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Abstract. In this paper we establish an upper and a lower bound for the f -divergence of
two discrete random variables under likelihood ratio constraints in terms of the Kullback-
Leibler distance. Some particular cases for Hellinger and triangular discrimination,
χ2-distance and Rényi’s divergences, etc. are also considered.
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1. Introduction

Given a convex function f : [0,∞) → � , the f -divergence functional

(1.1) If (p, q) =
n∑

i=1

qif
(pi

qi

)

was introduced by Csiszár [1], [2] as a generalized measure of information, a “distance
function” on the set of probability distribution  n. The restriction here to discrete

distributions is only for convenience, similar results hold for general distributions.
As in Csiszár [1], [2], we interpret undefined expressions by

f(0) = lim
t→0+

f(t), 0 f
(0

0

)
= 0,

0 f
(a

0

)
= lim

ε→0+
εf

(a

ε

)
= a lim

t→∞
f(t)

t
, a > 0.
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The following results were essentially given by Csiszár and Körner [3].

Proposition 1 (Joint convexity). If f : [0,∞) → � is convex, then If (p, q) is
jointly convex in p and q.

Proposition 2 (Jensen’s inequality). Let f : [0,∞) → � be convex. Then for
any p, q ∈ � n

+ with Pn =
n∑

i=1

pi > 0, Qn =
n∑

i=1

qi > 0 we have the inequality

(1.2) If (p, q) > Qnf
( Pn

Qn

)
.

If f is strictly convex, equality holds in (1.2) iff

(1.3)
p1

q1
=

p2

q2
= . . . =

pn

qn
.

It is natural to consider the following corollary.

Corollary 1 (Nonnegativity). Let f : [0,∞) → � be convex and normalised, i.e.,

(1.4) f(1) = 0.

Then for any p, q ∈ [0,∞)n with Pn = Qn we have the inequality

(1.5) If (p, q) > 0.

If f is strictly convex, equality holds in (1.5) iff

(1.6) pi = qi for all i ∈ {1, . . . , n}.

In particular, if p, q are probability vectors, then Corollary 1 shows that for a

strictly convex and normalised f : [0,∞) → �

(1.7) If (p, q) > 0 and If (p, q) = 0 iff p = q.

We now give some examples of divergence measures in information theory which

are particular cases of f -divergences.
(1) Kullback-Leibler distance ([12]). The Kullback-Leibler distance D(·, ·) is
defined by

(1.8) D(p, q) =
n∑

i=1

pi log
(pi

qi

)
.
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If we choose f(t) = t ln t, t > 0, then obviously

(1.9) If (p, q) = D(p, q).

(2) Variational distance (l1-distance). The variational distance V (·, ·) is defined
by

(1.10) V (p, q) =
n∑

i=1

|pi − qi|.

If we choose f(t) = |t− 1|, t ∈ [0,∞), then we have

(1.11) If (p, q) = V (p, q).

(3) Hellinger discrimination ([13]). The Hellinger discrimination is defined by√
2h2(·, ·), where h2(·, ·) is given by

(1.12) h2(p, q) =
1
2

n∑

i=1

(
√

pi −
√

qi)2.

It is obvious that if f(t) = 1
2 (
√

t− 1)2, then

(1.13) If (p, q) = h2(p, q).

(4) Triangular discrimination ([24]). We define the triangular discrimination
between p and q by

(1.14) ∆(p, q) =
n∑

i=1

|pi − qi|2
pi + qi

.

It is obvious that if f(t) = (t− 1)2/(t + 1), t ∈ (0,∞), then

(1.15) If (p, q) = ∆(p, q).

Note that
√

∆(p, q) is known in literature as the Le Cam distance.

(5) χ2-distance. We define the χ2-distance (chi-square distance) by

(1.16) Dχ2(p, q) =
n∑

i=1

(pi − qi)2

qi
.
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It is clear that if f(t) = (t− 1)2, t ∈ [0,∞), then

(1.17) If (p, q) = Dχ2(p, q).

