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Abstract. The Fourier problem on planar domains with time variable boundary is con-
sidered using integral equations. A simple numerical method for the integral equation is
described and the convergence of the method is proved. It is shown how to approximate
the solution of the Fourier problem and how to estimate the error. A numerical example is
given.
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1. Introduction

Let M ⊂ �
2 be a set of the form

(1.1) M =
{
[x, t] ∈ �

2
∣∣ t ∈ (a, b), x > ϕ(t)

}
,

where ϕ is a continuous function of bounded variation on a compact interval 〈a, b〉.
The Fourier problem on the domainM can be solved by means of a boundary integral

equation. It was shown in [2] that the integral equation is solvable not only in the
space of continuous functions but also in the space of bounded Baire functions. This

result is connected with a proof of convergence of a simple numerical method for
solving the integral equation mentioned. This numerical method leads to a very

simple representation of an approximate solution of the Fourier problem on M .
With regard to the well known properties of the Weierstrass integral we can re-

strict our considerations to the case of zero initial condition (compare, for example,

* Support of the Research Project J04/98/210000010 of Ministry of Education of the Czech
Republic is gratefully acknowledged.
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Remark 4.1, p. 428, in [2]). Thus we shall consider the following boundary value

problem. Let g be a function continuous on 〈a, b〉, g(a) = 0. The problem is to find
a function h continuous and bounded on M , caloric on M , that is h fulfils on M the
heat equation

∂h

∂t
=
∂2h

∂x2
,

and further h(x, a) = 0 for x � ϕ(a) and

h
(
ϕ(t), t

)
= g(t)

for t ∈ 〈a, b〉. Let us recall some basic notation and some assertions from [2] which
we will need in the sequel.

Fix a compact interval 〈a, b〉 (a, b ∈ �
1 , a < b). By C (〈a, b〉), B(〈a, b〉) we mean

the space of all continuous functions on 〈a, b〉 and the space of all bounded Baire
functions on 〈a, b〉, respectively. Further denote

C0(〈a, b〉) =
{
f ∈ C (〈a, b〉)

∣∣ f(a) = 0
}
.

All the spaces C (〈a, b〉), C0(〈a, b〉), B(〈a, b〉) are supposed to be endowed with the
supremum norm. Thus these spaces are Banach spaces, C (〈a, b〉) is a closed subspace
of B(〈a, b〉) and C0(〈a, b〉) is a closed subspace of C (〈a, b〉) [and also of B(〈a, b〉)].
Further fix a continuous function ϕ on 〈a, b〉 with bounded variation (on 〈a, b〉)

and denote

(1.2) K =
{
[ϕ(t), t]

∣∣ t ∈ 〈a, b〉
}
.

For [x, t] ∈ �
2 , α, r > 0, α < +∞, let nx,t(r, α) stand for the number (finite or +∞)

of points of the set

K ∩
{
[ξ, τ ] ∈ �

2

∣∣∣∣ t− τ =

(
ξ − x

2α

)2
, 0 < t− τ < r

}
.

It is known that for any [x, t] ∈ �
2 , r > 0, the function nx,t(r, α) is a measurable

function of the variable α ∈ (0,+∞). Further denote

(1.3) VK(r;x, t) =
∫ +∞

0
e−α

2

nx,t(r, α) dα

(for [x, t] ∈ �
2 , r > 0). Put VK(x, t) = VK(+∞;x, t). The function VK(·, ·) is called

the parabolic variation of the set (curve) K.
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For [x, t] ∈ �
2 , t > a, let αx,t stand for the function defined on the interval

〈a,min{t, b}) by

(1.4) αx,t(τ) =
x− ϕ(τ)

2
√
t− τ

.

Let us recall that if ϕ has finite variation on 〈a, b〉 (and we suppose that) then αx,t is
of locally finite variation on 〈a,min{t, b}) and

(1.5) VK(r;x, t) =
∫ min{t,b}

max{a,t−r}
e−α

2
x,t(τ) d

(
varαx,t(τ)

)

[whenever max{a, t− r} < min{t, b}, otherwise VK(r;x, t) = 0]. For any fixed r > 0
the function VK(r; ·, ·) is lower-semicontinuous on �2 and finite on �2 \K. Further
recall that if

(1.6) sup
[x,t]∈K

VK(x, t) < +∞,

then VK is bounded on �2 .
For f ∈ B(〈a, b〉) the potential Tf = TKf is defined in the following way. For

[x, t] ∈ �
2 , t � a, let Tf(x, t) = 0 and

(1.7) Tf(x, t) = TK(x, t) =
2√
�

∫ min{t,b}

a

f(τ)e−α
2
x,t(τ) dταx,t(τ)

for [x, t] ∈ �
2 , t > a, if the integral on the right hand side exists and is finite. One

can see easily that if VK(x, t) < +∞ then Tf(x, t) is defined and
∣∣Tf(x, t)

∣∣ � ‖f‖B
2√
�

VK(x, t).

Since VK(x, t) < +∞ on �2 \K (assuming only that ϕ has finite variation on 〈a, b〉)
the potential Tf is always defined at least on �2 \K. On �2 \K the potential Tf
is equal to a combination of a double and a single layer heat potentials and thus

Tf solves on �2 \K the heat equation. Let us recall that the idea of investigating
the potential TKf and the parabolic variation VK was proposed by J. Král.

If the condition (1.6) is fulfilled then for any f ∈ C0(〈a, b〉) the potential TKf has
“right hand side limits” and “left hand side limits” on K, that is for any t ∈ 〈a, b〉
and any f ∈ C0(〈a, b〉) the limits

T̃+f(t) = lim
[x′,t′]→[ϕ(t),t]
t′∈〈a,b〉,x′>ϕ(t′)

Tf(x′, t′),(1.8)

T̃−f(t) = lim
[x′,t′]→[ϕ(t),t]
t′∈〈a,b〉,x′<ϕ(t′)

Tf(x′, t′)(1.9)
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exist and are finite. Clearly T̃+f(a) = 0 = T̃−f(a). Let us recall how to express

the values of T̃+f(t), T̃−f(t) for t ∈ (a, b〉. It is known that if [x, t] ∈ K, t > a,
VK(x, t) < +∞, then there is a limit (finite or infinite)

(1.10) αx,t(t) = lim
τ→t−

αx,t(τ).

