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LFS FUNCTIONS IN MULTI-OBJECTIVE PROGRAMMING1 

LUKA NERALIC, Zagreb, SANJO ZLOBEC, Montreal 

(Received October 10, 1995) 

Summary. We find conditions, in multi-objective convex programming with nonsmooth 
functions, when the sets of efficient (Pareto) and properly efficient solutions coincide. This 
occurs, in particular, when all functions have locally flat surfaces (LFS). In the absence of 
the LFS property the two sets are generally different and the characterizations of efficient 
solutions assume an asymptotic form for problems with three or more variables. The results 
are applied to a problem in highway construction, where the quantity of dirt to be removed 
and the uniform smoothness of the shape of a terrain are optimized simultaneously. 

Keywords: multi-objective program, efficient (Pareto) solution, properly efficient solu
tion, LFS function, convex program, l\ norm, loo norm, simultaneous optimization 

AMS classification: 90C29, 41A28 

1. INTRODUCTION 

Differentiate convex functions with "locally flat surfaces" (abbreviation: "LFS 

functions") have been recently introduced in [18, 20]. The notion has been extended 

to nonsmooth functions in [15]. An important feature of mathematical programs 

with these functions is that optimality of a feasible point is characterized by the 

Karush-Kuhn-Tucker conditions. 

In this paper we study multi-objective convex program with nonsmooth LFS ob

jective functions. We find conditions on the constraints that guarantee that all 

efficient (Pareto) solutions are properly efficient. This is the case, in particular, 

when all functions in the program are LFS. The equality of the two solution sets 

means that every Pareto solution enjoys additional uniform "stability" properties. 

1 Research partly supported by the Research Council of Croatia and by a grant from 
NSERC of Canada. Presented in part as the National Contribution of Croatia at the 
14th Triennial IFORS Conference, Vancouver, B.C., Canada, July 8-12, 1996. 
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In the absence of LFS constraints, the two sets are generally different. Moreover, 
the characterizations of Pareto optima then assume an asymptotic form (involving 
the closure of a set) for programs in three or more variables. The results are readily 
applicable to bi-objective approximation problems involving li and l^ norms. We 
illustrate the theory on a highway construction problem. 

The paper is organized as follows: In Section 2 we recall the notion of LFS func

tions. The well known classic Charnes-Cooper observation is modified for convex 

functions in Section 3. While the classic version is used here to prove the equiva

lence of efficient and properly efficient points for LFS functions, its modified version 

is used to relax the statement on the signs of the weights of the objective functions; 

see Section 4. The general case and the asymptotic form of the optimality conditions 

are studied in Section 5 and the application is given in Section 6. 

2. L F S FUNCTIONS 

Let us introduce and recall some basic facts about LFS functions. For the sake 
of simplicity we assume that all functions in the sequel are defined on the entire 
Euclidean space (Rn. An LFS function / : IRn «-> U is defined locally, at an arbitrary 
but fixed x* € Un, using the following three cones with a vertex 0: 

Df(x*) = {dєUn 

Df(x*) = {d£kn 

Dj(x*) = {de Un 

f(x* + аd) ^ f(x*),0 < а < а* for some a* > 0} 

f(x* + аd) < f(x*),0< а < а* for some а* > 0} 

f(x* + аd) = f(x*),0< а < а* for some а* > 0}. 

These are the "cones of nonincrease, decrease, and constancy of / at £*", respectively. 

For their properties see [2]. 

2.1 Definition. [14, 15, 20] A convex function / : (Rn »-> IR is said to have a 

locally flat surface at x* G (Rn if 

Df(x*) is polyhedral when Df(x*) ?- 0 

or if 

Dj(x*) = {d: f'(x*;d) = 0} and polyhedral when Df(x*) = 0. 

Here f'(x*\d) denotes the directional derivative of / at x* in the direction d. If / 

is a differentiate convex function then the above definition reduces to 

N(Vf(x*)) = Dj(x*). 
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Here N(s?f(x*)) denotes the null-space of the gradient. Note that LFS is a local 

property. However, some important classes of functions, e.g., linear functions, l\ 

norm, l^ norm, their linear combinations such as 

f(x) =aTx-\-^2\xi\ 
iej 

where Jc{l,...,n}, and the distance function 

f(x)=min{\\(x-x*)-z\\:zeK} 

where K is a polyhedral cone, are LFS at every x* G (Rn. (Note that the Euclidean 
norm is not generally an LFS function.) For algebraic and geometric characteriza
tions of LFS functions, and their importance in convex programming, see the recent 
papers [15, 18], (also [20].) 