(6) Rényi’s divergences ([14]). For α ∈ � \ {0, 1}, consider

(1.18) %α(p, q) =
n∑

i=1

pα
i q1−α

i .

It is obvious that if f(t) = tα (t ∈ (0,∞)), then

(1.19) If (p, q) = %α(p, q).

Rényi’s divergences Rα(p, q) = α−1(α − 1)−1 ln[%α(p, q)] have been introduced
for all real orders α 6= 0, α 6= 1 (and continuously extended for α = 0 and α = 1)
in [31], where the reader may find many inequalities valid for these divergences,
without, as well as with, some restrictions for p and q.

For other examples of divergence measures, see the paper [22] and the books [31]

and [32], where further references are given.

2. Some inequalities between the f-divergence

and the Kullback-Leibler distance

In the recent paper [28], the author proved the following inequality for the
f -divergence:

Proposition 3. Let Φ: [0,∞) → � be differentiable and convex. Then for all
p, q ∈ [0,∞)n we have the inequality

(2.1) Φ′(1)(Pn −Qn) 6 IΦ(p, q)−QnΦ(1) 6 IΦ′

(p2

q
, p

)
− IΦ′(p, q),

where Pn =
n∑

i=1

pi > 0, Qn =
n∑

i=1

qi > 0, Φ′ : (0,∞) → � is the derivative of Φ, and

IΦ′
(
p2/q, p

)
=

n∑
i=1

piΦ′
(
pi/qi

)
.

If Φ is strictly convex and pi, qi > 0 (i = 1, . . . , n), then equality holds in (2.1) iff
p = q.

If we assume that Pn = Qn and Φ is normalised, then we obtain a simpler inequal-
ity

(2.2) 0 6 IΦ(p, q) 6 IΦ′

(p2

q
, p

)
− IΦ′ (p, q).
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Applications for particular divergences which are instances of the f -divergence were

also given.
A result similar to the above theorem has been presented in another paper by the

author [29].

Proposition 4. Let Φ, p, q be as in Proposition 3. Then we have the inequality

(2.3) 0 6 IΦ(p, q)−QnΦ
( Pn

Qn

)
6 IΦ′

(p2

q
, p

)
− Pn

Qn
IΦ′(p, q).

If Φ is strictly convex and pi, qi > 0 (i = 1, . . . , n), then the equality holds in (2.3)
iff p1/q1 = . . . = pn/qn.

Obviously, if Pn = Qn and Φ is normalised, then (2.3) becomes (2.2).
As in [30], we will say that a mapping f : C ⊂ � → � , where C is an interval

(in [30], the definition was considered in general normed spaces), is

(i) α-lower convex on C if f(t)− 1
2αt2 is convex on C;

(ii) β-upper convex on C if 1
2βt2 − f(t) is convex on C;

(iii) (α, β)-convex on C (with α 6 β) if it is both α-lower convex and β-upper
convex.

In [30], among other, the author has proved the following result for the f -diver-
gence.

Proposition 5. Let Φ: [0,∞) → � and p, q ∈ [0,∞)n with Pn = Qn.

(i) If Φ is α-lower convex on � + , then we have the inequality

(2.4)
α

2
Dχ2(p, q) 6 IΦ(p, q)−QnΦ(1).

(ii) If Φ is β-upper convex on [0,∞), then we have the inequality

(2.5) IΦ(p, q)−QnΦ(1) 6 β

2
Dχ2(p, q).

(iii) If Φ is (α, β)-convex on [0,∞), then we have the sandwich inequality

(2.6)
α

2
Dχ2(p, q) 6 IΦ(p, q)−QnΦ(1) 6 β

2
Dχ2(p, q),

where Dχ2(·, ·) is the χ2-divergence.