If further G is the function defined on ∗�1 by

(1.11) G(t) =





0, t = −∞,
∫ t

−∞
e−x

2

dx, t > −∞,

then for each t ∈ (a, b〉 and any f ∈ C0(〈a, b〉) the values T̃+f(t), T̃−f(t) can be
expressed in the form

T̃+f(t) = Tf
(
ϕ(t), t

)
+ f(t)

[
2− 2√

�

G
(
αϕ(t),t(t)

)]
,(1.12)

T̃−f(t) = Tf
(
ϕ(t), t

)
− f(t)

2√
�

G
(
αϕ(t),t(t)

)
.(1.13)

It is obvious that for any f ∈ C0(〈a, b〉) we have also T̃+f, T̃−f ∈ C0(〈a, b〉) and the
operators T̃+, T̃− are linear,

T̃+ : C0(〈a, b〉)→ C0(〈a, b〉), T̃− : C0(〈a, b〉)→ C0(〈a, b〉).

Given g ∈ C0(〈a, b〉) suppose that f ∈ C0(〈a, b〉) is a solution of the equation

T̃+f = g.

Then using (1.8) one can see that the potential Tf solves the Fourier problem on M
[where M is given by (1.1)] with the zero initial condition and the boundary condi-

tion g (on K). Similarly the solution of the equation

T̃−f = g

is connected with the Fourier problem on the set

{
[x, t] ∈ �

2
∣∣ t ∈ (a, b), x < ϕ(t)

}
.

Conditions of solvability of the above equations in the space C0(〈a, b〉) were investi-
gated in [4].
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Let I denote the identity operator on C0(〈a, b〉) and put

T0 = T̃+ − I = T̃− + I

[see the equalities (1.12), (1.13)]. For f ∈ C0(〈a, b〉) we have then T0f(a) = 0 and

T0f(t) = Tf
(
ϕ(t), t

)
+ f(t)

[
1− 2√

�

G
(
αϕ(t),t(t)

)]

for t ∈ (a, b〉. Operator T0 is a linear operator mapping C0(〈a, b〉) into itself. This
operator can be easily extended from C0(〈a, b〉) onto B(〈a, b〉) by putting T0f(a) = 0
[if f ∈ B(〈a, b〉)] and

(1.14) T0f(t) = Tf
(
ϕ(t), t

)
+ f(t)

[
1− 2√

�

G
(
αϕ(t),t(t)

)]

for t ∈ (a, b〉. Thus the operator T0 is an extension of T0 from C0(〈a, b〉) to B(〈a, b〉).
It is shown in [2] that

T0 : B(〈a, b〉)→ B(〈a, b〉)

(T0 is linear, of course). Let I stand for the identity operator on B(〈a, b〉). It is
shown in [2] that if the condition

(1.15) lim
r→0+

sup
t∈(a,b〉

[
2√
�

VK
(
r;ϕ(t), t

)
+

∣∣∣∣1−
2√
�

G
(
αϕ(t),t(t)

)∣∣∣∣
]
< 1

is fulfilled then for any g ∈ B(〈a, b〉) the equation

(1.16) (T0 + I)f = g

[and also the equation (T0 − I)f = g] has a unique solution f ∈ B(〈a, b〉) (see
Theorem 4.1 in [2]). Let us emphasize that if g ∈ C0(〈a, b〉) then the solution of the
equation (1.16) belongs also to C0(〈a, b〉).
In the end let us recall the following assertion which we will use in the proof of

convergence of a numerical method for the equation (1.16).

Proposition 1.1. Let X be a Banach space, X0 ⊂ X its closed subspace. Let

Q,B : X → X be bounded linear operators and suppose that B is compact, ‖Q‖ < 1
and

B : X → X0, Q : X0 → X0.

Let Hn ⊂ X (n = 1, 2, 3, . . .) be subspaces in X and let

Pn : X → Hn
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be projections, ‖Pn‖ = 1, and suppose that for each f ∈ X0

(1.17)
∥∥Pnf − f

∥∥ → 0 for n→∞.

Further let Bn be compact operators, Bn : X → X0, and suppose that Bn are

collectively compact (which means that the set

(1.18)
{
Bnf

∣∣ n ∈ �, f ∈ X, ‖f‖ � 1
}

is relatively compact) and that for each f ∈ X0

(1.19) Bnf → Bf for n→∞.

Consider the equations

(I −Q−B)u = f,(1.20)

(I −QPn −Bn)un = f,(1.21)

where f ∈ X is given and u, un ∈ X are unknown. Suppose that for each f ∈ X0

the equation (1.20) has a unique solution in X0. Then there is n0 such that for each
n > n0 and each f ∈ X the equation (1.21) is uniquely solvable in X . At the same

time there are constants c1, c2 such that the corresponding solutions of (1.20), (1.21)
satisfy the estimates

‖un‖ � c1‖u‖ � c2‖f‖,(1.22)

‖u− un‖ � c2
(
‖QPnu−Qu‖+ ‖Bnu−Bu‖

)
.(1.23)

Proof of this assertion can be found, for example, in [6] (Lemma 2.3 in [6]).

2. Numerical solution

In this part we will use the some notation as in Part 1. Throughout this part let
〈a, b〉 ⊂ �

1 be a compact interval, ϕ : 〈a, b〉 → �
1 a continuous function of bounded

variation on 〈a, b〉. The set M is defined by (1.1) and K by (1.2). Throughout this
part we will suppose that the condition (1.15) is fulfilled [note that then also the

condition (1.6) is fulfilled].

We know that if g ∈ C0(〈a, b〉) and f is the solution of the equation

(2.1) (T0 + I)f = g,
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then f ∈ C0(〈a, b〉) and the potential TKf solves the Fourier problem on M with

zero initial condition and the boundary condition g on K [more precisely, on K we
consider the boundary condition F defined for [x, t] ∈ K by F (x, t) = g(t)].
Let us recall also the following notation from [2] (see Section 2.2 in [2]). For

ψ ∈ C (〈a, b〉), r � 0 (r < +∞) define an operator rHψ
ϕ on B(〈a, b〉) by

(2.2) rHψ
ϕf(t) =




0 if t � a+ r,

2√
�

∫ t−r

a

f(τ)e−α
2
ψ(t),t(τ) dτ

(
αψ(t),t(τ)

)
if t > a+ r

for f ∈ B(〈a, b〉), t ∈ 〈a, b〉 [the function αx,t(τ) is defined by (1.4)]. It is known that
for each ψ ∈ C (〈a, b〉) and any r > 0

rHψ
ϕ : B(〈a, b〉)→ C0(〈a, b〉)

and rHψ
ϕ is a compact (linear) operator on B(〈a, b〉) (see Lemma 2.1 in [2]).

For r > 0, f ∈ B(〈a, b〉) denote further

(2.3) Trf = rHϕ
ϕf.