3. T H E CHARNES-COOPER OBSERVATION 

Consider a multi-objective program 

(MP) Min{$*(:r): k G Q} s.t. f(x) < 0, i£P 

where the objective functions $k: Rn «-> R, k G Q and the constraints /*: Rn H-> R, 
i G P , are continuous functions, and the index sets P and Q are finite. Denote by 

F = {xe Rn: f(x) <0, ieP} 

the feasible set of (MP) and take an arbitrary x* G F. The point is said to be an 
efficient (or Pareto) point if there is no other x G F such that 

$k(x) ^$k(x*), keQ 

with at least one strict inequality. Charnes and Cooper observed in [5] that x* G F 
is efficient if, and only if, x* is an optimal solution of the program 

M i n ^ $ * ( x ) 
keQ 

(CCO) s.t. Qk(x) < $k(x*), keQ,xeF. 

Their observation has been used to study and characterize efficient points as optimal 
solutions of mathematical programs, see, e.g., [2, 14, 16, 18]. In convex case their 
observation will now be sharpened to include non-negative weights. 
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First, we need more notation. Assume that the objectives and the constraints in 
(MP) are convex functions and that some x* e F is fixed. For each r e Q,we denote 

Fr(x*) = {xeF: $k(x) ^ $k(x*), keQ\ {r}} 

and the index set 

Q=(x*) = {keQ\{r}:xe Fr(x*) ==> $k(x) = $k(x*)} . 

The pivotal set for the modification is 

Q=(x*) = (J Q={x*)-
rEQ 

We call this set "the minimal index set of active objectives". It can be calculated, 
essentially, in the same way as the minimal index sets of active constraints (see [2]). 
We will also need the index set 

P=(x*) = {ieP:xeFf) F0(x*) => f(x) = 0} 

where 

Fo(**) - {x: $k(x) ^ $k(x*),ke Q}. 

Using the Lagrangian function, relative to x*: 

L(x,\,u)= Yl ****(*) + J2 u^x) 
keQ\Q=(x*) ieP\P=(x*) 

and the set 

F<(x*) = {x: f(x) ^0,ie P=(x*)} H {x: $k(x) = $k(x*),ke Q=(x*)}. 

the following result was essentially proved in [16]. (It is a slight modification of [16, 
Theorem 2.4] obtained after using Remark (i) from the end of Section 2 in [16]. Its 
differentiable version was given in [19].) 

3.1. Theorem ([16]). Consider the convex multi-objective program (MP). A 

point x* e F^ (x*) is an efficient point if, and only if, either Q \ Q= (x*) = 0, or there 

exists \* = (A*) ^ 0, k e Q \ Q=(x*), A* # 0 and u* = (u*{) ^ 0, i e P \ P=(x*) 

such that 
L(x*,\*,u) ^ L(x*,\*,u*) ^ L(x,\*,u*) 
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for every u^O and x e F^(x*). 

We are now ready to modify Charnes-Cooper observation. 

3.2. Theorem. Consider the convex multi-objective program (MP). A feasible 
point x* is an efficient point if, and only if, either Q = Q=(x*) or x* is an optimal 
solution of the program 

Min ^2 wk$
k(x) 

kEQ\Q=(x*) 

s.t. 

(MCCO) $k(x) = $k(x*), keQ=(x*) 

xeF 

for some wk ^ 0, k e Q\ Q=(x*), not all zero. 

Proo f . . (Necessity:) If x* e F is an efficient point, then 

(3.1) J2 ™k*k(x*)< £ wk$
k(x)+ Yl "*/*(*) 

k£Q\Q=(x*) keQ\Q=(x*) i£P\P=(x*) 

for some wk ^ 0, k e Q\Q=(x*), not all zero, and some U{ ^ 0, i e P\P=(x*), and 
for every 

x e F^(x*) = {x: f(x) ^0,ie P=(x*)} n {x: §k(x) = §k(x*),ke Q=(x*)}. 

This follows from Theorem 3.1 after using the complementarity condition. Since 

Fc{x: f(x)^0,ieP=(x*)} 

and Fn{x: $k(x) = $k(x*),k e Q=(x*)} ^ 0 (x* being in both sets), it follows 
that (3.1) also holds for every x from the smaller set 

Fn{x: $k(x) = $k(x*),ke Q=(x*)}. 