Of course, if Φ is normalised, i.e., Φ(1) = 0 and p, q are probability distributions,
then we get simpler inequalities

(2.7)
α

2
Dχ2(p, q) 6 IΦ(p, q), IΦ(p, q) 6 β

2
Dχ2(p, q)
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and

(2.8)
α

2
Dχ2(p, q) 6 IΦ(p, q) 6 β

2
Dχ2(p, q).

In [30], some applications for particular instances of f -divergences were also given.

The following result concerning an upper and a lower bound for the f -divergence
in terms of the Kullback-Leibler distance D(p, q) holds. This result complements, in
a sense, the results presented above in Proposition 5.

Theorem 1. Assume that the generating mapping f : (0,∞) → � is normalised,
i.e., f(1) = 0, and satisfies the assumptions
(i) f is twice differentiable on (r, R), where 0 6 r 6 1 6 R 6 ∞;
(ii) there exist constants m, M such that

(2.9) m 6 tf ′′(t) 6 M for all t ∈ (r, R).

If p, q are discrete probability distributions satisfying the assumption

(2.10) r 6 ri =
pi

qi
6 R for all i ∈ {1, . . . , n},

then we have the inequality

(2.11) mD(p, q) 6 If (p, q) 6 MD(p, q).

���������
. Define a mapping Fm : (0,∞) → � , Fm(t) = f(t)−mt ln t. Then Fm(·)

is normalised, twice differentiable and since

(2.12) F ′′
m(t) = f ′′(t)− m

t
=

1
t
(tf ′′(t)−m) > 0

for all t ∈ (r, R), it follows that Fm(·) is convex on (r, R). Applying the nonnegativity
property of the f -divergence functional for Fm(·) and the linearity property, we may
state that

(2.13) 0 6 IFm(p, q) = If (p, q)−mI(·) ln(·)(p, q) = If (p, q)−mD(p, q)

from where the first inequality in (2.11) results.
Define FM : (0,∞) → � , FM (t) = Mt ln t − f(t), which is obviously normalised,

twice differentiable and by (2.9), convex on (r, R). Applying the nonnegativity prop-
erty of the f -divergence for FM , we obtain the second part of (2.11). �
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�����������
1. If we have strict inequality “<” in (2.9) for any t ∈ (r, R), then the

mappings Fm and FM are strictly convex and equality holds in (2.11) iff p = q.
�����������

2. It is important to note that if f is twice differentiable on (0,∞) and
0 < m 6 tf ′′(t) 6 M < ∞ for any t ∈ (0,∞), then inequality (2.11) holds for any
probability distributions p, q.

The following theorem concerning the convexity property of the f -divergence also

holds.

Theorem 2. Assume that f satisfies the assumptions (i) and (ii) from Theorem 1.
If p(j), q(j) (j = 1, 2) are probability distributions satisfying (2.10), i.e.,

(2.14) r 6 p
(j)
i

q
(j)
i

6 R for all i ∈ {1, . . . , n} and j ∈ {1, 2},

then

(2.15) r 6 λp
(1)
i + (1− λ)p(2)

i

λq
(1)
i + (1− λ)q(2)

i

6 R for all i ∈ {1, . . . , n} and λ ∈ [0, 1]

and

m[D(λp(1) + (1− λ)p(2), λq(1) + (1− λ)q(2))(2.16)

− λD(p(1), q(1))− (1− λ)D(p(2), q(2))]

6 If (λp(1) + (1− λ)p(2), λq(1) + (1− λ)q(2))

− λIf (p(1), q(1))− (1− λ)If (p(2), q(2))

6 M [D(λp(1) + (1− λ)p(2), λq(1) + (1− λ)q(2))

− λD(p(1), q(1))− (1− λ)D(p(2), q(2))]

for all λ ∈ [0, 1].
���������

. By (2.14) we have

(2.17) rλq
(1)
i 6 λp

(1)
i 6 λRq

(1)
i for all i ∈ {1, . . . , n}

and

(2.18) r(1− λ)q(2)
i 6 (1− λ)p(2)

i 6 R(1− λ)q(2)
i for all i ∈ {1, . . . , n}.