Thus if r > 0 then

(2.4) Tr : B(〈a, b〉)→ C0(〈a, b〉)

and the operator Tr is compact. Further it is known that if D is the unit ball

in B(〈a, b〉) then for each t ∈ (a, b〉 we have

(2.5) sup
f∈D

[
T0f(t)− Trf(t)

]
=
2√
�

VK
(
r;ϕ(t), t

)
+

∣∣∣∣1−
2√
�

G
(
αϕ(t),t(t)

)∣∣∣∣

(see Lemma 2.3 in [2]).

Now let us consider the following simple approximate solution of the equation (2.1).

We will suppose that g ∈ C0(〈a, b〉) [we know that then f ∈ C0(〈a, b〉)]. We shall
approximate the solution f of (2.1) by a piecewise constant function.

Given n natural, choose points tni , i = 0, 1, . . . , n,

(2.6) a = tn0 < tn1 < . . . < tnn−1 < tnn = b.

Suppose that the nodes tni are chosen in such a way that

(2.7) lim
n→∞

max
i=1,2,...,n

(tni − tni−1) = 0;
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one possibility is that we put

tni = a+ i
b− a

n
.

For f ∈ B(〈a, b〉) define Pnf ∈ B(〈a, b〉) such that we put Pnf(a) = f(tn1 ) and

(2.8) Pnf(t) = f(t
n
i ) for t ∈ (tni−1, tni 〉

(i = 1, 2, . . . , n). Let Hn stand for the space of functions on 〈a, b〉 which are constant
on the interval 〈a, tn1 〉 and on the intervals (tni−1, tni 〉 for i = 2, 3, . . . , n. Then the
operator Pn is a projection of B(〈a, b〉) onto Hn. Clearly ‖Pn‖ = 1 and [due to
assumption (2.7)] for any f ∈ C0(〈a, b〉) we have

(2.9) Pnf → f for n→∞

in the sense of the norm in B(〈a, b〉).
Instead of the equation (2.1) we will consider the equation

(2.10) (I + T0Pn)un = g.

First we will realize that for all sufficiently large n the equation (2.10) is uniquely

solvable in B(〈a, b〉) and that if f ∈ C0(〈a, b〉) is a solution of (2.1) [we suppose that
g ∈ C0(〈a, b〉)], un is the solution of (2.10) then

(2.11) un → f for n→∞

in the sense of the norm in B(〈a, b〉) (that is un → f uniformly on 〈a, b〉). This fact
follows from Proposition 1.1 in the following way. In Proposition 1.1 denote

X =B(〈a, b〉), X0 = C0(〈a, b〉).

Choose r > 0 such that

(2.12) sup
t∈(a,b〉

[
2√
�

VK
(
r;ϕ(t), t

)
+

∣∣∣∣1−
2√
�

G
(
αϕ(t),t(t)

)∣∣∣∣
]
< 1;

such an r exists due to the assumption (1.15). Further put

B = −Tr, Q = −(T0 − Tr).

Then
B : X → X0, Q : X0 → X0
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(and Q : X → X , of course). As we have seen above, B is a compact operator on X

and it follows from (2.5) that [under the condition (2.12)] we have ‖Q‖ < 1. Put

Bn = BPn.

Since B is compact and ‖Pn‖ = 1, the operators Bn are collectively compact. Since
Pnf → f for f ∈ X0, we have also

Bnf → Bf

for f ∈ X0. Now the equation (2.1) can be written in the form

(2.13) (I −Q−B)f = g

and the equation (2.10) in the form

(2.14) (I −QPn −Bn)un = g.

We know that the equation (2.1), that is the equation (2.13), is uniquely solvable

in X0 for any g ∈ X0 (it is even uniquely solvable in X for any g ∈ X—see Theo-
rem 4.1 in [2]). Now it follows from Proposition 1.1 that there is n0 such that for

any n natural, n > n0, the equation (2.14), that is the equation (2.10), is uniquely
solvable in X (even for any g ∈ X). Now we want to prove that if f is the solution
of the equation (2.10) then (2.11) is valid. Since f ∈ X0 and Pnf → f , we have

‖QPnf −Qf‖ =
∥∥Q(Pnf − f)

∥∥ → 0.

We have seen that ‖Bnf → Bf‖ → 0 and it follows from Proposition 1.1 [see
inequality (1.23) in Proposition 1.1] that un → f . This fact means that the numerical

method considered converges.

Let us describe in detail the algorithm to which the numerical method leads. Let
χn1 be the characteristic function of the interval 〈a, tn1 〉 and for i = 2, 3, . . . , n let
χni be the characteristic function of (t

n
i−1, t

n
i 〉. For i, j = 1, 2, . . . , n put

(2.15) Anij = (I + T0)χnj (tni )

and further

bni = g(t
n
i ),(2.16)

xni = un(t
n
i )(2.17)
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for i = 1, 2, . . . , n. We want to show that solving the equation (2.10) [that is the

equation (2.14)] is equivalent to solving the linear system of equations

(2.18)
n∑

j=1

Anijx
n
j = b

n
i , i = 1, 2, . . . , n.

Suppose thus that n is so large that the equation (2.10) is uniquely solvable
[in B(〈a, b〉)] and let un be the solution of this equation. For f ∈ B(〈a, b〉) we
have

Pnf =
n∑

i=1

f(tni )χ
n
i

and using the notation (2.17) we can write

Pnun =
n∑

i=1

xni χ
n
i .

Thus the equation (2.10) can be written in the form

(2.19) un(t) +
n∑

j=1

xnj T0χnj = g(t).

Using the notation (2.16) we now get for t = tni (i = 1, 2, . . . , n)

(2.20) xni +
n∑

j=1

xnj T0χnj (tni ) = bni .

We have

Anij = (I + T0)χnj (tni ) = χnj (tni ) + T0χnj (tni )

and since

χnj (t
n
i ) =

{
0 for i 
= j,
1 for i = j

(i, j = 1, 2, . . . , n), we can write

(2.21) Anij =

{
T0χnj (tni ) for i 
= j,
1 + T0χni (tni ) for i = j.

Now it is seen that the system (2.20) is the same as the system (2.18). Thus we see
that if un is the solution of the equation (2.10) then xni given by (2.17) solves the

50



system (2.18). Since g ∈ C0(〈a, b〉) was arbitrary, it means that the system (2.18) is
solvable for any bni (if n is sufficiently large) and thus the matrix

A =
(
Anij

)

is regular.

Suppose now that n is sufficiently large and let xni (i = 1, 2, . . . , n) be the solution
of the system (2.18). If we put

un(t) = g(t)−
n∑

j=1

xnj T0χnj (t)

for t ∈ 〈a, b〉 then it follows from (2.19) that un solves the equation (2.10). Now we
see that solving (2.10) is equivalent to solving (2.18), indeed.

