/V, 
k=x 

wherey = 1,.. . ,M. 
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Introducing the vectors 

(5.8) bi = (blj,...,bNj)
r, 

(5.9) rj = (E£Ri(of\t),...,ZQ-?Ri(of\t))1 

and matrices 

(5-10) Si = W«i(«} l ).^ ,))ILi 

for j = 1, . . . , M, we arrive at the systems 

(5.11) b'5(t) + Sjbj(t) = r5(t), 0<t^T, 

with the initial conditions 

(5.12) bj(0) = Tf1
Vj, t = 0, j = l,...,M, 

where 

(5-13) Ti = ZI& = (aj(of ,of >))£=1, 

vi = (aj(of\u°-U),...,ai(olN\u0-U))'T. 

Using now (4A4), (4.24) and (5.1), we have 

N 

(5.14) e(x,t) = y^2pkj(t)af)(x)+ujj(x,t), x e [XJ-I,XJ]. 

Substituting (5.14) for e and (5.1) for v into (3.4), (3.5) and using the notation (5.5), 
(5.6), and (5.8), we find for j = 1,. . . , M that 

fljW.sg,.+x>i(')ai(*50,<f')=RMI]^ - £>j°,'), 
k=l 

0<t^T, 1 = 1,...,N, 

where 

(5.15) Gj(of,t)=(of,d-£)oj+aj(of,«j), 

with the initial conditions 

N 

J2Pkj(0)aj(a«\a?)) = aj^y -Uj -U), t = 0, 1 = 1,...,N. 
k=i 
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Introducing now the vector 

(5.16) g^E^G^afKt),..., ro/GjOJ^, «))T, 

we have finally the systems 

(5.17) Pj(t) + Sj0j(t)=rj(t)-gj(t), 0 < ^ T, 

with the initial conditions 

(5.18) Pj(0)=Tf1wj, t = o, j = l , . . . , M , 

where we use the notation (4.15), (5.9), (5.10), (5.13), and 

wj = {ai{af,u° -U-uij),..., aj{af\ u° - U - W j))T ' . 

Moreover, putting 
aj(t) = bj(t)-(3j(t), 

and subtracting the system (5.17) from (5.11) and the initial condition (5.18) from 
(5.12), we obtain the ordinary system 

(5.19) a'jit) + Sjajit) = 9j(t), 0 < t < T, j = 1 , . . . , M, 

and the initial condition 

(5.20) aj(0)=Tf1zj, t = 0, j = 1 , . . . ,M, 

where 

(5.21) z, = Vj - wj = ( a j O ^ . w j C ,0)) , . •. ^ O f * , ^ . , 0 ) ) ) T . 

We will now prove several auxiliary statements. 

Lemma 5 .1 . There exist positive constants Ci and C2 such that 

(5.22) C1ft
2p+3 < E*, < C-2/i

2p+3, j = l,...,M, 

and 

(5.23) dh*p+1 ^ Elj < C2hf+\ j = 1 , . . . , M. 

Rirther 

(5.24) C5hf^ < aj{af,*?>) = \\af\W, < C2h?+\ 

k = l,...,N, j = l,...,M. 

P r o o f . The bounds (5.22) and (5.23) follow immediately from (5.7), and (4.8) 
and (4.9) of Lemma 4.2. Finally, (5.24) is a consequence of the equivalence of the 
norms ||. | | i j and ||. \\A,J for functions from HQ • expressed by (3.6). D 
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We will use the notation ||g||2 = qTq for the Euclidean norm of a vector q and ||Q|| 
for the spectral norm of a square matrix Q. 

L e m m a 5.2. Let Tj be given by (5.13) and Sj by (5.10). Then there exist positive 

constants C\, C2 such that the bounds 

(5.25) Cxhf+1 ^ \(Tj) ̂  C2hf+\ j = l , . , A f , 

(5.26) dhj2 ^ \(Sj) ^ C2hJ2, j = 1 , . . . , M, 

hold for all the eigenvalues \(Tj) and \(Sj) of the matrices Tj and Sj, respectively. 