But, since P=(x*) C P, for every such x we have 

J2 UifW < 0 
ieP\P=(x*) 

and (3.1) proves the necessity part. 
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(Sufficiency:) Suppose that x* solves (MCCO). If x* was not Pareto optimal, then 
there would exist x' G F such that 

$k(x')<$k(x*), keQ\Q=(x*) 

$k(x') = $k(x*), keQ=(x*) 

by the definition of Q=(x*). But this contradicts the assumption that x* is optimal 
for (MCCO). • 

This result is of a separate interest. In particular, it shows that, in some situa
tions, one may reduce the number of objectives to be used for testing a point x* for 
efficiency: 

3.3. E x a m p l e . Consider the program 

M i n f * 1 ^ ) = -xi + x2, $2(x) = x\ + x\} 

s.t. 
X-i ~r Xn <£ --

— X\ + x\ ^ 1 

X\ — X2 ^l 

-XX ^ 0 . 

Is x* = [0 1]T Pareto optimal? We find that Q=(x*) = {1} and x* is Pareto optimal 
if, and only if, x* solves 

Min $2(x) 

s.t. $1(x) = l 

x E F. 

Since this is not the case, x* is not Pareto optimal. How about y* = (1/2)[1 1]T? 
Now Q=(y*) = {1} and again we find that y* is not an optimal solution of the above 
program. But for z* = [0 0]T we find Q=(z*) = {2}. It follows that z* is Pareto 
optimal. 

We recall that optimality for multi-objective programs can be defined in other 

ways. For instance, x* E F is a "weak Pareto optimum" if there is no x G F such 

that 
$k(x) <$k(x*), keQ. 

An immediate implication of the modified CCO for weak Pareto optima follows. 
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3.4. Corollary. Consider the convex multi-objective program (MP). IfQ~(x*) = 
0 at some feasible x*, then x* is a weak Pareto optimum if, and only if, x* is a Pareto 

optimum. 

3.5. E x a m p l e . Consider the program 

M i n j ^ 1 ^ ) = xi,$2(x) = x2} 

s.t. 

X\ ^ 0, x2 ^ 0. 

Here x* = [0 1]T is a weak Pareto optimum. But Q~(x*) 7-= 0 and x* is not Pareto 
optimal. 

We will use the modified observation in the context of LFS functions at the end 
of the next section. 

4. T H E EQUIVALENCE OF EFFICIENT AND PROPERLY EFFICIENT POINTS 

Consider again the program (MP) and its arbitrary efficient point x*. If x* enjoyes 
the following additional property: 

"There exists a number /? > 0 such that, for every k € Q and every x £ F 
satisfying $k(x) < $k(x*) there exists, in the index set 

Q' = {s e Q\{k}: $s(x) > $s(x*)} 

at least one s G Qf such that 

*k(x*)-$k(x) 
$s(x) -$s(x*) ^ P 

then x* is said to be a properly efficient (or strong Pareto) point. These points are 
of fundamental importance in welfare economics; see, e.g., [5, 8, 9]. They have also 
been used in other areas, e.g., in engineering; see [13, 17]. 

It is well known that for a convex (MP) the sets of efficient and properly efficient 
points are different (the former being the closure of the later). The two sets may be 
different even in the unconstrained cases or when the objectives are linear. This is 
demonstrated by the following examples: 

4.1. E x a m p l e . Consider the two objectives 

$x(x) = max{0,.r2 signs} and $2(x) = (x — l ) 2 . 

Here x* = 0 is an efficient point that is not properly efficient. 
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4.2. E x a m p l e . Consider the linear objectives 

&(x) = x\ and $2(x) = x2 

and the feasible set determined by 

X-t I J/O ^ J. . 

Here the point x* = (—1 0)T is efficient, but not properly efficient. 

Our main objective is to find a simple condition when the two sets coincide. We 
assume that the objectives are LFS at some arbitrary fixed feasible point x*. The 
constraints can be split into those that are LFS at x* and those that are not. Denote 
the index set of LFS constraints by i f and the non-LFS constraints by R. Now 
P = .if U R and .if D R = 0 and (MP) can be rewritten as follows: 

(MP)' Mm{$k(x): k <E Q} 

s.t. 

r ( x K o , iG-Sf 
fj(x)^0, jeR. 

