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Abstract. We present two defect correction schemes to accelerate the Petrov-Galerkin
finite element methods [19] for nonlinear Volterra integro-differential equations. Using as-
ymptotic expansions of the errors, we show that the defect correction schemes can yield
higher order approximations to either the exact solution or its derivative. One of these
schemes even does not impose any extra regularity requirement on the exact solution.
As by-products, all of these higher order numerical methods can also be used to form
a posteriori error estimators for accessing actual errors of the Petrov-Galerkin finite ele-
ment solutions. Numerical examples are also provided to illustrate the theoretical results
obtained in this paper.
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1. Introduction

In this paper we continue our study of the Petrov-Galerkin finite element (PGFE)
methods [19] for the initial value problem of a nonlinear Volterra integro-differential
equation (VIDE): Find y = y(t) such that

(1.1) y′(t) = f
(
t, y(t)

)
+
∫ t

0
k
(
t, s, y(s)

)
ds, t ∈ I := [0, T ], y(0) = 0,

*This work is supported partially by SRF for ROCS, SEM, the NSF grant DMS-9704621
and NSERC (Canada).
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where f = f(t, y) : I×� → � and k = k(t, s, y) : D×� → � (with D := {(t, s) : 0 �
s � t � T }) denote given functions.
The nonlinear Volterra integro-differential equation (1.1) plays an important role

in the mathematical modeling of many physical and biological phenomena in which
it is necessary to take into account the effect of past history. Particularly in such
fields as heat transfer, nuclear reactor dynamics and thermoelasticity, there is often
a need to have mathematical models which reflect the effects of the “memory” of the
system. For example, the partial VIDE

ut = ∆u+
∫ t

0
a(t− s)g

(
u(x, s)

)
ds+ f

has been used in the feedback heat control of some heat-conducting medium, where
the control mechanism possesses some inertia. A similar control situation for a
reaction-diffusion problem can be seen in [20].
Mathematically, partial VIDEs like the one given above can be reformulated as

abstract VIDEs of the type (1.1) in suitable function spaces. For the details of
formulations of (1.1) and their physical interpretations we refer readers to [6] and
[21]. On the other hand, the problem (1.1) can be viewed as a system of VIDEs
obtained from the semi-spatial discretizations [10] or the methods of the lines [12].
In recent years, various aspects of numerical methods for VIDEs have been stud-

ied. See, for example, [1]–[5], [9], [11], [19] and [22]–[23]. At the same time, the
superconvergence of finite element methods has received considerable attention. The
literature on this subject is now quite extensive. The most recent survey paper by
Křížek and Neittaanmäki [14] and the references cited therein convey a good picture
on this topic. As our contribution to these researches, we present in this paper two
(interpolation and iterative) defect correction schemes that can be used to improve
the PGFE solutions. Using asymptotic expansions of the error in a PGFE solution,
we will show that the defect correction schemes can yield higher order approxima-
tions to either the exact solution or its derivative. In particular, the approximation
generated by applying the interpolation defect correction to a linear PGFE solu-
tion/derivative can have a convergence rate which is twice as high as that of the lin-
ear PGFE solution/derivative itself. Moreover, the iterative defect correction works
even without imposing any extra regularity requirement on the exact solution.
Throughout the paper, it will always be assumed that the problem (1.1) possesses

a unique solution y ∈ C1(I), namely, the given functions f(t, y) and k(t, s, y), which
are, respectively, continuous for t ∈ I and (t, s) ∈ D, will be subject to the following
(uniform) Lipschitz conditions [6]:

(V 1) |f(t, y1)− f(t, y2)| � L1|y1 − y2|,
(V 2) |k(t, s, y1)− k(t, s, y2)| � L2|y1 − y2|
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for all t ∈ I, (t, s) ∈ D, and |yi| < ∞ (i = 1, 2).
This paper is organized in the following way. In Section 2, we recall the Petrov-

Galerkin finite element methods for (1.1) and some of their fundamental error esti-
mates [19]. In Section 3, we discuss an interpolation defect correction that can be
used to treat both the PGFE solution and the iterated PGFE derivative. In Sec-
tion 4, we discuss an iterative defect correction scheme that can enhance the iterated
PGFE derivative without extra regularity. At the end of both Sections 3 and 4,
a posteriori error estimators based on these higher order approximations are devel-
oped. Numerical examples are provided in Section 5 to illustrate our theoretical
results.

2. The PGFE solutions and their global convergence

In this section we will introduce the Petrov-Galerkin finite element (PGFE)
method and recall the basic global convergence results obtained in [19]. First we
define a nonlinear integral operator G : C(I)→ C(I) by

(Gϕ)(t) := f
(
t, ϕ(t)

)
+
∫ t

0
k
(
t, s, ϕ(s)

)
ds.

Then, the problem (1.1) is reduced to: Find y = y(t) such that

(2.1) y′(t) = (Gy)(t), t ∈ I,

and its Petrov-Galerkin weak form becomes: Find y ∈ H10 (I) (and then y′ ∈ L2(I))
such that

(2.2) (y′, v) = (Gy, v) ∀v ∈ L2(I),

where (·, ·) denotes the usual inner product in the L2(I)-space and H10 (I) := {v ∈
H1(I) : v(0) = 0} is the standard Sobolev space.
Let Th : 0 = t0 < t1 < . . . < tN = T be a given mesh for the interval I, and denote

the finite element trial and test function spaces, respectively, by

S(0)m (Th) := {v ∈ H10 (I) : v|σk
∈ Pm, 0 � k � N − 1}

and

S
(−1)
m−1(Th) := {v ∈ L2(I) : v|σk

∈ Pm−1, 0 � k � N − 1} with m � 1,

where Pr denotes the space of (real) polynomials of degree not exceeding r, σk :=
[tk, tk+1] (0 � k � N−1), hk := tk+1−tk and h := max