P r o o f . Introducing the differential equation (2.1), we assumed A(x) to be sym

metric positive definite and B(x) symmetric positive semidefmite. We thus deduce 

that 

l|2 <- „ T . (5.27) 0 < 7AII_||2 < 7-.WII.II2 < qTA(x)q < \\A(x)\\ \\q\\* < 7A||_||2, 

1BI (5.28) 0 < 7 R | | _ | | 2 < 7 B ( X ) | | 9 | | 2 ^ q*B{x)q < | |_(_) | | ||<z||2 < 7 B | M | 2 

for every TV-component vector q ^ 0. Obviously, 7A(X) and ||_4(a;)|| (or 7B(x) and 
||_?(:r)||) are the smallest and the largest eigenvalue of A(x) (or B(x)). Since x € [0,1], 
since the entries aik(x) and bik(x) are continuous, and since eigenvalues depend 
continuously on entries, the constants 

7 A = m}^J^(x), 7 B = min 7s(a;), 
~A xG[0,l] ~a xG[0,l] 

7 A = max ||A(a;)||- 7 B = max ||_?(.r)|| 
x€[0,l] x€[0,l] 

do exist and, moreover, 7 > 0. 

According to (5.1), (5.13), we can calculate the entry (i, k) of the matrix Tj, 

(Tj)ik = aj^f^f) = P (aik(x)*')(x) + bik(x)*](x)) dx, j = l,...,M. 

Computing qTTjq, q ?- 0, and taking into account (5.27) and (5.28), we arrive at 

°< n«iia(x. r *'?(*)<-*+iB r «?(*)<-*) ^9Tr.. 
\ Jxj-i JXj_i / 

= f' (qTA(x)q<P,2
j(x)+qTB(x)q$f(x))dx 

JXj_i 

<II_II2(7A P 9'){x)4x +jB f' 9j(x)dx). 
\ Jxj-l JXj_i / 
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Lemma 4.2 now gives 

0 < IM|2(7>2P+1 + 7 ^ 2 p + 3 ) <- 1TTjq < ||<7||2(7^/i2p+1 +?Bh2p+3) 

with some constants 7^, 7^, 7* and 7^, which implies 

(5.29) 0 < C1hf+1 < - ^ - ^ C2hf+1. 

As Tj is Gram matrix defined by the energy inner product (5.13) it is symmetric 
positive definite. Its smallest and largest eigenvalues are 

. qiTjq gTTj(? 

mm „ , , max ;/ 

9#o ||9||- ,*o Holl

and are bounded by (5.29), which implies (5.25). 
Sj is a symmetric positive definite matrix as well. The statement (5.26) on A(Sj) 

thus follows from (5.10), (5.25), and (5.22) of Lemma 5.1. D 

Lemma 5.3. The solution a5(t) of the system (5.19) with the initial condition 
(5.20) can be expressed in the form 

(5.30) a5(t) = exp(-5i.-)ai(0) + f exp(-S5(t - T))9J(T)dr, 
Jo 

O^t^T, j = l,...,M, 

where a5(0) is given by (5.20), (5.21), and S5 and T5 by (5.10) and (5.13). Moreover, 

(5.31) \\a5(t)\\
2 < c(||a j(0)||2exp(-2tAmin(S j)) 

+ j2-JS~){hjm2 + ll5i(0)H2exp(-2tAmin(Si))} 

+ A-Tl.̂ ) eM-2(t-S)XmiB(Sj))J ||^(r)||2dr 

+ ^ i ^ ( r ) l | 2 d r ) ' i=1'-'M' 
for any S, 0 < S < t, where \min(Sj) is the smallest eigenvalue of Sj. 
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Proof . Solving (5.19), (5.20), we obtain (5.30), where aj(0) is given by (5.20), 
see e.g. [5]. Integration by parts yields 

aj(t) = exp(-SJt)a j(0) + S,"1 [exp(-S,(* - "r))<7;(r)]'=o 

-S71 fexp^S^t-T^g'^dT 
JO 

= exp(-Sjt)aj(0) + Sjl[9j(t) -exp(-Sjt)9j(0) 

- j exp^S^t-TMjMdT-J expt-S^-r^TjdT}, 

where 0 <S <tis arbitrary. Taking the norm and squaring, we have 

(s.a^n^Tt)!!2 < c(|jexp(-sit)ll2||ai(o)}|2 +- lisr 1 ! !^!^^)!! 2 

+ || exp(-S,*)l|2||»(0)||2 + j J exp(-Sj(t - T ) ) ^ ) dT f 

+ |^ texp(-S j(.:-T))5;.(T)dT||2J). 