Now let us show a simple way how to evaluate the coefficients Anij of the linear
system (2.18). Let us recall that for f ∈ B(〈a, b〉), t ∈ (a, b〉 we have

(2.22) T0f(t) =
2√
�

∫ t

a

f(τ)e−α
2
ϕ(t),t(τ) dαϕ(t),t(τ) + f(t)

[
1− 2√

�

G
(
αϕ(t),t(t)

)]
,

where for τ ∈ 〈a, t) the function αx,t(τ) is defined by (1.4) and

(2.23) αx,t(t) = lim
τ→t−

αx,t(τ).

It is seen easily that if a � t1 < t2 � t � b then

(2.24)
∫ t2

t1

e−α
2
ϕ(t),t(τ) dαϕ(t),t(τ) = G

(
αϕ(t),t(t2)

)
−G

(
αϕ(t),t(t1)

)

[if t2 = t then the value αϕ(t),t(t) is given by (2.23), of course]. For the evaluation

of Anij we use the equality (2.21). In the case i < j we have χnj (t) = 0 for t ∈ 〈a, tni 〉
and it is seen from (2.21), (2.22) that then Anij = 0. In the case i > j we get from

(2.21) and (2.22), (2.24) [and the fact that χnj (t
n
i ) = 0]

Anij = T0χnj (tni ) =
2√
�

∫ tnj

tnj−1

e
−α2ϕ(tn

i
),tn
i
(τ)
dαϕ(tni ),tni (τ)

=
2√
�

[
G

(
αϕ(tni ),tni (t

n
j )

)
−G

(
αϕ(tni ),tni (t

n
j−1)

)]
.
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Now consider the case i = j. Then χni (t
n
i ) = 1 and we obtain

Anii = 1 + T0χni (tni )

= 1 +
2√
�

∫ tni

tni−1

e
−α2ϕ(tn

i
),tn
i
(τ)
dαϕ(tni ),tni (τ) +

[
1− 2√

�

G
(
αϕ(tni ),tni (t

n
i )

)]

= 1 +
2√
�

[
G

(
αϕ(tni ),tni (t

n
i )

)
−G

(
αϕ(tni ),tni (t

n
i−1)

)]
+

[
1− 2√

�

G
(
αϕ(tni ),tni (t

n
i )

)]

= 2− 2√
�

G
(
αϕ(tni ),tni (t

n
i−1)

)
.

Note that it is not necessary to know the value of the limit

αϕ(tni ),tni (t
n
i ) = lim

τ→tni −
αϕ(tni ),tni (τ)

in order to evaluate Anii. Further note that since the value αϕ(tni ),tni (t
n
i−1) is finite,

we have
2√
�

G
(
αϕ(tni ),tni (t

n
i−1)

)
< 2

and thus Anii 
= 0 (even Anii > 0) for all i = 1, 2, . . . , n. We can summarize that the
values of the coefficients Anij can be written in the form

(2.25) Anij =





0 if j > i,

2− 2√
�

G
(
αϕ(tni ),tni (t

n
i−1)

)
if j = i,

2√
�

[
G

(
αϕ(tni ),tni (t

n
j )

)
−G

(
αϕ(tni ),tni (t

n
j−1)

)]
if j < i.

We see that the matrix A = (Anij) is triangular. We have seen above that it follows
from Proposition 1.1 that A is regular for all sufficiently large n. Since Anii 
= 0 we
even see now that A is always regular.
It was shown previously that if f is the solution of (2.1) and un is the solution

of (2.10) then [assuming g ∈ C0(〈a, b〉)]

un → f.

Since f ∈ C0(〈a, b〉) and the values xni are of the form (2.17) we have also

(2.26) Pnun =
n∑

i=1

xni χ
n
i → f for n→∞
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uniformly on 〈a, b〉 [(2.7) is still supposed]. Thus for a given n,

Pnun =
n∑

i=1

xni χ
n
i

can be regarded as an approximate solution of the integral equation (2.1). If
f solves (2.1) then the potential Tf = TKf is the solution of the first bound-

ary value problem for the heat equation on M with zero initial condition and the
boundary condition g on K. Potential TK(Pnun) is an approximate solution of

this boundary value problem [note that TK(Pnun) fulfils the zero initial condition
exactly].

Let us show a simple way how to evaluate the potential TK(Pnun) on M using

the values xni . Given t ∈ (a, b〉, x > ϕ(t), we first find n0 integer such that

(2.27) tnn0−1 < t � tnn0

(then 1 � n0 � n). Since for t ∈ (a, b〉, x > ϕ(t) we have

αx,t(t) = lim
τ→t−

αx,t(τ) = +∞

[and G(+∞) = √
� ], using (2.24) we obtain for such x, t that

(2.28) TK(Pnun) =
2√
�

∫ t

a

Pnun(τ)e−α
2
x,t(τ) dαx,t(τ)

=
2√
�

∫ t

a

n0∑

i=1

xni χ
n
i (τ)e

−α2x,t(τ) dαx,t(τ)

=
2√
�

n0−1∑

i=1

xni

∫ tni

tni−1

e−α
2
x,t(τ) dαx,t(τ)

+ xnn0
2√
�

∫ t

tnn0−1

e−α
2
x,t(τ) dαx,t(τ)

=
2√
�

n0−1∑

i=1

xni

[
G

(
αx,t(t

n
i )

)
−G

(
αx,t(t

n
i−1)

)]

+ xnn0
2√
�

[√
�−G

(
αx,t(tnn0−1)

)]

(in the case n0 = 1 the value of the sum
n0−1∑
i=1

. . . is considered to be zero).

Now we can summarize the procedure into the following three steps:
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Step 1. Choose nodes tni such that (2.6), (2.7) is valid. In the subsequent calculation

consider n to be fixed.

Step 2. Evaluate coefficients bni by (2.16), coefficients A
n
ij by (2.25), and solve the lin-

ear system (2.18). Since this system has a triangular matrix with non-zero

coefficients on the diagonal, it is very easy to solve it.

Step 3. For [x, t] ∈ M the value of the approximate solution TK(Pnun) at [x, t] of the
boundary problem is given by (2.28).

Now examine the function TK(Pnun) in more detail. Clearly Pnun ∈ B(〈a, b〉),
the potential TK(Pnun) is caloric on M (i.e. fulfils the heat equation there) and for
each x > ϕ(a)

lim
[y,τ ]→[x,a]
[y,τ ]∈M

TK(Pnun)(y, τ) = 0.

Thus the approximate solution TK(Pnun) fulfils the zero initial condition exactly

(with the exception of the point [ϕ(a), a]).