(k)
{hk}. Clearly, the dimensions
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of S(0)m (Th) and S
(−1)
m−1(Th) are equal to Nm. While S

(0)
m (Th) is a subspace of H1(I)

whose elements therefore have to be continuous, S(−1)m−1(Th) is not a subspace of C(I),

and the superscript (−1) in S
(−1)
m−1(Th) emphasizes the fact that its elements may be

discontinuous at the mesh points of Th.
The Petrov-Galerkin finite element approximation of (2.2) considered in this paper

is defined as in [19]: Find u ∈ S
(0)
m (Th) (and then u′ ∈ S

(−1)
m−1(Th)) such that

(2.3) (u′, v) = (Gu, v) ∀v ∈ S
(−1)
m−1(Th).

Let Ph : L2(I)→ S
(−1)
m−1(Th) be the L2-projection operator defined by

(2.4) (ϕ, v) = (Phϕ, v) ∀v ∈ S
(−1)
m−1(Th).

Then the problem (2.3) can be equivalently written as follows: Find u ∈ S
(0)
m (Th)

(and then u′ ∈ S
(−1)
m−1(Th)) such that

(2.5) u′ = PhGu.

We have proved in [19] that if the conditions (V 1) and (V 2) are fulfilled, then the
problem (2.3) (or (2.5)) is uniquely solvable whenever the mesh size h is sufficiently
small. To approximate the derivative of the exact solution, we also introduce the
iterated PGFE solution of (1.1)

(2.6) uit(t) := (LGu)(t),

where L is the integral operator defined by (Lf)(t) :=
∫ t

0 f(s) ds. As for the accuracy,
we call e = u − y the PGFE error and call eit := uit − y the iterated PGFE error.
Then the convergence properties of u and uit can be summarized in the following
theorem [19]:

Theorem 2.1. Assume that f ∈ Cm(I × �) and k ∈ Cm(D × �). Then the
PGFE error e = u− y and the iterated PGFE error eit = uit − y satisfy

‖e′‖0,∞ := sup{|e′(t)| : t ∈ σj , 0 � j � N − 1} � Chm‖y‖m+1,∞,

‖e‖0,∞ � Chm+1‖y‖m+1,∞ and ‖e′it‖0,∞ � Chm+1‖y‖m+1,∞.

The projection operator Ph plays an important role in the investigation of the
PGFE methods. For any v ∈ S

(−1)
m−1(Th), taking

v :=

{
v|σk

, t ∈ σk,

0, t ∈ I − σk,
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where A − B := {x : x ∈ A and x �∈ B}, we have v ∈ S
(−1)
m−1(Th) since S

(−1)
m−1(Th) is

a discontinuous piecewise-polynomial space of degree not exceeding m − 1. Thus,
substituting v ∈ S

(−1)
m−1(Th) into (2.4) we obtain that

(2.7)
∫

σk

vPhϕdt =
∫

σk

vϕdt ∀v ∈ S
(−1)
m−1(Th),

with

‖Phϕ− ϕ‖0,∞ � Chm‖ϕ‖m,∞,

where, for any nonnegative integer r, ‖v‖r,∞ := max
0�k�r

{‖v(k)‖∞}. In this case, Ph is

defined on each element of the mesh Th, and it can be regarded as an interpolation
operator of degree m − 1 (it is a kind of interpolation in average which is different
from the standard Lagrange interpolation) associated with the mesh Th.
Here and hereafter, C denotes a generic positive constant, independent of the

PGFE solution u of (1.1) and the mesh size h, whose particular meaning will become
clear by the context in which it arises.

3. Interpolation defect correction

In this section we propose and investigate an interpolation correction scheme [18]
(also compare [8] and [15]) that can be applied to the PGFE solution u ∈ S

(0)
m (Th) and

the iterated PGFE derivative u′it to obtain approximations with higher convergence
rates. In addition, these new approximations are naturally used to form a posteriori
error estimators that can be used to access the actual error of a PGFE solution.
First, we need to define an interpolation operator that forms a piecewise poly-

nomial with a degree higher than the PGFE solution. For ease of exposition, we
demonstrate our idea mainly for the interpolation operator of degree 3. Let the num-
ber of elements N for the mesh Th be a multiple of 3 and let ek := σk−1 ∪ σk ∪ σk+1

(σk−1, σk and σk+1 ∈ Th, 1 � k � N − 2) be an arbitrary element of the mesh T3h
with mesh size 3h (i.e., each element of T3h is a combination of 3 adjacent elements
in Th), such that we can define a Lagrange interpolation operator I33h of degree 3
associated with T3h as follows:

I33hu|ek
∈ P3, k = 3l + 1, l = 0, 1, . . . ,

N

3
− 1

and

I33hu(ti) = u(ti), i = k − 1, k, k + 1, k + 2 (1 � k � N − 2),

where ti ∈ ek are all endpoints of σk−1, σk and σk+1.
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Similarly, we can also define a Lagrange interpolation operator I2m(2m)h of degree
2m associated with the mesh T(2m)h.
In addition, we also need the following theorem [19]:

Theorem 3.1. Assume that f ∈ Cm+2(I × R) and k ∈ Cm+2(D × R). Then,
for the PGFE error e = u− y where u ∈ S

(0)
m (Th), we have the following asymptotic

expansions at the points tn (1 � n � N) of the mesh Th:

e(tn) =

{
α(tn)h2 +O(h4), m = 1,

α(tn)h2m +O(h2m+1), m � 2,

where α ∈ C4(I) is invariable when the mesh is refined uniformly.