We can bound the integrals in (5.32) using the Schwarz inequality to get 

(5.33) | j f e x p ( - S j ( t - т ) t ø( т ) d т | 

C 

Лminybj) 
< - ^ F T exp(-2(t - í) W Ą ) ) J ||5j.(т)||2 dт, 

(5.34) I jf'expt-S^-T^WdTlp < A-^y/' l l^WII 2 ^' 

where we use Lemma 5.2 and the formulae for the spectral matrix norm (see, e.g., 

[5]) 

(5.35) || exp(-S i(t - T))\\ = exp(-(t - r)Am i n(S i)), t > T, 

(5-36) \\SJl\\ = T - ^ - y 
<*min W j / 

Finally we obtain the bound (5.31) from (5.32) with the help of (5.33) to (5.36). • 

Lemma 5.4. Let the assumptions of Lemma 3.3 be fulfilled with r = 0,1,2 and 
let S > 0 be the constant from the statement of Lemma 3.3. Assume further that 
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| |3 re/dr| | i is bounded for 0 < t < S, r = 0,1, 2, andiet b5(t) and0j(t), j = 1, . . . , M, 
be solutions of (5.11), (5.12) and (5.17), (5.18), respectively. Then there exists such 
a positive constant C(u), where u is the solution of (2.11), (2.12), that 

(5.37) llfcWIf-Sii ^ C(u)h2p for 0 < t < T, j = 1,. . . , M, 
M 

(5.38) j ; 116,(0 - / J iWII 2 ^ ^ CW/i2p+2 for J < t < T, 
i = i 

M 

(5.39) 5 3 (II^WII2 + WM?)^ ^ C(u)h2* for6<t^T. 
i= i 

Proof. Employing (4A4), (4.15), and (5.7), we can write 

M o j = E ^ j l - ^ l S j = ^oill^ll2, 3 = 1,.-.,M. 
k=l 

Further, 

IIAWir^i = ^llvillSj ^ chj*h*»2\\u\\l+ld = c(u)hf 

follows from (5.22), (5.23), and (4.16) of Lemma 4.3 with s = r = 0. The bound 
(5.37) has been established. 

We now turn to the proof of (5.38). Using (5.6), (5.15), (5.16), and the Schwarz 
inequality, we get 

N 

(5.40) I b M f ^ o t E ^ f ' * ) 
k=l 

N 

for j = 1,...,-M. Due to the definition (5.1) of ay e HQJ and Lemma 5.1, we 
further have 

(Mi, _§L_ = ̂ k , ^ , C • 
I k f l k ; lk<fc)lk; Ikf lUj 
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and thus 

N iuCOцa. 

^'t^mi^) 

where we used Lemma 5.1 and (3.7). 

Since (5.31) of Lemma 5.3 is the means to prove (5.38) we employ (5.26), (5.42) 

and Lemma 5.1 to estimate 

M 

(5-43) Ep77coll»(«)ll2^i 
j—j minV J J 

< c f —i—^Yll^l2 illullOf " ^ 

The inequalities (4.29) with r = 1, s = 0 and (4.30) of Lemma 4.5 finally give 

M 

(5.44) £ T.rAěTllfli(*)ll2--U < C{u)bP+\ 6<t^T, 
j = l AminWjJ 

where 6 > 0 is the constant from Lemma 3.3. 
We have assumed that the error e and its first two time derivatives are bounded 

for 0 < t -̂  (5. We start from (5.43) and use (4.24) and the estimates (4.28) and 
(4.16) with r = 1, 5 = 0 and r = 0, 5 = 1 to find 