Denote the active constraints from the sets %\ H, and P at x* by 

J?(x*) = {ieJ?:f(x*)=0} 

R(x*) = {jeR:fj(x*)=0} 

P(x*)=^(x*)UR(x*) 

respectively, and those from R that are active on the entire subset 

K* = {x: $k(x) ^ $k(x*), k6Q}PiF 

by /?=, i.e., 

R= = {j <E R: x e F* =» fj(x) = 0}. 

The presence of the index set R= sets the efficient and properly efficient points apart. 
We will apply the classic Charnes-Cooper observation to (MP). The following 

result, recently prooved in [15, Theorem 3.1], will be used in the proof. In addition 
to various cones, the result also uses the minimal index set of active constraints 

R= = {j e R: x e F => fj(x) = 0}. 

354 



This set is defined for the single objective convex program 

(SP) Min/(:r) 

s.t. 
f(x) ^ 0 , ietf 

fj(x)^0, jeR. 

4.3. Theorem ([15]). A feasible point x* of the convex program (SP) is optimal 

if, and only if 

Df(x*)f){ n D<(x*)}f)conv{ Q->/i (**>} f l { () Dft(x')} = 9. 
jeR(x*)\R= jeR= ie&(x*) 

In the absence of the set R= we have the following result: 

4.4. Theorem. Consider the multi-objective convex program (MP) and a feasible 
point x*. Assume that all objectives are LFS at x* and that R= = 0. Then the 
following three statements are equivalent: 

(i) x* is efficient. 

(ii) x* is properly efficient. 

(hi) The system 

^2 wkhk + J! Xihi = ° 
k£Q ieP(x+) 

wk>0, keQ, Xi ^ 0 , ieP(x*) 

is consistent for some subgradients 

tied$k(x*), keQ, tiedf(x*), ieP(x*). 

P r o o f . Since (ii)=>(i) is obvious, it is enough to prove the implications 

(i) => (iii) => (ii). 

First, the classic Charnes-Cooper observation, Theorem 4.3, and the fact that R~ = 

0, tell us that the point x* is efficient if, and only if, there exist some subgradients 

ti ed(^$k(x*)\ ti ed$k(x*), keQ, ti edf(x*), ieP(x*) 
^keQ ' 
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such that the system 

h° + ^2\kh
k+ Yl \ih{ = 0 

(4.1) keQ ieP(x*) 

Afc ^ 0, keQ, KZ 0, i e P(x*) 

is consistent. Using the familiar properties of the subgradients, we note that 

ð(x>V)) = £әФV)-
-keQ / keQ 

Hence h° can be decomposed as 

h° = £ II* 
keQ 

for some Hk e d$k(x*), keQ. The system (4.1) can now be written as 

J2(Hk+\kh
k)+ Y xih' = 0 

keQ ieP(x-) 

\k ^ 0, keQ, \{ ^ 0 , ie P(x*). 

By convexity of the subdifferentials d$k(x*), k e Q, it follows that 

Hk+\kh
k = wk(ti)k 

for some wk > 0 and some (h')k e d$k(x*). Hence (4.1) implies the statement (hi). 

If (hi) holds, then x* is an optimal solution of the program 

Min Y Wk$k(x) 
keQ 

s.t. f{(x) ^ 0, ieP 

again by Theorem 4.3. Since the weights wk e Q in the objective function are all 
positive, the point x* is properly efficient. This establishes (iii)=>(ii) and the proof 
is complete. • 

The situation described in Example 4.3 shows that the first two statements of the 

theorem are not equivalent if R= ^ 0. (In that example I? = R= = {1}.) 

The next example shows that the presence of this set generally destroys the equiv

alence between the first and the third statement. 
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4.5. E x a m p l e . Consider the bi-objective program 

Minf^1 = x 3 , $ 2 = 0} 
s.t. 

f\x)=xl^0 

f2(x) = dist(x-x*,C) ^0 

where C is the "ice-cream" cone 

C = {x €U3: 2xxx2 ^ x\, x\ ^ 0, x2 ^ 0} 

and x* = 0 G (R3. Note that the objectives and the first constraint are LFS and that 
/ 2 is convex but not LFS at x* = 0. Here .if = {1}, R = {2}. We calculate 

F* = C O {x = (xi) e U3: xi ^ 0, x3 ^ 0} 

= {[0 x2 0]T:x2 ^ 0 } 

and find that R= = {2}. The origin is an efficient (and also a properly efficient) 
point but the system in the statement (iii) is 

wx[0 0 l] + w2[0 0 0] + Ai[l 0 0] = [0 0 0] 

for some w\ > 0,w2 > 0 and Ai ^ 0; clearly inconsistent. 