And now we can obtain

Theorem 3.2. Suppose that the conditions of Theorem 3.1 hold. Then, for the
PGFE solution u ∈ S

(0)
m (Th) and each t ∈ I, we have the following global asymptotic

expansions:

I33hu(t)− y(t) = h2α(t) +O(h4), m = 1,(3.1)

I2m(2m)hu(t)− y(t) = h2mα(t) +O(h2m+1), m � 2,(3.2)

where α ∈ C4(I).

�����. For any t ∈ ek (1 � k � N − 2), denoting the basis function corre-
sponding to {tj} by {ϕj} (k − 1 � j � k + 2), we have

I33h(u− y − h2α)(t) =
k+2∑

j=k−1
(u− y − h2α)(tj)ϕj(t)

which, together with Theorem 3.1 and the uniform boundedness of {ϕj}k+2
k−1, yields

‖I33h(u− y − h2α)‖0,∞ �
k+2∑

j=k−1
Ch4‖ϕj‖0,∞ � Ch4.

This leads to the global expansion

I33hu− y = h2I33hα+ (I33hy − y) +O(h4)

= h2α+ h2(I33hα− α) +O(h4)

= h2α+O(h4),

since ‖I33hα− α‖0,∞ � Ch4‖α‖4,∞.
Analogously, we can also obtain (3.2). �
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Let Bh : H10 (I)→ S
(0)
m (Th) be the Petrov-Galerkin finite element projection oper-

ator defined by

(3.3)
(
(Bhy)′ −GBhy, v

)
= (y′ −Gy, v) ∀v ∈ S

(−1)
m−1(Th).

Then Bhy is a solution of (2.3) if y is a solution of (1.1). Note that y′ −Gy on the
right-hand side is the residual or the defect in y.

By means of the L2-projection operator Ph : L2(I) → S
(−1)
m−1(Th), the problem

(3.3) can be equivalently written as the operator equation

(Bhy)′ = PhGBhy + Ph(y′ −Gy)

or

(3.4) Bhy = LPhGBhy + LPh(y′ −Gy)

since (Bhy)(0) = 0, where L is the integral operator defined in Section 2.

Lemma 3.1. If the conditions (V 1) and (V 2) are fulfilled, then there exists a
unique Bhy ∈ S

(0)
m (Th) satisfying (3.4) whenever the mesh size h is sufficiently small.

�����. Define g := LPh(y′ − Gy) ∈ S
(0)
m (Th) for any y ∈ H10 (I), and two

operators E : S
(0)
m (Th) → S

(0)
m (Th) as well as E∗ : S

(0)
m (Th) → S

(0)
m (Th) by E :=

LPhG and E∗u := Eu + g ∀u ∈ S
(0)
m (Th). Thus, in order to prove Lemma 3.1, it is

sufficient to show that the operator E∗ has a unique fixed point u∗ := Bhy ∈ S
(0)
m (Th).

To this end, by the standard contraction mapping principle, we need only to prove
that the operator En

∗ : S
(0)
m (Th)→ S

(0)
m (Th) is a contraction mapping as n and h are

respectively sufficiently large and small since E∗ and En
∗ have the same fixed points.

Decompose the operator E into

E = L(Ph − I)G+ LG := E1 + E2,

where I is the identity operator. For the operator E1, it follows from (2.7) and the
conditions (V 1) and (V 2) that for any u1, u2 ∈ S

(0)
m (Th) and any t ∈ σk (0 � k �

N − 1) we have

∫ tk

0
(Ph − I)(Gu1 −Gu2)(s) ds =

k−1∑

j=0

∫

σj

(Ph − I)(Gu1 −Gu2)(s) ds = 0
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and

|(E1u1)(t)− (E1u2)(t)| =
∣∣∣∣
∫ tk

0
(Ph − I)(Gu1 −Gu2)(s) ds(3.5)

+
∫ t

tk

(Ph − I)(Gu1 −Gu2)(s) ds

∣∣∣∣

=

∣∣∣∣
∫ t

tk

(Ph − I)(Gu1 −Gu2)(s) ds

∣∣∣∣
� C(t− tk)‖Gu1 −Gu2‖0,∞
� C(L1 + L2T )h‖u1 − u2‖0,∞.

For the operator E2, from the conditions (V 1) and (V 2) we obtain that for any
u1, u2 ∈ S

(0)
m (Th) we have

|(E2u1)(t) − (E2u2)(t)| �
∫ t

0
|(Gu1)(s)− (Gu2)(s)| ds

� L1

∫ t

0
|u1(s)− u2(s)| ds+ L2

∫ t

0

(∫ s

0
|u1(τ) − u2(τ)| dτ

)
ds

� (L1 + L2t)
∫ t

0
|u1(s)− u2(s)| ds,

which, together with (3.5), yields that for any u1, u2 ∈ S
(0)
m (Th) we have

|E∗u1 − E∗u2| = |Eu1 − Eu2|

� Ch‖u1 − u2‖0,∞ + (L1 + L2t)
∫ t

0
|u1(s)− u2(s)| ds.

And now,

∣∣E2∗u1 − E2∗u2
∣∣ = |E∗(E∗u1)− E∗(E∗u2)|

� Ch‖E∗u1 − E∗u2‖0,∞ + (L1 + L2t)
∫ t

0
|(E∗u1)(s)− (E∗u2)(s)| ds

� Ch‖u1 − u2‖0,∞ + (L1 + L2T )

×
∫ t

0

(
(L1 + L2s)

∫ s

0
|u1(τ)− u2(τ)| dτ

)
ds

� Ch‖u1 − u2‖0,∞ + (L1 + L2T )
(L1 + L2t)2 − L21

2L2

×
∫ t

0
|u1(s)− u2(s)| ds

� Ch‖u1 − u2‖0,∞ +
(L1 + L2T )

L2

(L1 + L2t)2

2!