(5.45) 
1 

£ T2-7ČTll-'-(*)lla-7U < C^> ° < * < 6-
-•—.j minV J) 

To proceed further, we differentiate (5.15) with respect to t to get 

d2Wj \ / (k) duj чcr.o^-m^н".̂ )-
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From (5.16) we then, like in (5.40), arrive at 

ll4WII2 = ^ 4 £ G > ; f e ) > < ) 
k=l 

N 

Ś 
/ c = l 

r r - 4 f /rt \\d2(jJ*\\2

 + | | / ) | | . H^ill2 ", CSOj L.\SOj\\ Qt2 | | 0 J + II^ IU,i|| d t \\A<j • 
k=l v ' 

Like in (5.42) we assess 

(5.46) | | ^ t o l | 2 ^ £ 0 ~ i 2 ( 

Purther, like in (5.43), 

M 

(5.47) 

д2Uj 1 

дt2 1 
2 1 

+ 
o,i 1 

дu)j 1 

ð* 1 

N iu(*)||2 2 \ y Wnj 

£^-««>»^<c*(.£l.+l£lD 
follows from (5.26), Lemma 5.1, and (5.46). We now use again (4.29) of Lemma 4.5 

with r = 2, 5 = 0 and r = 1, s = 1 to show 

м 
(5-48) £ i n r r ^ T l ^ W I I 2 ^ < C{u)h2(h2^2 + ft2*) < C(u)/i2*+2, * < t < r . 

j = l A m i n W i ; 

By assumption, the error and its first two time derivatives are bounded for 0 ^ t ^ S. 
Starting from (5.47), and using (4.16) and (4.28) with r = 2, s = 0 and r = 1, s = 1, 
we find 

M 

v5-49) ETT-TFTlWWII^i^C?^)/!2 , 0 < t < * . 
J = 1 ^minW/" 

Finally we bound ||aj(0)||. Since 

(550) ^'' • A-k 
we can estimate, by (5.20), (5.21), and the Schwarz inequality, 

K(0)||2 < PTln*rt* = TT^TM f2«2M"\«>i(;0)) 
^minv^i/ ^ = 1 

£ 
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Further by (5.24), (5.25), and (3.7) we arrive at 

IIMO)||a < ChJip-2h2p+1\\^(. ,0)11^. = ChJ2'-1^. ,0)\\2
ltj. 

Substituting (4.25) for uLj, we come to 

I M o r < Chj2"-1^. ,o)\\2
tj +11^^,0) - u(.o)\\h + M- <°) - u(-,o)\\h)> 

where U is the solution of (3.13) with t = 0. 
We now multiply by 27 .̂, employ (4.18) of Lemma 4.3, sum the inequality over j 

and apply (4.23) of Lemma 4.5, (3.14) of Lemma 3.2, and (5.23) to obtain 

M 

(5.51) ^ l l a ^ O ) ! ! 2 ^ . ^ ^ 0 ) ^ ^ 2 . 
3=1 

Let us turn back to (5.31) and investigate three of the right-hand part terms. Due 
to (5.26), (5.51), 

M 

(5.52) ^2 ||ai(0)||227?i exp ( -2a m i n (5 j ) ) - r 0 a s / i ^ 0 a n d 0 < ^ T . 
i = i 

Similarly, 

M 

(5-53) E x2 , g J f r W I I ^ i j exp(-2tAmin(S i)) - > 0 a s / i - r 0 a n d 0 < * < T 

by (5.45) and 
M 

(5-54) E IJ-l^y^n2^ *M-2(t - S)Xada(Sj)) -+ 0 
j = 1

 A m i n W j J 

a s f t - > 0 a n d ( J < ^ T , O^T ^S 

by (5.49). 
Multiplying by E\^ and summing over j , we finally get from (5.31) that 

M , M 1 - t M - v 

£||a,(t)||a.E?,<C7 ETr J7cTll^) l l 2^+ / £ TT TC TI WWH 2 - ^ ^ ) 
J = 1 \ J = 1

 AminV'-'i; <̂5 J = 1
 A m i n W j V / 

^C(u)h2p+2, 6<t^T, 
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since the terms (5.52) to (5.54) tend to zero much faster than h2p+2 and since we 
bounded (5.44) and (5.48). We have proved the statement (5.38). 