Since Pnun is constant on each interval (tni−1, t
n
i 〉, it follows from [3] (see Re-

mark 2.4 in [3]) that for any t ∈ (tni−1, tni ) (i = 1, 2, . . . , n) the limit

lim
[y,τ ]→[ϕ(t),t]
τ∈(a,b〉,y>ϕ(τ)

TK(Pnun)(y, τ)

exists and is finite; this limit exists and is finite also for t = tnn = b. Applying this

assertion to the intervals 〈a, tni 〉 (instead of 〈a, b〉) we see that the limits

lim
[y,τ ]→[ϕ(tni ),tni ]
τ�tni ,y>ϕ(τ)

TK(Pnun)(y, τ)

exist and are finite (i = 1, 2, . . . , n). Further we have

lim
[y,τ ]→[ϕ(tni ),tni ]
τ�tni ,y>ϕ(τ)

TK(Pnun)(y, τ) = TK(Pnun)
(
ϕ(tni ), t

n
i

)
(2.29)

+ Pnun(tni )

[
2− 2√

�

G
(
αϕ(tni ),tni (t

n
i )

)]
.

Since Pnun =
n∑
j=1

xnj χ
n
j we have

TK(Pnun)
(
ϕ(tni ), t

n
i

)
=

n∑

j=1

xnj TKχ
n
j

(
ϕ(tni ), t

n
i

)
.
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Here TKχnj (ϕ(t
n
i ), t

n
i ) = 0 for j > i and

TKχ
n
j

(
ϕ(tni ), t

n
i

)
=
2√
�

∫ tnj

tnj−1

e
−α2ϕ(tn

i
),tn
i
(τ)
dαϕ(tni ),tni (τ)

=
2√
�

[
G

(
αϕ(tni ),tni (t

n
j )

)
−G

(
αϕ(tni ),tni (t

n
j−1)

)]
= Anij

for j < i [see (2.25)]. In the case j = i we have

TKχ
n
i

(
ϕ(tni ), t

n
i

)
=
2√
�

∫ tni

tni−1

e
−α2ϕ(tn

i
),tn
i
(τ)
dαϕ(tni ),tni (τ)

=
2√
�

[
G

(
αϕ(tni ),tni (t

n
i )

)
−G

(
αϕ(tni ),tni (t

n
i−1)

)]

and thus

TK(Pnun)
(
ϕ(tni ), t

n
i

)
=

i−1∑

j=1

xnjA
n
ij + x

n
i

2√
�

[
G

(
αϕ(tni ),tni (t

n
i )

)
−G

(
αϕ(tni ),tni (t

n
i−1)

)]
.

Now it follows from (2.29) that (for i = 1, 2, . . . , n)

lim
[y,τ ]→[ϕ(tni ),tni ]
τ�tni ,y>ϕ(τ)

TK(Pnun)(y, τ)

=
i−1∑

j=1

xnjA
n
ij + x

n
i

2√
�

[
G

(
αϕ(tni ),tni (t

n
i )

)
−G

(
αϕ(tni ),tni (t

n
i−1)

)]

+ xni
[
2− 2√

�

G
(
αϕ(tni ),tni (t

n
i )

)]

=
i−1∑

j=1

xnjA
n
ij + x

n
i

[
2− 2√

�

G
(
αϕ(tni ),tni (t

n
i−1)

)]

=
i∑

j=1

xnjA
n
ij

[see (2.25)]. As Anij = 0 for j > i it follows from (2.18), (2.16) that

i∑

j=1

xnjA
n
ij = b

n
i = g(t

n
i )

and we see that for i = 1, 2, . . . , n

(2.30) lim
[y,τ ]→[ϕ(tni ),tni ]
τ�tni ,y>ϕ(τ)

TK(Pnun)(y, τ) = g(t
n
i ).
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Thus in this sense the approximate solution TK(Pnun) fulfils the boundary condi-

tion g at the points [ϕ(tni ), t
n
i ] ∈ K exactly—for i < n we do not consider limits with

respect to M but with respect to the set

M ∩
{
[x, t] ∈ �

2
∣∣ t � tni

}
.

Let us examine the expression (2.28) for the function TK(Pnun) more closely.
Recall that the equality (2.28) holds for t ∈ (a, b〉, x > ϕ(t) if n0 is an integer,

1 � n0 � n and such that (2.27) is fulfilled. But the right hand side of (2.28) has
sense also if the condition x > ϕ(t) is not fulfilled and even if t > b. Let us define a

function hn on �2 in the following way. For [x, t] ∈ �
2 , t � a put hn(x, t) = 0. Now

let [x, t] ∈ �
2 , t > a. If t � tnn−1 let n0 (integer) be such that

tnn0−1 < t � tnn0 ;

if t > tnn−1 put n0 = n. In both cases we define

hn(x, t) =
2√
�

n0−1∑

i=1

xni

[
G

(
αx,t(tni )

)
−G

(
αx,t(tni−1)

)]
(2.31)

+ xnn0
2√
�

[√
�−G

(
αx,t(tnn0−1)

)]
.

For t ∈ (a, b〉, x > ϕ(t) we have hn(x, t) = TK(Pnun), of course. Put further xn0 = 0.

Then for t > a (x ∈ �
1 ) the equality (2.31) can be written in the form

(2.32) hn(x, t) = 2xnn0 +
2√
�

n0−1∑

i=0

(xni − xni+1)G
(
αx,t(tni )

)
.

For i = 0, 1, . . . , n− 1 put

(2.33) qi = −(xni − xni+1)

(xn0 = 0 all the time). Then

(2.34) xni =
i−1∑

j=0

qj

for i = 1, 2, . . . , n (formally also for i = 0). Define a function H on �2 by

(2.35) H(x, t) =




0 if t � 0,

2− 2√
�

G

(
x

2
√
t

)
if t > 0.
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Let n0 have the sense described above. It is seen from (2.32), (2.33), (2.34) that

hn can be written in the form

hn(x, t) = 2
n0−1∑

i=0

qi −
2√
�

n0−1∑

i=0

qiG
(
αx,t(tni )

)

=
n0−1∑

i=0

qi

[
2− 2√

�

G
(
αx,t(tni )

)]
=
n0−1∑

i=0

qiH
(
x− ϕ(tni ), t− tni

)
.

But H(x, t) = 0 for t � 0 and thus

(2.36) hn(x, t) =
n−1∑

i=0

qiH
(
x− ϕ(tni ), t− tni

)

for all [x, t] ∈ �
2 .