An important special case follows. 

4 .6. Corollary. Consider the multi-objective convex program (MP) and its fea

sible point x*. Assume that all objective functions and the constraints are LFS at 

x*. Then the following statements are equivalent: 

(i) x* is efficient. 

(ii) x* is properly efficient. 

(iii) The system 

oe^wkd$k(x*)+ £ \idf(x*) 
keQ ieP{x*) 

wk>0, keQ, Xi ^ 0, % £ P(x*) 

is consistent. 

P r o o f . Since all functions are LFS at x*, we have R = 0, and hence R= = 0. 

• 
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The above Corollary 4.6 is applicable to a wide class of multi-objective programs: 

4.7. E x a m p l e . Consider the multi-objective program 

Min{|xi | + \x2\, x3, Max|xi |) 

s.t. k i | - h | x 2 | - f \x3\ ^ 10 

x1 -\x2\+2x3 < 20 

exp(-x3) ^ 1. 

Since all functions are LFS at every point here, the efficient and properly efficient 
points coincide. 

R e m a r k s , (i) Since the set R= is defined relative to F* (and not F), this set 
is generally nonempty in the presence of Slater's condition. 

(ii) If all functions in (MP) are linear, then they are LFS, and the above results 
are readily applicable. This is well known. 

(hi) In view of the modified Charnes-Cooper observation (Theorem 3.2) we note 
that, for LFS objectives, an efficient point may induce a zero weight for an objective 
$k, k G Q\ Q=(x*). However, in that case there also exists a positive weight for the 
same objective (by Corollary 4.6). 

5. T H E GENERAL CASE 

If the objectives are LFS, but not all the constraints, then the sets of efficient and 
properly efficient points do not generally coincide. It is curious that in this case the 
characterization of efficient points assumes an asymptotic form (involving the closure 
of a cone). In what follows we denote the polar of a set M by M+, i.e., 

M + = {u: uTx ^ 0, for every x G M}. 

Recall that M + is a closed convex cone for any M. 

5.1. Theorem. Consider the multi-objective convex program (MP) and its fea

sible point x*. Assume that the objectives $k, k G Q are LFS at x*. Then x* is an 

efficient point if, and only if, the system 

Y > T + E W) T s 
keQ j£R{x*)\R= 

c\l(f]DJj(x*)) +Y,{ukd$k(x*):uk^0}+ J2 { ^ / V ) : ^ 0 } > 

A,- ^ 0 , jeR(x*)\R~ 
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is consistent for some 

hk e d$k(x*), keQ and h? e dfj(x*), j e R(x*) \ R=. 

P r o o f . Apply Theorem 4.3 to (CCO) and use the fact that 

{D%(X*)}+ = {ukd$k(x*):uk*:o}, keQ 

and 
[Dfiix*)} ={vidf(x*):vi^0}, ieP(x*); 

these functions being LFS at x*. • 

The closure requirement in the above theorem can be omitted for programs in one 
or two variables, but not, generally, for programs in three or more variables. This 
follows from the fact that the sum of two closed convex cones is not generally closed 
in (Rr, when r ^ 3 . The claim will be demonstrated by an example. 

5.2. E x a m p l e . Consider the single-objective program with an LFS objective: 

M i n ^ x ) = x3 

s.t. fl(x) =x\ ^ 0 

f2(x) = <7(xKO 

where g: IR3 -> R is defined as follows: 

#(xi ,x2 ,x3) = < 

r 0, if 2XiX2 ^ x\,X\ ^ 0,x2 ^ 0, 

x\ + x\ H- x\, if 2xix2 ^ x\,X\ ^ 0,x2 ^ 0, 

\(x\ +x\+ x\) - (Xl + x2){[\(xx - x2)f + i ^ } 1 ! 2 , 

otherwise. 

The function g was introduced in [18]. It is convex and differentiate at x* = 0 e R3. 
Its cone of directions of constancy at the origin is the ice-cream cone C from Example 
4.5. Here the feasible set is 

F = {[0 x2 0 ] T : x2 ^ 0 } 

and the optimal solution is the origin x* = 0. We also find that 

Q = {1}, R(x') = R= = {2}, jSf(V) = {1}. 
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The system in Theorem 5.1 becomes 

[0 0 1] Є cl{C + [vi 0 ui] iui^O, viš 0}. 