Since 

\Mt)\? + \\W)\? < \\bj(t) - Pj(t)\\2 + 2||&(-)lla. 

we can estimate from (5.37), (5.38) 

M M M 

£ (mm2+ii&wii2)z\j < £ \\bj(t) - mtfzh+2 £ mm'tfj 
j - \ i = i i = i 

^ C(u)(/i2p+2 + h2p) < C{u)h2p, 6<t^T, 

which is (5.39). The lemma has been proved. • 

Theorem 5.1. Let u € H& n Hp+2 and U € 50
M,P and E € 50

M,P+1 be soJutions 
of (2.11), (2.12) and (3.1), (3.2) and (3.14), (3.15), respectiveJy. Let u° € flg nifp+1 

and Jet u be smooth enough for all terms in (3.15), (3.16) to be bounded with 
r = 0,1,2. Further let S > 0 be the constant from the statement of Lemma 3.3 and 
let ||dre/dtr | |i be bounded for 0 < t < 5, r = 0,1,2. Then 

\\e(.,t)\\l = \\u(.,t)-U(.,t)\\2 = \\E(.,t)\\2 + e, SKt^T, 

and there exists a positive constant C such that 

\e\^C{u)h2p^. 

Proof. Using (4.24), we have 

NIL- = \\<PJ+<»j\\h = \\fi\\h+2(<pj^j)u + IKHL-. 

Summing over j and using (4.14), (5.2), (5.7), and the Schwarz inequality, we find 

M N 

e = l|e||? -||E||? = £ zij £ (PUt) - b2
kj(t)) + 2IMWMU + IMIJ. 

i = i k=i 

Employing again (4.14), (4.30), and (5.37) of Lemma 5.4, we arrive at 
M N 

H < £ Eh E Kit) - b2
kj(t)\ + C{u)h*h*+l + C{u)h2"2, 6<t<T, 

j=i k=i 
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where S > 0 is the constant from Lemma 3.3. By the Schwarz inequality, we finally 
obtain 

M N 

H < E r ? i EI(A;W - M*))(AiW + M*))I + c(w)/i2p+1 

j=i fc=i 

M 

< E ^lillft W - 6iWll^iillft W + *i(*)ll + C7(u)ft2p+1 

i= i 
• M v l / 2 / M v 1/2 

^ c ( E ^ I I A W - w o n 2 ) (E^idiAwii2 + iiftiWii2)) +c(W)ft2p+i 
vJ*=i ' ^ i = i ' 

^ C(u)(fcp+1/ip + /i2p+1) = C(u)h2p+l 

by virtue of Lemma 5.4. The theorem has been proved. • 

R e m a r k 5.1. The statement of Theorem 5.1 shows that the function E(x,t) 
can be used to obtain an a posteriori error estimate in practical computation. The 
error on each interval (XJ-I,XJ) of the partition is characterized by a single number 
called the local error indicator, i.e., in our case, by the quantity ||JE7(. ,£)lli,i- The 
error on the whole interval [0,1] can also be characterized by a single number, e.g. 
by \\E(. ,£)||i. This number is called the error estimator (cf., e.g., [4]). 

R e m a r k 5.2. Introducing positive weights for the individual components in the 

definition (2.4) of inner product, we may emphasize or suppress the influence of the 

error of some components of the solution on the error indicator and estimator. 

6. ELLIPTIC ERROR ESTIMATION 

The elliptic error estimation (3.10), (3.11) can be analyzed in a similar way. Re

placing V by &j ' in (3.10) we come to 

aj(af,E) = Rj(af,t), 0<t^T, 1 = 1,...,N, j = l , . . . , M , 

where Rj(o~j \t) is given by (5.5). Expressing E(x,t) in the form 

M N 

š(M = ££Mt>5fc)(*), 
i=i fc=i 

we have M uncoupled linear algebraic systems 

N 

(6.1) £ M 0 a ; ( ^ \ c f } ) = Rj(af,t), I = l , . . . , iV, 
k=i 
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for the unknown coefficients bkj, k = 1,. . . , JV, where j = 1,. . . , M. Putting 

(6.2) Vj(t) = (R^^t),...,^^ ),t))T 

and using the notation (5.13), we can write the solution of (6.1) in the form 

(6.3) b5(t)=T^yj(tl j = l , . . . ,M. 