∫ t

0
|u1(s)− u2(s)| ds.
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This recurrently leads to

|(En
∗ u1)(t)− (En

∗ u2)(t)| � Ch‖u1 − u2‖0,∞

+

(
L1 + L2T

L2

)n−1 (L1 + L2t)n

n!

∫ t

0
|u1(s)− u2(s)| ds

or

‖En
∗ u1 − En

∗ u2‖0,∞ � Ch‖u1 − u2‖0,∞ +
T (L1 + L2T )2n−1

Ln−1
2 n!

‖u1 − u2‖0,∞,

which yields that there exists a positive integer N0 such that

‖EN0
∗ u1 − EN0

∗ u2‖0,∞ � α‖u1 − u2‖0,∞

with α ∈ (0, 1) whenever the mesh size h is sufficiently small; that is, EN0∗ :
S
(0)
m (Th) → S

(0)
m (Th) is a contraction mapping subject to the smallness of h. Thus,

we have completed the proof of Lemma 3.1. �

Now, for each PGFE solution u ∈ S
(0)
m (Th), we define its interpolation defect

correction as follows:

u
(c)
1 : = I33hu+ u−BhI33hu, when m = 1,

u(c)m : = I2m(2m)hu+ u−BhI2m(2m)hu, when m � 2.

Then the error estimates of these new approximations are given in the following
theorem.

Theorem 3.3. Assume that the conditions of Theorem 3.1 hold. Then, for the
PGFE solution u ∈ S

(0)
m (Th), its interpolation defect correction satisfies

‖y − u
(c)
1 ‖0,∞ �Ch4‖y‖4,∞, m = 1,(3.6)

‖y − u(c)m ‖0,∞ �Ch2m+1‖y‖2m+1,∞, m � 2.(3.7)

�����. By means of (3.1), we derive from the boundedness of the operator
(I −Bh) that

(I −Bh)(I33hu− y) = h2α−Bh(h2α) +O(h4),

which, together with the global convergence of the linear PGFE solution in Theo-
rem 2.1 that yields

‖h2α−Bh(h2α)‖0,∞ � Ch2‖h2α‖2,∞ = Ch4‖α‖2,∞,
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leads to
(I −Bh)(I33hu− y) = O(h4),

where the left-hand side is simply

(I −Bh)(I33hu− y) = u
(c)
1 − y.

And hence, we obtain (3.6). Analogously, we can also obtain (3.7) by means of (3.2).
�

Next, we proceed to discuss the interpolation defect correction for the iterated
PGFE derivative u′it. To start, we recall a basic error expansion for the iterated
PGFE derivative from [19].

Theorem 3.4. Assume that f ∈ Cm+2(I×R) and k ∈ Cm+2(D×R). Then, for
the iterated PGFE derivative error e′it := u′it − y′ produced by the PGFE solution
u ∈ S

(0)
m (Th) of (1.1), we have the following asymptotic expansions at the points tn

(1 � n � N) of the mesh Th:

e′it(tn) =

{
β(tn)h2 +O(h4), m = 1,

β(tn)h2m +O(h2m+1), m � 2,

where β ∈ C3(I) is invariable when the mesh is refined uniformly.

In parallel to Theorem 3.2, by virtue of Theorem 3.4 we can also obtain the
following theorem.

Theorem 3.5. Suppose that the conditions of Theorem 3.4 hold. Then, for the
iterated PGFE derivative u′it corresponding to the PGFE solution u ∈ S

(0)
m (Th) and

each t ∈ I, we have the global asymptotic expansions

I33hu′it(t)− y′(t) = h2β(t) +O(h4), m = 1,(3.8)

I2m(2m)hu′it(t)− y′(t) = h2mβ(t) +O(h2m+1), m � 2,(3.9)

where β ∈ C3(I).

From (2.6) and the definition of the PGFE projection operator Bh we derive that

u′it = GBhLy′.

Thus, we define the iterated PGFE derivative projection operatorQh : L2(I)→ C(I)
by setting

Qh := GBhL.
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Then Qhy′ is the iterated PGFE derivative of the problem (1.1) if y is its exact
solution. In addition, from Lemma 3.1 we know that for any y ∈ L2(I), Qhy ∈ C(I)
exists uniquely. Using this operator, for an iterated PGFE derivative we can similarly
define its interpolation defect correction as

u
(c)
it,1(t) : = I33hu′it(t) + u′it(t)−QhI33hu′it(t), when m = 1,

u
(c)
it,m(t) : = I2m(2m)hu′it(t) + u′it(t)−QhI2m(2m)hu′it(t), when m � 2.

The following theorem shows the effects of the interpolation defect correction on the
iterated PGFE derivative.

Theorem 3.6. Assume that the conditions of Theorem 3.4 hold. Then, for
the iterated PGFE derivative u′it produced by the PGFE solution u ∈ S

(0)
m (Th), its

interpolation defect correction satisfies

‖y′ − u
(c)
it,1‖0,∞ � Ch4‖y‖5,∞, m = 1,(3.10)

‖y′ − u
(c)
it,2‖0,∞ � Ch2m+1‖y‖2m+2, m � 2.(3.11)

�����. For the function β ∈ C3(I) in (3.8), let ŷ(t) := h2
∫ t

0 β(s) ds. Then it
follows from the global superconvergence of the iterated PGFE derivative error e′it
in Theorem 2.1 corresponding to the linear PGFE solution u ∈ S

(0)
1 (Th) that

(3.12) ‖ŷ′ −Qhŷ′‖0,∞ � Ch2‖ŷ‖2,∞ � Ch4‖β‖1,∞.