Using the sequences 

ck = [k l/2fc l],vï = [-k 0 0], and u = [0 0 0], k = 1,2,... 

the closure condition is satisfied, since 

[0 0 1]= lim [0 l /2k 1]. 
k—Уoo 

Without the closure, the system is 

[0 0 1] = [ci + v i , c2, c3 + щ] 

for some 2cic2 ^ c\, c\ ^ 0, Oз ^ 0, ÎІI ^ 0, -vi ^ 0. Its consistency would imply 

c2 = 0 and further cз = 0 and щ = 1. The later contradicts щ ^ 0. This confirms 

that, generally, the closure condition cannot be omitted in Theorem 5.1. 

If the cones 

(5.1) Dӯj^x*), jeR 

are polyhedral, then the characterization is significantly simplified: 

5.3. Corollary. Consider the multi-objective convex program (MP) aлd its fea-

sible point x*. Assume that the objectives Фk, k Є Q are LFS at x* and that the 

cones (5.1) are polyhedral. Then x* is an efñcient point if, and only if, the system 

5>fc(fc*Г + £ A.(лłYTє{ П IW)f 
kЄQ ІЄP(x*)\R= ^ jЄR= ' 

wk > 0, k Є Q\ K > 0, i Є P(x*) \ R= 

is consistent for some 

hk Є дФk(x*), keQ and h{ Є дf\x*), i Є P(x*) \ R=. 

5.4. E x a m p 1 e. Consider the program 

Min{|xi|, |ж2|} 

s.t. x\ + x\ -̂  1. 
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At x\ = —1, x*, = 0, we find that 

F* = {x = (s ť) Є R 2: \xľ\ ^ 1, \x2\ ^ 0, x\ + xl^ 1} 

and hence R = {1}, but .R^ = 0. The cone (5.1) is IR2, a polyhedral set. Therefore 
x* is an efficient point if, and only if, the system 

Wi[-10]+гv 2 [0 ø ]+A[-2 0] = [0 0] 

is consistent for some гvi > 0, w2 > 0, Л ^ 0 and some g from the interval [—1, 1]. 

But this system is inconsistent. Hence x* cannot be an efficient point. 

For the sake of comparison we recall the program from Example 4.2. 

5.5. E x a m p l e . Consider 

Min{.ri, x2} 

s.t. x\ + x\ ^ 1. 

At x\ = — 1, x*> = 0, this time we have 

Fџ = {x = (XІ) Є R 2: xi ^ - 1 , x2 ^ 0, x? + я2, ^ 1} 

= {**}. 

Hence 

R = R = {l}. 

The system from Corollary 5.3, is 

t iл[-l 0] + w2[0 Q]Є {[0 0]}+ 

for some w\ > 0, w2 > 0 and some — 1 < g ^ 1; clearly satisfied. Therefore x* is 

efficient. 
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6. APPLICATIONS 

The above results are readily applicable to simultaneous approximations involving 
li and loo norms. These norms have been used separately in many contexts from 
optimal control (e.g., [3]) to a highway construction (e.g., [6]). A possible advantage 
of using /i and l^ norms over the Euclidean norm is based on their observed robust
ness. Indeed, it has been reported, e.g., by Charnes [4] that "the linear programming 
models, following from least-absolute-value regressions have been notably robust and 
far less sensitive to approximate linear dependencies than "classical" unconstrained 
least squares regression. This is the experience of the last thirty-plus years." For a 
simultaneous approximation by l\ and the Euclidean norm, see, e.g., [1, 11, 12]. 

6.L E x a m p l e . (Adopted from [6] to the bi-objective case.) Let c = c(t) denote 
the shape of a terrain where a road with the shape x = x(t) is to be built, 0 -̂  t ^ T. 

The usual assumption is that the cost is proportional to the amount of dirt to be 
added or removed. However, one can also require uniform "smootness" of the road 
relative to the shape of the terrain. Together with restrictions on the slopes and 
their rates of change, a model is 

Min | / \x(t) - c(t)\dt, Max \x(t) - c(t)\ \ 

S.t. \i{t)\^0! 

\x(t)\^(32, O^t^T 

x(0) = a, x(T) = p 

where a, P, Pi, and p2 are some prescribed constants. After a discretization at IV 
unit intervals by ti, i = 0 , 1 , . . . , IV and, using the notation 

c(ti) = Ci, x(ti) = Xi, x(U) = xi,i, i = 0,1,..., IV 

the model becomes 

Min < Y^ \xi - cA, Max \x{ - c{\ > 
I --—' 2=1,2,...,N J 
K i=l J 

s.t. Xi - Xi-i = Xi,i-i, i = I,... ,N 

-Pi <xltiKPu ; = i , . . . , N - i 

-02 ^ xi,i - xij-i ^ p2, i = l,...,N -1 

x0 - a, xN = P. 