On the set

�
2 \

{
[x, 0]

∣∣ x � 0
}

the function H is clearly continuous and caloric. At the points of the form [y, 0],

y � 0, H is continuous with respect to the half-plane

{
[x, t] ∈ �

2
∣∣ t � 0

}

(it vanishes there). Hence we see that the function hn possesses the following two

properties:

(1) hn is continuous and caloric on the set

�
2 \

n−1⋃

i=0

{
[x, tni ]

∣∣ x � ϕ(tni )
}
.

(2) At the points of the form [y, tni ], y � ϕ(tni ) the function hn is continuous with
respect to the set {

[x, t] ∈ �
2

∣∣ t � tni
}

(i = 0, 1, . . . , n− 1).
Especially hn is continuous at the points [ϕ(tni ), t

n
i ] with respect to the half-plane

{[x, t] ∈ �
2 | t � tni } (at [ϕ(tnn), tnn] the function hn is even continuous with respect

to �2 ). Since hn(x, t) = TK(Pnun) for [x, t] ∈M it follows now from (2.30) that

(2.37) hn
(
ϕ(tni ), t

n
i

)
= g(tni )
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for i = 1, 2, . . . , n (this equality holds also for i = 0 but it is not interesting in this

case). Now we see that the method of numerical solution of the first boundary value
problem for the heat equation on M with zero initial condition and the boundary
condition g on K [g ∈ C0(〈a, b〉)] can be reformulated in the following surprisingly
elementary way:

We seek an approximate solution hn of the form (2.36) such that hn fulfils bound-

ary conditions at points [ϕ(tni ), t
n
i ], that is (2.37) is valid for i = 1, 2, . . . , n.

The system of equations (2.18) was considered above for the unknowns xnj and

coefficients qi were written in the form (2.33). But the coefficients qi can be deter-
mined directly from the conditions (2.37). It is seen easily that the conditions (2.37)

lead to a system of linear equations with a triangular matrix. For i = 1, 2, . . . , n we
have

g(tni ) = hn
(
ϕ(tni ), t

n
i

)
=

n−1∑

j=0

qjH
(
ϕ(tni )− ϕ(tnj ), t

n
i − tnj

)

=
i−1∑

j=0

qjH
(
ϕ(tni )− ϕ(tnj ), t

n
i − tnj

)
.

Especially for i = 1

g(tn1 ) = q0H
(
ϕ(tn1 )− ϕ(tn0 ), t

n
1 − tn0

)
,

hence

(2.38) q0 = g(tn1 )
/
H

(
ϕ(tn1 )− ϕ(tn0 ), t

n
1 − tn0

)

[clearly H(ϕ(tn1 )−ϕ(tn0 ), tn1 − tn0 ) 
= 0]. For i = 1, 2, . . . , n−1 we obtain the recurrent
formula

qi =

[
g(tni+1)−

i−1∑

j=0

qjH
(
ϕ(tni+1)− ϕ(tnj ), t

n
i+1 − tnj

)]
(2.39)

/
H

(
ϕ(tni+1)− ϕ(tni ), t

n
i+1 − tni

)
.

As the approximation of the solution of the integral equation was piecewise con-

stant one can not expect better convergence than linear. Note that we chose the
piecewise constant approximation because the integral in the integral equation was

Stieltjes (Lebesgue-Stieltjes). On the other hand, the algorithm to which the method
leads is extremely simple and the approximate solution of the boundary value prob-

lem is actually caloric. Let us show a relatively simple estimation of the error for
the approximate solution of the boundary value problem.
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Let hn be the approximate solution of the boundary value problem described above

and let h be the exact solution of that problem, that is h is continuous on M , h is
caloric on M , h(x, a) = 0 for x � ϕ(a), and

h
(
ϕ(t), t

)
= g(t)

for t ∈ 〈a, b〉 [g ∈ C0(〈a, b〉) is the given boundary condition]. Denote

(2.40) r = sup
t∈〈a,b〉

lim sup
[y,τ ]→[ϕ(t),t]
[y,τ ]∈M

∣∣hn(y, τ)− h(y, τ)
∣∣.

It follows from the maximum principle that

(2.41)
∣∣hn(x, t)− h(x, t)

∣∣ � r

for any [x, t] ∈M . Regarding the properties of hn described above and the continuity
of h with respect to M it is seen immediately that for t ∈ 〈a, b〉, t 
= tn0 , tn1 , . . . , tnn−1

(2.42) lim sup
[y,τ ]→[ϕ(t),t]
[y,τ ]∈M

∣∣hn(y, τ)− h(y, τ)
∣∣ =

∣∣∣hn
(
ϕ(t), t

)
− h

(
ϕ(t), t

)∣∣∣

=
∣∣∣hn

(
ϕ(t), t

)
− g(t)

∣∣∣.

Further, for i = 1, 2, . . . , n we have [see (2.37) and the item (2) over (2.37)]

(2.43) lim sup
[y,τ ]→[ϕ(tni ),tni ]
[y,τ ]∈M,τ�tni

∣∣hn(y, τ)− h(y, τ)
∣∣ = 0.

Given i ∈ {0, 1, . . . , n− 1} consider t ∈ (tni , tni+1〉. Then (for any x ∈ �
1 )

(2.44) hn(x, t)− h
(
ϕ(tni ), t

n
i

)
= hn(x, t)− hn

(
ϕ(tni ), t

n
i

)

=
i−1∑

j=0

qjH
(
x− ϕ(tnj ), t− tnj

)

−
i−1∑

j=0

qjH
(
ϕ(tni )− ϕ(tnj ), t

n
i − tnj

)
+ qiH

(
x− ϕ(tni ), t− tni

)
.

Since the sum

(2.45)
i−1∑

j=0

qjH
(
x− ϕ(tnj ), t− tnj

)
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is continuous at the point [ϕ(tni ), t
n
i ] (as a function of the variables x, t) it follows

from (2.44) and the continuity of h that

(2.46) lim sup
[y,τ ]→[ϕ(tni ),tni ]
[y,τ ]∈M,τ>tni

∣∣hn(y, τ) − h(y, τ)
∣∣ = |qi| lim sup

[y,τ ]→[ϕ(tni ),tni ]
[y,τ ]∈M,τ>tni

H
(
y − ϕ(tni ), τ − tni

)

(H � 0) and together with (2.43) we obtain that for i = 0, 1, . . . , n− 1

(2.47) lim sup
[y,τ ]→[ϕ(tni ),tni ]

[y,τ ]∈M

∣∣hn(y, τ)− h(y, τ)
∣∣ = |qi| lim sup

[y,τ ]→[ϕ(tni ),tni ]
[y,τ ]∈M,τ>tni

H
(
y − ϕ(tni ), τ − tni

)
.