Thus, we obtain from (3.8), (3.12) and from the boundedness of the operator (I−Qh)
that

(I −Qh)(I33hu′it − y′) = (I −Qh)(h2β) +O(h4)

= (ŷ′ −Qhŷ′) +O(h4)

= O(h4),

where the left-hand side is just

(I −Qh)(I33hu′it − y′) = u
(c)
it,1 − y′.

Hence we complete the proof of (3.10). Similarly, we can also get (3.11). �
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As usual, the new approximations with higher convergence rates after the in-
terpolation defect correction can be used to form a posteriori estimators for the
PGFE methods by following the procedure of obtaining Theorem 2.4 in [19]. In
fact, by Theorem 3.3, for a PGFE solution u ∈ S

(0)
m (Th) we can use (I −Bh)I33hu or

(I −Bh)I2m(2m)hu to estimate its actual accuracy because

‖y − u‖0,∞ =
{
‖(I −Bh)I33hu‖0,∞ +O(h4), m = 1,

‖(I −Bh)I2m(2m)hu‖0,∞ +O(h2m+1), m � 2.

Similarly, from Theorem 3.6, the computable quantity (I − Qh)I33hu′it or (I −
Qh)I2m(2m)hu′it can be used to access the actual error in the iterated PGFE derivative
u′it because

‖y′ − u′it‖0,∞ =
{
‖(I −Qh)I33hu′it‖0,∞ +O(h4), m = 1,

‖(I −Qh)I2m(2m)hu′it‖0,∞ +O(h2m+1), m � 2.

4. Iterative defect correction

In this section, we will discuss an iterative correction ([8]) for the iterated PGFE
derivative u′it produced by the PGFE solution u ∈ S

(0)
m (Th) of the problem (1.1). It

will be proved that the (n− 1)-fold application of the iterative correction leads to a
global convergence rate of O(hm+n) under a rather moderate regularity requirement
on the exact solution: y ∈ Cm+1(I), which is independent of n. In addition, as a
by-product of the iterative correction a posteriori error estimators are also obtained.
To start, we recall the following results from [6].

Lemma 4.1. Let the functions g and K characterizing the integral equation

y(t) = g(t) +
∫ t

0
K(t, s)y(s) ds, t ∈ I := [0, T ],

be continuous on I and D := {(t, s) : 0 � s � t � T }, respectively. Then this
equation has a unique solution y ∈ C(I) given by

y(t) = g(t) +
∫ t

0
R(t, s)g(s) ds, t ∈ I,

where R ∈ C(D) is the resolvent kernel associated with the given kernel K and

defined by R(t, s) :=
∞∑

m=1
Km(t, s), (t, s) ∈ D withK1(t, s) := K(t, s) andKn(t, s) :=
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∫ t

s
K1(t, τ)Kn−1(τ, s) dτ , (t, s) ∈ D (n � 2). Moreover, the resolvent kernel satisfies

the identities (usually called the Fredholm identities)

R(t, s) = K(t, s) +
∫ t

s

K(t, τ)R(τ, s) dτ, (t, s) ∈ D,

and

R(t, s) = K(t, s) +
∫ t

s

R(t, τ)K(τ, s) dτ, (t, s) ∈ D.

Now, let δ(t) := u′(t)− (Gu)(t) (t ∈ I) be the residual (or defect) function. Then,
it is easy to see from (2.5) that

(4.1) δ = PhGu−Gu = (Ph − I)Gu.

Subtracting (2.1) from (2.5), we have by (4.1) that

(4.2) e′ = PhGu−Gy = δ + (Gu−Gy), t ∈ I,

with e(0) = 0. Thus, (4.2) and Taylor’s formula imply that there are functions ξ∗
and η∗ whose values ξ∗(t) and η∗(t) at t are between y(t) and u(t), such that

e′(t) = δ(t) + (Gu−Gy)(t)(4.3)

= δ(t) + fy

(
t, y(t)

)
e(t) +

∫ t

0
ky

(
t, s, y(s)

)
e(s) ds

+
1
2
fyy

(
t, ξ∗(t)

)
e2(t) +

1
2

∫ t

0
kyy

(
t, s, η∗(s)

)
e2(s) ds,

which, together with Theorem 2.1, leads to

(4.4) e′(t) = δ(t) + p(t)e(t) +
∫ t

0
K(t, s)e(s) ds+O(h2m+2)

under the conditions that fyy(t, y) and kyy(t, s, y) are bounded, respectively, in a
suitable region containing D1 := {

(
t, y(t)

)
: t ∈ I} and another proper domain

containing D2 := {
(
t, s, y(s)

)
: 0 � s � t � T }, where p(t) := fy

(
t, y(t)

)
and

K(t, s) := ky

(
t, s, y(s)

)
.

By setting e∗(t) := e(t) exp
(
−
∫ t

0 p(s) ds
)
, it is easy to see from a simple calculation

that (4.4) becomes

(4.5) e′∗(t) = δ∗(t) +
∫ t

0
K∗(t, s)e∗(s) ds+O(h2m+2) with e∗(0) = 0,
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where

K∗(t, s) := K(t, s) exp

(
−
∫ t

s

p(τ) dτ

)
, δ∗ := δ(t) exp

(
−
∫ t

0
p(s) ds

)
.