Since all functions are LFS we know that the efficient points are properly efficient 

and optimality can be checked by Corollary 4.6. 
Let us illustrate how this works on a numerical example. 
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6.2. N u m e r i c a l e x a m p l e . Consider the problem of building a road on the 

terrain of the shape c = c(t) depicted in Figure 6.1 below. The shape of the road 

is x = x(t) and it is required that x(0) = 1 and x(6) = 1.5. The slope should not 

exceed ßi = 0 . 1 in magnitude. After a discretization by unit intervals, the problem 

becomes 

(б.i) 

in l &1 = ^2 \xi ~ c-l» ^ 2 ( x ) = .Max \xi ~ ci\ \ 

- 0.1 Í$ Xi+i - Xi ^ 0.1, i = 1 , . . . , 5 

XQ = 1, XQ = 1.5. 

Min 

s.t 

*tø____. 

ţлJ i ' ^ >\ 
- / - / ! _ŕ- _ _ ì "-- _> 

_ -I ' 1 _ - >i 1 

*tø____. 

ţлJ i ' ^ >\ 
- / - / ! _ŕ- _ _ ì "-- _> 

2 1 

Fig. 6.1 

The values of ct- = c(._) are read from the figure. These are 

U 0 1 2 3 4 5 6 
Ci 1 2 0 0 1 3 2 

Since the functions are LFS, every efficient solution can be obtained by solving the 
program 

Min wi$x(x) + w2$
2(x) 

on the feasible set of (6.1) for some positive weights iv_ and w2. Specify, e.g., w\ = 
w2 = 1. Applying the familiar substitutions 

and 

yf =max(0,Hг) and y. = max(0, -yi) 

g = max|-гг - c»| 
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to yi = Xi - Ci, i = 1 , . . . , 5, we obtain a linear program of the form 

Min dTu 

s.t. Au ^ b 

where A is a 59 x 22 coefficient matrix. (Here 12 rows represent 6 two-sided con
straints on Xi-i — Xi, i = 0 , . . . , 5. The initial conditions on xo and xe determine 
4 next rows. Then 14 rows represent 7 equations Xi - Ci = yf — y~[, 7 rows rep
resent yf ^ 0, 7 rows represent yz~ ^ 0, 14 rows represent 7 two-sided inequalities 
—Q ^ \xi - Ci\ < Q, and, finally, 1 row represents Q ^ 0.) The size of the matrix is 
reduced by 20 rows after some economization. The elements of A are now —1,0 and 
1, the elements of d are all 0 and 1, while the elements of b range from —3 to 3. An 
optimal solution is 

x* = (1.1 1.1 1.2 1.3 1.4)T 

Q* = 1.5 

I/+* = (0 1.2 1.3 0.4 0.05)T 

y~* = (0.9 0 0 0 1.55)T. 

Hence x* is a desired optimal solution. (See Figure 6.1.) Its x* is verified directly in 
the next example. 

6.3. E x a m p l e . Consider the program (6.1) and x* from the preceding exam

ple. We wish to verify directly whether x* is properly efficient. 

First we find that 

5 

a$x(x*) = "}Td\x* - a\ = (-i I I I - i)T 

since x* ?- Ci, i = 1 , . . . , 5. (Recall that Ci, i = 1 , . . . , 5 are the ordinates of the shape 
of the terrain. In particular, c$ = 3.) Also, using the index set 

I(x*) = \k:\xk-Ck\= max | : r * - c ; | l 
l i = l ,...,5 J 

we find that 

<9$2(x*) = conv hull{sign(x* - a)e{ \ i G I(z*)} 

= sign(1.4-3)e5 

= ( 0 0 0 0 - 1)T. 
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Hence x* is efficient, by Corollary 4.5, if, and only if, the system 

W\ 

/ - 1 \ (o\ / 1 \ ( o\ / o \ 
1 0 0 - 1 0 

1 + w2 0 + Ai 0 + л2 
1 + Л3 

- 1 

1 0 0 0 1 

V-v \-u \o) ^ o ) w 

+л4 

/°\ 
o 
o 

- 1 

V i J 

+ A5 

( o \ 
o 
o 
o 

V-i/ 

(o\ 
o 
o 
o 

Voj 
is consistent for some w\ > 0, w2 > 0, X{ ^ 0, i = 1, . . . , 5. The choice 

w{ = w*2 = i, A; = A; = AS = i, A* = 2, A: = 3 

confirms the optimality. 