Substituting cr\' for v into (3.4), we get 

W- Do, - -*$*+<^.'>« - •*?" - K' £)„• 
j = l , . . . ,M, 

and, comparing it with (5.5), we conclude 

(6.4) Rj(*f,t)=(af,^)oj + aj(*f,e). 

Further substituting (5.14) for e into CLJ in (6.4), we arrive at 

(6.5) JC-MOo^VW) = Ri(°f,t) - ( ^ ° , | ) 0 -flj(«5°,«i), 
fe = l 

/ = l , . . . , i V , j = l , . . . , M . 

The system (6.5) can now be rewritten as 

(6-6) m) = Tf1yj(t) + gj(t), j = l , . . . ,M, 

where Tj is given by (5.13), y, by (6.2) and 

(6.7) gj(t) = Tf1
Sj(t), 

(«.«.(.>=(H". s)„ - M*f.«,) H"'. i ) M - ̂ s"U))T 

We establish an analog of Lemma 5.4. 

Lemma 6.1. Let bj(t) and (3j(t), j = 1,... ,M, be solutions of (6.3) and (5.17), 
(5.18), respectively. Let the assumptions of Lemma 3.3 be fulfilled. Then there exist 
positive constants C(u), where u is the solution of (2.11), (2.12), and S such that 

M 

(6.9) £ \\bj(t) - ftWII2^ ^ C(u)h2^2 for6<t^T, 
i= i 

M 

(6.10) £ flfoWII2 + \\0i(t)\\2)^ii $ C(")h2p forSKt^T. 
J'=I 
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P r o o f . We proceed like in the proof of Lemma 5.4. Since (6.6) is equivalent to 

(5.17) we calculate from (6.3), (6.6), and (6.7) that 

h(t)-Pj(t)=9j(t)=T71sj(t), j = l , . . . ,M. 

From (6.8), (5.50), and the Schwarz inequality we have 

(6.ii) ||6,(*) -/95,(*)Ha < ll-rJr
1Hall*-f(*)lla 

<A£((^i)«+*-M 

We further use (5.41) and (3.7) to obtain 

Aw - AMP < c-jJj-- E kffc, (I HI,,. + il̂ nL) • 

Multiplying by S2j and summing up over j , we obtain with respect to (3.15), (4.30), 
(5.23), (5.24), and (5.25) that 

Y, Ife W - A Wl l^ i i < c(u)/i-4p-2/i2p+1/i2p+2/i2p+1 ^ c(u)h2*+2 

for (J < * < T, 

which is the inequality (6.9). The value of 5 is given by Lemma 3.3. 
Since now again, like in the proof of Lemma 5.4, 

IfoWII2 + IIAWII2 < \Ht) - W)\? + 2||&(.)||a 

the statement (6.11) is a simple consequence of (6.9) and (5.37). The proof has been 

completed. D 

Theorem 6.1. Let u e H& C) H*>+2 andU e S0
M'P and E e S ^ ' p + 1 be solutions 

of (2.11), (2.12) and (3.1), (3.2) and (3.10), (3.11), respecfciveiy. Let u° € H%nH*+l 

and let u be smooth enough for all terms in (3.15) to be bounded with r = 0 ,1 . 
Then there exist positive constants C and 6 such that 

||e(.,t)ll? = N . , t ) - ^ ( - , « ) l l ? - - l l - 5 ( . , * ) l l 3 + e , SKt^T, 
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and 
\i\^C(u)h2p+l. 

Proo f . The proof is carried out in the same way as the proof of Theorem 5.1. 
Lemma 6A is employed instead of Lemma 5.4. • 

R e m a r k 6.L According to Theorem 6.1, an error indicator and error estimator 
from Remark 5.1 can also be introduced with the help of the function E(x, t). 
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