We further get via exchanging the order of the integration with respect to s and τ

that

e′∗ = δ∗ +
∫ t

0
K∗(t, s)

(∫ s

0
e′∗(τ) dτ

)
ds+O(h2m+2)

= δ∗ +
∫ t

0
K∗1(t, s)e′∗(s) ds+O(h2m+2),

where the kernel function K∗1(t, s) :=
∫ t

s K∗(t, τ) dτ . And then, setting F (t) :=
δ∗(t) +O(h2m+2), it follows from Lemma 4.1 that

(4.6) e′∗ = F +
∫ t

0
R∗1(t, s)F (s) ds,

where R∗1(t, s) is the resolvent kernel associated with the given kernel K∗1(t, s),
which inherits the smoothness of K∗1(t, s), defined by

R∗1(t, s) = K∗1(t, s) +
∫ t

s

K∗1(t, τ)R∗1(τ, s) dτ, (t, s) ∈ D.

And it is easy to see by integrating from 0 to t on both sides of (4.6) and exchanging
the order of integration that

(4.7) e∗ =
∫ t

0
R∗2(t, s)F (s) ds,

where R∗2(t, s) := 1 +
∫ t

s R∗1(τ, s) dτ . Now, we know from (4.7) that

(4.8) e∗ =
∫ t

0
R∗2(t, s)δ∗(s) ds+O(h2m+2).

Set

(4.9) (R∗hϕ)(t) :=
∫ t

0
R∗(t, s)(Ph − I)ϕ(s) ds,

where R∗(t, s) := R∗2(t, s) exp
(
−
∫ s

0 p(τ) dτ
)
, and let G′ : C(I)→ C(I) be the linear

Volterra integral operator defined by

(G′ϕ)(t) := fy

(
t, y(t)

)
ϕ(t) +

∫ t

0
ky

(
t, s, y(s)

)
ϕ(s) ds,
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where y is the exact solution of the problem (1.1). Then one finds from (2.1), (4.1)
and (4.3) that

e∗ = R∗hGu+O(h2m+2)(4.10)

= R∗hGy +R∗h(Gu −Gy) +O(h2m+2)

= R∗hy′ +R∗hG′e+O(h2m+2)

= R∗hy′ +R∗hG′∗e∗ +O(h2m+2),

where G′∗ϕ := G′
(
exp
(∫ t

0 p(s) ds
)
ϕ
)
.

We derive from (2.1), (2.6) and (4.10) that

e′it : = u′it − y′ = Gu−Gy(4.11)

= G′e+O(h2m+2)

= G′∗e∗ +O(h2m+2).

Then (4.10) and (4.11) yield a recurrence formula

(4.12) e′it =
m∑

i=0

G′∗(R
∗
hG′∗)

iR∗hy′ +G′∗(R
∗
hG′∗)

m+1e∗ +O(h2m+2).

Lemma 4.2. For the operators G′∗ and R∗h we have

‖G′∗R∗hϕ‖0,∞ � Chm+1‖ϕ‖m,∞ and ‖G′∗R∗h‖C(I)→C(I) � Ch,

where

‖A‖C(I)→C(I) := sup
ϕ∈C(I)

‖Aϕ‖0,∞
‖ϕ‖0,∞

.

�����. For any t ∈ σk (0 � k � N − 1), from (4.9) we know that

|(R∗hϕ)(t)| =
∣∣∣∣
∫ tk

0
R∗(t, s)(Ph − I)ϕ(s) ds+

∫ t

tk

R∗(t, s)(Ph − I)ϕ(s) ds

∣∣∣∣(4.13)

=

∣∣∣∣
k−1∑

i=0

∫

σk

(I − Ph)R∗(t, s)(Ph − I)ϕ(s) ds

+
∫ t

tk

R∗(t, s)(Ph − I)ϕ(s) ds

∣∣∣∣
� Ch2m‖ϕ‖m,∞ + C(t− tk)hm‖ϕ‖m,∞ � Chm+1‖ϕ‖m,∞,

which leads to

(4.14) ‖R∗hϕ‖0,∞ � Chm+1‖ϕ‖m,∞.
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In particular, we derive from (4.13) that

‖R∗hϕ‖0,∞ � Ch‖ϕ‖0,∞,

that is

(4.15) ‖R∗h‖C(I)→C(I) � Ch.

From (4.14), (4.15) and the boundedness of the operator G′∗ we find that

‖G′∗R∗hϕ‖0,∞ � C‖R∗hϕ‖0,∞ � Chm+1‖ϕ‖m,∞

and

‖G′∗R∗h‖C(I)→C(I) � Ch.

Hence, we complete the proof of Lemma 4.2. �

From (4.15) and the boundedness of the operator G′∗ we have

‖R∗hG′∗‖C(I)→C(I) � Ch,

which, together with Theorem 2.1, leads to

‖G′∗(R∗hG′∗)
m+1e∗‖0,∞ � C‖(R∗hG′∗)

m+1‖C(I)→C(I) · ‖e∗‖0,∞
� Ch2m+2‖y‖m+1,∞.

This, together with (4.12), implies that

(4.16) e′it =
m∑

i=0

G′∗(R
∗
hG′∗)

iR∗hy′ +O(h2m+2).

Now, for an iterated PGFE derivative u′it, we define its iterative defect correction
as

ũ
(c)
it,n :=

n∑

k=1

(−1)k−1Ck
nQk−1

h u′it,

where Qh is the iterated PGFE derivative projection operator defined in Section 3

and Ck
n :=

n!
k!(n− k)!

is the usual binomial coefficient. The following theorem pro-

vides an error estimate on this new approximation generated by the iterative defect
correction.
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Theorem 4.1. Assume that f ∈ Cm(I × �) ∩C2(I × �) and k ∈ Cm(D× �) ∩
C2(D×�). Then the (n−1)st iterative defect correction ũ

(c)
it,n of the iterated PGFE

derivative u′it corresponding to the PGFE solution u ∈ S
(0)
m (Th) satisfies

‖y′ − ũ
(c)
it,n‖0,∞ � Chm+n‖y‖m+1,∞, 1 � n � m+ 2.