Acknowledgement. The authors acknowledge a helpful discussion with Alejan

dro Balbas, Antonio Heras, and Moisei Mayergoiz. They thank the referee for his 

suggestions that resulted in a clearer presentation and for detecting a numerical 

error. 

References 

[1] S. M. Allende, C. N. Bouza: A parametric mathematical programming approach to the 
estimation of the coefficients of the linear regression model. Parametric Optimization 
and Related Topics III (J. Guddat et al., eds.). Akademie Verlag, Berlin, 1993, pp. 9-20. 

[2] A. Ben-Israel, A. Ben-Tal, S. Zlobec: Optimality in Nonlinear Programming: A Feasible 
Directions Approach. Wiley Interscience, New York, 1981. 

[3] M. D. Canon, C. D. Cullum, E. Polak: Theory of Optimal Control and Mathematical 
Programming. McGraw-Hill, New York, 1970. 

[4] A. Charnes: Correspondence. 1989. 
[5] A. Charnes, W. W. Cooper: Management Models and Industrial Applications of Linear 

Programming, Vol. I. Wiley, New York, 1961. 
[6] S. J. Citron: Elements of Optimal Control. Holt, Rinehard and Winston, New York, 

1969. 
[7] R. W. Farebrother: The historical development of L\ and Loo estimation procedures. 

Statistical Data Analysis Based on Li-norm and Related Methods (Y. Dodge, ed.). 
North Holland, Amsterdam, 1987, pp. 37-63. 

[8] M. D. Intriligator: Mathematical Optimization and Economic Theory. Prentice Hall, 
Englewood Cliffs, New Jersey, 1972. 

[9] S. Karlin: Mathematical Methods in Theory of Games, Programming and Economics, 
Vol. I. Addison-Wesley, Reading, Massachussetts, 1959. 

365 



10] O. J. Karst: Linear curve fitting using least deviations. Journal of the American Sta
tistical Association 53 (1958), 118-132. 

11] Lj. Martic: Bicriterial programming in regression analysis. Proceedings of KOI '91 (Lj. 
Martic and L. Neralic, eds.). Faculty of Economics, Zagreb, 1991, pp. 37-45. (In Croa
tian.) 

12] Lj. Martic: A simple regression by li and Loo criteria. Proceedings of KOI '92 (V. Ba-
hovec, Lj. Martic and L. Neralic, eds.). Croatian Operational Research Society, Rovinj, 
1992, pp. 17-32. (In Croatian.) 

13] M. E. Salukvadze: Vector-Valued Optimization Problems in Control Theory. Academic 
Press, New York, 1969. 

14] F. Sharifi Mokhtarian: Mathematical Programming with LFS Functions. M. Sc. Thesis, 
McGill University, Montreal, Quebec, 1992. 

15] F. Sharifi Mokhtarian, S. Zlobec: Mathematical Programming with LFS Functions. Util-
itas Mathematica 45 (1994), 3-15. 

16] M. van Rooyen, X. Zhou, S. Zlobec: A saddle-point characterization of Pareto optima. 
Mathematical Programming 67(1994), 77-88. 

17] T. L. Vincent, W. J. Grantham: Optimality in Parametric Systems. Wiley Interscience, 
New York, 1981. 

18] X. Zhou, F. Sharifi Mokhtarian, S. Zlobec: A simple constraint qualification in convex 
programming. Mathematical Programming 61 (1993), 385-397. 

19] S. Zlobec: Two characterizations of Pareto minima in convex multicriteria optimization. 
Aplikace Matematiky 29 (1984), 342-349. 

20] S. Zlobec: Characterizations of optimality in nonconvex programming. The Fourteenth 
Symposium on Mathematical Programming with Data Perturbations. The George 
Washington University, Washington, D. C , May 23, 1992 (tutorial lecture). 

Authors' addresses: Luka Neralic, University of Zagreb, Faculty of Economics, Kennedy-
jev trg 6, 10000 Zagreb, Croatia; Sanjo Zlobec, McGill University Department of Mathe
matics and Statistics, Burnside Hall, 805 Sherbrooke Street West, Montreal, Canada H3A 
2K6. 

366 


		webmaster@dml.cz
	2020-07-02T09:09:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