If [y, τ ] ∈M and τ > tni then y > ϕ(τ) and

H
(
y − ϕ(tni ), τ − tni

)
< H

(
ϕ(τ) − ϕ(tni ), τ − tni

)
.

Since H is continuous on �2 \ {[x, 0] | x � 0} it is seen now that

(2.48) lim sup
[y,τ ]→[ϕ(tni ),tni ]
[y,τ ]∈M,τ>tni

H
(
y − ϕ(tni ), τ − tni

)
= lim sup

τ→tni +
H

(
ϕ(τ) − ϕ(tni ), τ − tni

)
.

Using once more the equality (2.44) it follows from the continuity of h and of the
sum (2.45) and from (2.47), (2.48) that

(2.49) lim sup
[y,τ ]→[ϕ(tni ),tni ]

[y,τ ]∈M

∣∣hn(y, τ)− h(y, τ)
∣∣ = |qi| lim sup

τ→tni +
H

(
ϕ(τ) − ϕ(tni ), τ − tni

)

= lim sup
τ→tni +

∣∣∣hn
(
ϕ(τ), τ

)
− g(τ)

∣∣∣.

Together with (2.42) we obtain the following simple expression for the error r:

(2.50) r = sup
t∈〈a,b〉

∣∣∣hn
(
ϕ(t), t

)
− g(t)

∣∣∣.

Finally, let us take notice of the fact that in any case r < +∞. It follows from the
continuity of hn onM with the exception of the points [ϕ(tni ), t

n
i ] (i = 0, 1, . . . , n−1)

and the boundedness of H (0 � H � 2). It is not hard to calculate numerically an
approximate value of r in the form (2.50).
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3. Numerical example

To illustrate the numerical method for solving the Fourier problem described above

let us consider the following case. Put a = 0, b = 4, and on the interval 〈0, 4〉 define
a function ϕ by

ϕ(t) =





−2
√
t for t ∈ 〈0, 1/2〉,

−3
√
2
4

− 1
2

√
|t− 1| for t ∈ 〈1/2, 3/2〉,

−4
√
2(2− t)2 for t ∈ 〈3/2, 2〉,

1
2

√
|t− 5/2| −

√
2
4

for t ∈ 〈2, 3〉,
(t− 3)2 for t ∈ 〈3, 4〉.

For the sets

K =
{
[ϕ(t), t]

∣∣ t ∈ 〈0, 4〉
}
,

M =
{
[x, t] ∈ �

2
∣∣ t ∈ (0, 4), x > ϕ(t)

}

see Fig. 1. It follows from Proposition 1 in [1] that for any ε ∈ (0, 1/2) we have

�

�

�

�

�

t

x

K

M

Figure 1.

lim
r→0+

sup
t∈S

[
2√
�

VK
(
r;ϕ(t), t

)
+

∣∣∣∣1−
2√
�

G
(
αϕ(t),t(t)

)∣∣∣∣
]
= 0,

where

S = 〈ε, 1− ε〉 ∪ 〈1 + ε, 5/2− ε〉 ∪ 〈5/2 + ε, 4〉.
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It suffices to examine the parabolic variation on K near the points t = 0, 1, 5/2. But

it follows from examples in [1] that

lim
r→0+

sup
t∈(0,4〉

[
2√
�

VK
(
r;ϕ(t), t

)
+

∣∣∣∣1−
2√
�

G
(
αϕ(t),t(t)

)∣∣∣∣
]

= max

{
2√
�

∫ 1

0
e−α

2

dα, 3
2√
�

∫ 1/4

0
e−α

2

dα

}

≈ max{0.842700793, 0.828979171}= 0.842700793< 1.

Thus the condition for the convergence of the method is fulfilled.
We will solve the Fourier problem on M with zero initial condition and with a

boundary condition g for which the (exact) solution is known. Let W stand for the
heat kernel on �2 , that is

W (x, t) =

{ 1

2
√
�t
e−

x2

4t if t > 0,

0 if t � 0.

On �2 define a function h by

h(x, t) = 0.5W (x+ 1, t) + 2W (x+ 2, t)− 10W (x+ 2.6, t− 0.9)
+ 2W (x+ 2.5, t− 1.3)− 0.3W (x+ 0.8, t− 2.49) + 20W (x+ 2, t− 2.8).

Singular points of h do not belong to M and thus h is continuous (and bounded)

on M , h is caloric on M , and h(x, 0) = 0. Putting

g(t) = h
(
ϕ(t), t

)

for t ∈ 〈0, 4〉 the function h is the (exact) solution of the Fourier problem onM with
zero initial condition and with the boundary condition g on K. For the graph of g
see Fig. 2.
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Figure 2.
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Now we will look for the numerical solution of the first boundary value problem

onM with zero initial condition and the boundary condition g onK using the scheme
described above. For the sake of simplicity we will use an equidistant partition of
the interval 〈0, 4〉, that is given n natural we consider nodes tni of the form

tni = i
4
n

(i = 0, 1, . . . , n). The approximate solution hn is given by (2.36), where the coeffi-
cients qi are determined by the condition (2.37) and can be evaluated by the recurrent

formula (2.39) [equivalently hn can be expressed in the form (2.31), where the val-
ues xni satisfy the system of equations (2.18)]. Let us note that for the evaluation

of the error function 2√
�
G we have used a procedure from the package Numerical

recipes (in Pascal), see [9].

We have seen above that for [x, t] ∈M we have

∣∣hn(x, t)− h(x, t)
∣∣ � r,

where

(3.1) r = sup
t∈〈a,b〉

∣∣∣hn
(
ϕ(t), t

)
− g(t)

∣∣∣.

In this connection we are interested in the graph of the function hn(ϕ(t), t)−g(t). For
this graph for some values of n see Fig. 3. Take notice of the fact that hn(ϕ(t), t)−g(t)
has discontinuities at points tni for i = 0, 1, . . . , n−1. This is caused by the behaviour
of the function H near the point [0, 0]. Also take notice of that it seems (in our

case) that for large n the function hn(ϕ(t), t) − g(t) is monotonous on each of the
intervals (tni , t

n
i+1〉 and vanishes at the nodes tni [compare (2.37)]; in our case this is

not true for n = 10 and n = 20. For a “typical” graph of hn(ϕ(t), t)−g(t) for large n
see Fig. 4, where n = 1280 and the graph is considered on two different intervals.

The two intervals contain the points t = 1 and t = 5/2, respectively, at which the
function ϕ has “edges”.

In this connection also the graph of the error hn(x, t) − h(x, t) for t fixed and

x from an interval of the form 〈ϕ(t), k〉 may be interesting. In Fig. 5 the case n = 40
for some different t is considered (t = 3.2 is a node and the adjacent node is t = 3.3).