�����. By definition, we have

ũ
(c)
it,n :=

n∑

k=1

(−1)k−1Ck
nQk−1

h u′it =
n∑

k=1

(−1)k−1Ck
nQk

hy′.

From (4.16) we derive that

(4.17) (I −Qh)y′ = −
m∑

i=0

G′∗(R
∗
hG′∗)

iR∗hy′ +O(h2m+2).

Therefore, we obtain from the boundedness of the operator (I −Qh) that

(4.18) (I −Qh)
2y′ = −(I −Qh)

(
m∑

i=0

G′∗(R
∗
hG′∗)

iR∗hy′
)
+O(h2m+2).

Set

ŷ∗(t) :=
∫ t

0

m∑

i=0

G′∗(R
∗
hG′∗)

iR∗hy′(s) ds.

Then it is easy to see from (4.17) that

(I −Qh)

(
m∑

i=0

G′∗(R
∗
hG′∗)

iR∗hy′
)

(4.19)

= (I −Qh)ŷ′∗ = −
m∑

j=0

G′∗(R
∗
hG′∗)

jR∗hŷ′∗ +O(h2m+2)

= −
m∑

j=0

m∑

i=0

G′∗(R
∗
hG′∗)

jR∗hG′∗(R
∗
hG′∗)

iR∗hy′ +O(h2m+2).

Substituting (4.19) into (4.18), we obtain

(I −Qh)2y′ =
m∑

j=0

m∑

i=0

G′∗(R
∗
hG′∗)

jR∗hG′∗(R
∗
hG′∗)

iR∗hy′ +O(h2m+2)(4.20)

=
m∑

j=0

m∑

i=0

(G′∗R
∗
h)

j+i+2y′ +O(h2m+2).
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From Lemma 4.2 we know that (G′∗R
∗
h)
2y′ is the principal part of (4.20) and

‖(I −Qh)2y′‖0,∞ � C‖(G′∗R∗h)2y′‖0,∞
� C‖G′∗R∗h‖C(I)→C(I) · ‖G′∗R∗hy′‖0,∞
� Chm+2‖y‖m+1,∞.

Inductively, we eventually obtain

‖(I −Qh)
ny′‖0,∞ � Chm+n‖y‖m+1,∞.

Note that
(I −Qh)

ny′ = y′ − ũ
(c)
it,n,

which completes the proof. �

Again, due to the error estimate in the above theorem, the iterative defect cor-

rection suggests that we can use (n− 1)u′it +
n∑

k=2
(−1)k−1Ck

nQk−1
h u′it to estimate the

actual error in u′it because

‖y′ − u′it‖0,∞ =
∥∥∥∥(n− 1)u′it +

n∑

k=2

(−1)k−1Ck
nQk−1

h u′it

∥∥∥∥
0,∞

+O(hm+n), 1 � n � m+ 2.

We can also use ũ
(c)
it,n+1 − ũ

(c)
it,n to estimate the actual error in ũ

(c)
it,n because

‖y′ − ũ
(c)
it,n‖0,∞ = ‖ũ

(c)
it,n+1 − ũ

(c)
it,n‖0,∞ +O(hm+n+1), 1 � n � m+ 2.

5. Numerical examples

In this section we present some numerical results which illustrate the features of
the defect correction methods. Unless otherwise specified, all the numerical solutions
given here are generated by the PGFE methods with the space S

(0)
m (Th), m = 1, 2,

for the nonlinear Volterra integro-differential equation (1.1) in which

k(t, s, y) = sin(t) + 2s+ cos(s)ey,

f(t, y) = 1− esin(t) − t2 + cos(t) + cos(t+ 2y)− cos
(
t+ 2 sin(t)

)
− t sin(t),

so that y(t) = sin(t) is the exact solution. In all our computations, Newton’s method
is used to solve the nonlinear algebraic equations produced by the PGFE methods,
and we have observed a quadratic convergence in Newton’s iterations provided that
the initial guess and the exact solution are close enough.
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�����	
 1. Let us first look at the numerical results generated by the in-
terpolation defect correction. For any PGFE solution u ∈ S

(0)
1 (Th), its interpolation

defect correction is
u
(c)
1 = I33hu+ u−BhI33hu,

where BhI33hu ∈ S
(0)
1 (Th) is generated by the PGFE equation

(
v, (BhI33hu)′

)
= (v, g̃) +

(
v, G(BhI33hu)

)
, ∀v ∈ S

(−1)
0 (Th),

with g̃ as the defect of I33hu(t):

g̃(t) =
(
I33hu(t)

)′ − f
(
t, I33hu(t)

)
−
∫ t

0
k
(
t, s, I33hu(s)

)
ds.

The errors of the PGFE solution in the space S
(0)
1 (Th) and the approximations

generated by applying the interpolation defect correction to this PGFE solution are
listed in Table 1. While the errors of the PGFE solutions in this table are obviously
about O(h2), the errors of u(c)1 in this group of computations obey

‖u(c)1 − y‖∞ ≈ 0.04338h3.9948,

which is within the prediction of Theorem 3.3.

h ‖u− y‖∞ ‖u(c)1 − y‖∞

1/12 0.52183924780080×10−3 0.00211330281763×10−3
1/24 0.13261082013960×10−3 0.00013301415924×10−3
1/48 0.03343465932215×10−3 0.00000835746927×10−3
1/96 0.00839474795822×10−3 0.00000052403404×10−3
1/192 0.00210325054983×10−3 0.00000003281464×10−3
1/384 0.00052638643000×10−3 0.00000000205236×10−3

Table 1. Errors of the PGFE solution and those generated by the interpolation defect cor-
rection.

�����	
 2. For the iterated PGFE derivative generated by the PGFE solu-
tion in S

(0)
1 (Th), its interpolation defect correction is

u
(c)
it,1 = I33hu′it + u′it −QhI33hu′it,

where QhI33hu′it is the iterated PGFE derivative produced by the PGFE solution in
S
(0)
1 (Th) for the following initial value problem of a VIDE:

(5.1)





y′(t) = r(t) + f
(
t, y(t)

)
+
∫ t

0
k
(
t, s, y(s)

)
ds,

y(0) = 0
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with r(t) as the defect of
∫ t

0 I33hu′it(s) ds:

r(t) = I33hu′it(t)− f

(
t,

∫ t

0
I33hu′it(s) ds

)
−
∫ t

0
k

(
t, s,

∫ s

0
I33hu′it(τ) dτ

)
ds.

In addition to the errors of the iterated PGFE solutions, Table 2 also presents the
errors of the approximations to the derivatives generated by the interpolation defect
correction. The data in this table satisfy

‖u′it − y′‖∞ ≈ 0.0929h2.0000,
‖u(c)it,1 − y′‖∞ ≈ 0.02552h4.0016,

which corroborates the error estimates given in Theorem 3.6.

h ‖u′it − y′‖∞ ‖u(c)it,1 − y′‖∞

1/12 0.64620301056006×10−3 0.00122698146399 ×10−3
1/24 0.16116813244327×10−3 0.00007648996425 ×10−3
1/48 0.04034140964893×10−3 0.00000477555617 ×10−3
1/96 0.01008765519206×10−3 0.00000029803060 ×10−3
1/192 0.00252196308848×10−3 0.00000001861966 ×10−3
1/384 0.00063048499044×10−3 0.00000000116351 ×10−3

Table 2. Errors of the iterated PGFE derivative and those generated by the interpolation
defect correction.

�����	
 3. We now consider some examples for the iterative defect correc-
tion. The 2-fold iterative defect correction of the iterated PGFE derivative induced
by the PGFE solution in S

(0)
1 (Th) is given by

ũ
(c)
it,2 = 2u

′
it −Qhu′it,

where Qhu′it is the iterated PGFE derivative yielded by the PGFE solution in
S
(0)
1 (Th) for the initial value problem (5.1) with

r(t) = u′it(t)− f
(
t, uit(t)

)
−
∫ t

0
k
(
t, s, uit(s)

)
ds.

Table 3 lists the errors of ũ(c)it,2 for various step sizes h, from which we can see that
these numerical results satisfy

‖ũ(c)it,2 − y′‖∞ ≈ 0.01882h3.0098,

which is within the prediction of Theorem 4.1.
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h ‖u′it − y′‖∞ ‖ũ(c)it,2 − y′‖∞

1/12 0.64620301056006×10−3 0.010731633355077 ×10−3
1/24 0.16116813244327×10−3 0.001313080086551 ×10−3
1/48 0.04034140964893×10−3 0.000162998233022 ×10−3
1/96 0.01008765519206×10−3 0.000020266912149 ×10−3
1/192 0.00252196308848×10−3 0.000002526510556 ×10−3
1/384 0.00063048499044×10−3 0.000000315380055 ×10−3

Table 3. Errors of the iterated PGFE derivative and those generated by the iterative defect
correction.

�����	
 4. We present this example to show the capability of the itera-
tive defect correction for handling the VIDE whose solution has limited regularity.
Specifically, we consider the initial value problem (1.1) with

k(t, s, y) = sin(t) + 2s+ y2,

f(t, y) = g(t)− cos(t+ 2y),

where the function g(t) is such that

y(t) = t

((
t− 1
2

)2)2.9/3

is the exact solution which is in H2(I) but not in H3(I). Obviously, the PGFE
methods with higher degree elements will have difficulties when applied to this prob-
lem. In fact, Table 4 lists the numerical results in the quadratic finite element trial
function space S

(0)
2 (Th) for this problem from which we have

‖u′ − y′‖0,∞ ≈ 0.0900h1.2602,
‖u′it − y′‖0,∞ ≈ 0.0121h2.3242,

not up to the convergence rates given in Theorem 2.1. On the other hand, using the
PGFE method with linear finite elements, we can obtain the results in Table 5. The
data in these computations obey

‖u′it − y′‖0,∞ ≈ 0.6681h1.9884,
‖ũ(c)it,2 − y′‖0,∞ ≈ 0.1223h2.9953,

which are not only within the prediction of Theorems 2.1 and 4.1, but also corrob-
orate the fact that the iterative defect correction is a preferable choice for solving a
nonlinear VIDE whose solution has limited regularity.
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h ‖u′ − y′‖∞ ‖u′it − y′‖∞

1/12 0.00476075400752 0.00004998837554
1/24 0.00153737923138 0.00000654669540
1/48 0.00059101530429 0.00000123164672
1/96 0.00025362659403 0.00000025924323
1/192 0.00011821039946 0.00000005955378
1/384 0.00005808099842 0.00000001450022

Table 4. Errors of the PGFE derivative and those generated by the iterated PGFE deriva-

tive corresponding to the PGFE solution in the space S
(0)
2 (Th). The exact solution

is in H2(I) but not in H3(I).

h ‖u′it − y′‖∞ ‖ũ(c)it,2 − y′‖∞

1/12 0.00471978632177 0.00007105017907
1/24 0.00121073043422 0.00000901726331
1/48 0.00030596303644 0.00000113128302
1/96 0.00007686152747 0.00000014152404
1/192 0.00001925914051 0.00000001769297
1/384 0.00000482008819 0.00000000221162

Table 5. Errors of the iterated PGFE derivative produced by the PGFE solution in S
(0)
1 (Th)

and those generated by the iterative defect correction. The exact solution is in
H2(I) but not in H3(I).
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