As we have noted we have |hn(x, t)− h(x, t)| � r on M , where r is given by (3.1).
For the graph of

hn
(
ϕ(t), t

)
− g(t) = hn

(
ϕ(t), t

)
− h

(
ϕ(t), t

)
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c) n = 40 d) n = 80

Figure 3. Graph of hn(ϕ(t), t) − g(t).
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Figure 4. Graph of hn(ϕ(t), t) − g(t) for n = 1280.

for some not very large n see Fig. 3. In the case of large n, instead of the graph of

hn(ϕ(t), t) − g(t) one can consider the graph of a function er which is linear on the
intervals 〈tni , tni+1〉,

er(tni ) = sup
t∈(tni ,tni+1)

(
hn

(
ϕ(t), t

)
− g(t)

)

if ∣∣∣∣∣ sup
t∈(tni ,tni+1)

(
hn

(
ϕ(t), t

)
− g(t)

)∣∣∣∣∣ �
∣∣∣∣∣ inf
t∈(tni ,tni+1)

(
hn

(
ϕ(t), t

)
− g(t)

)∣∣∣∣∣

and

er(tni ) = inf
t∈(tni ,tni+1)

(
hn

(
ϕ(t), t

)
− g(t)

)
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a) t = 3.2, ϕ(t) = 0.04 b) t = 3.20001, ϕ(t) ≈ 0.04
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c) t = 3.201, ϕ(t) ≈ 0.0404 d) t = 3.21, ϕ(t) = 0.0441
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e) t = 3.25, ϕ(t) = 0.0625 f) t = 3.29, ϕ(t) = 0.0841
Figure 5. Graph of hn(x, t)− h(x, t) for x ∈ 〈ϕ(t), 1.5〉 and t fixed.
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a) n = 1280 b) n = 2560
Figure 6. Graph of er.

in the other case. For the graph of er for some n see Fig. 6. Compare Fig. 6 with d)

in Fig. 3.

Let us note further that the value r can be evaluated approximately only by the

values of the coefficients qi. As we have seen in the “typical” situation, for large n
the function hn(ϕ(t), t)− g(t) is monotonous on the intervals (tni , tni+1〉 and vanishes
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at tni+1. If this is true then

(3.2) sup
t∈(tni ,tni+1〉

∣∣∣hn
(
ϕ(t), t

)
− g(t)

∣∣∣ =
∣∣∣∣ limt→tni +

(
hn

(
ϕ(t), t

)
− g(t)

)∣∣∣∣ .

We have noted above that

(3.3) lim sup
t→tni +

∣∣∣hn
(
ϕ(t), t

)
− g(t)

∣∣∣ = |qi| lim sup
t→tni +

H
(
ϕ(t)− ϕ(tni ), t− tni

)

[see the equality (2.49)]. As 0 � H � 2 we have

(3.4)

∣∣∣∣ limt→tni +

(
hn

(
ϕ(t), t

)
− g(t)

)∣∣∣∣ � 2|qi|.

If hn(ϕ(t), t) − g(t) is supposed to be really monotonous on the intervals (tni , t
n
i+1〉

then we see that

r � 2 max
i=0,1,...,n−1

|qi|.

Note that if the limit

lim
t→tni +

ϕ(t)− ϕ(tni )

2
√
t− tni

= a

exists then
lim

t→tni +
H

(
ϕ(t) − ϕ(tni ), t− tni

)
= 2− 2√

�

G(a).

If, especially,

(3.5) lim
t→tni +

ϕ(t)− ϕ(tni )

2
√
t− tni

= 0,

then we obtain that ∣∣∣∣ limt→tni +

(
hn

(
ϕ(t), t

)
− g(t)

)∣∣∣∣ = |qi|.

Note that, in our case, (3.5) is not valid only at points 0, 1 and 5/2. Here

lim
t→0+

ϕ(t)− ϕ(0)

2
√
t

= −1, lim
t→1+

ϕ(t)− ϕ(1)

2
√
t− 1 = −1

4
, lim

t→5/2+

ϕ(t) − ϕ(5/2)

2
√
t− 5/2

=
1
4
,

hence

lim
t→0+

H
(
ϕ(t)− ϕ(0), t

)
= 2− 2√

�

G(−1) ≈ 1.842700793,

lim
t→1+

H
(
ϕ(t)− ϕ(1), t− 1

)
= 2− 2√

�

G(− 14 ) ≈ 1.276326390,

lim
t→5/2+

H
(
ϕ(t)− ϕ(5/2), t− 5/2

)
= 2− 2√

�

G(14 ) ≈ 0.723673610.
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Figure 7. Graph of hn(ϕ(t), t) − g(t) for n = 1280.

We have supposed that for large n the function hn(ϕ(t), t)−g(t) is monotonous on
all intervals between two adjacent nodes—as suggested by the graph of that function.

But this is not true in general. In Fig. 4 the case n = 1280 was considered. In Fig. 7
the graph of hn(ϕ(t), t) − g(t) is shown on the interval 〈0.9995, 1〉 (1 is a node) and
on the interval (2.49375, 2.496875〉 (here both end-points of the interval are nodes);
these intervals are subintervals of the intervals considered in Fig. 3. We see that the

function considered is not monotonous on the given intervals and that for the second
interval (3.2) is not valid—we have

lim
t→2.49375+

(
hn

(
ϕ(t), t

)
− g(t)

)
≈ 3.74 · 10−5,

but

sup
t∈(2.49375,2.496875〉

∣∣∣hn
(
ϕ(t), t

)
− g(t)

∣∣∣ ≈ 1.10 · 10−4;

thus here even (3.4) is not valid.

Nevertheless, in the following table the approximate values of

r = sup
t∈〈0,4〉

∣∣∣hn
(
ϕ(t), t

)
− g(t)

∣∣∣

and of
q = max

i=0,1,...,n−1
|qi|

are given for some different n.

n 10 20 40 80 160 320

r 1.2744 1.1939 0.57965 0.31137 0.16015 0.080942
q 1.2744 0.9354 0.57963 0.31135 0.16015 0.080938

n 640 1280 2560 5120

r 0.040595 0.020318 0.010164 5.0833 · 10−3
q 0.040593 0.020317 0.010164 5.0832 · 10−3
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One can take notice of the fact that the convergence of the method is really only

linear. Further, compare the values in the table for n = 20, b) in Fig. 3, equality (3.3),
the fact that

lim
t→1+

H
(
ϕ(t)− ϕ(1), t− 1

)
≈ 1.2763,

and that 0.9354 · 1.2763 ≈ 1.1939.
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