Summing (2.17) and (2.18), we obtain (2.15).
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It is already known that the mappings Fm, FM as defined in Theorem 1 are convex

and normalised.
Applying the “Joint Convexity Principle” to IFm(·, ·), i.e.,

IFm(λ(p(1), q(1)) + (1− λ)(p(2), q(2)))(2.19)

6 λIFm(p(1), q(1)) + (1− λ)IFm (p(2), q(2))

and rearranging the terms, we end up with the first inequality in (2.16).
The second inequality follows likewise if we apply the same property to the

f -divergence IFM (·, ·).
We omit the details. �
�����������

3. If m > 0 in (2.9), then the inequality (2.11) is a better result
than the positivity property of the f -divergence. The same will apply to the joint

convexity of the f -divergence if m > 0.

Using the inequality (2.2) which holds for Φ differentiable convex and normalised
functions for p, q probability distributions, we can state the following theorem as
well.

Theorem 3. Let f : [0,∞) → � be a normalised mapping, i.e., f(1) = 0, and
satisfy the assumptions

(i) f is twice differentiable on (r, R), where 0 6 r 6 1 6 R 6 ∞;
(ii) there exist constants m, M such that

(2.20) m 6 tf ′′(t) 6 M for all t ∈ (r, R).

If p, q are discrete probability distributions satisfying the assumption

(2.21) r 6 ri =
pi

qi
6 R for all i ∈ {1, . . . , n},

then we have the inequality

If ′

(p2

q
, p

)
− If ′(p, q)−MD(q, p)(2.22)

6 If (p, q) 6 If ′

(p2

q
, p

)
− If ′(p, q)−mD(q, p).

���������
. We know (see the proof of Theorem 1) that the mapping Fm :

(0,∞) → � , Fm(t) = f(t)−mt ln t is normalised, twice differentiable and convex on
(r, R).
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If we apply the second inequality from (2.2) to Fm, we may write

(2.23) IFm(p, q) 6 IF ′
m

(p2

q
, p

)
− IF ′

m
(p, q).

However,

IFm(p, q) = If (p, q)−mD(q, p),

IF ′
m

(p2

q
, p

)
= If ′(·)−m[ln(·)+1]

(p2

q
, p

)

= If ′

(p2

q
, p

)
−mIln(·)

(p2

q
, p

)
−m

= If ′

(p2

q
, p

)
+ mD

(
p,

p2

q

)
−m

and

IF ′
m

(p, q) = If ′(p, q) + mD(q, p)−m.

Consequently, by (2.23) we have

If (p, q)−mD(p, q) 6 If ′

(p2

q
, p

)
+mD

(
p,

p2

q

)
−m− If ′(p, q)−mD(q, p) + m

= If ′

(p2

q
, p

)
+ m

(
D

(
p,

p2

q

)
−D(q, p)

)
− If ′(p, q).

As simple computation shows that D
(
p, p2/q

)
= −D(p, q), the second inequality

in (2.22) is proved.
Consider FM (t) = Mt ln t−f(t), which is obviously normalised, twice differentiable

and convex on (r, R).
If we apply the second inequality from (2.2) to FM , we may write

(2.24) IFM (p, q) 6 IF ′
M

(p2

q
, p

)
− IF ′

M
(p, q).

However,

IFM (p, q) = MD(p, q)− If (p, q);

IF ′
M

(p2

q
, p

)
= −MD

(
p,

p2

q

)
+ M − If ′

(p2

q
, p

)
;

IF ′
M

(p, q) = −MD(q, p) + M − If ′(p, q)

and hence, by (2.24), we get

MD(p, q)− If (p, q) 6 −MD
(
p,

p2

q

)
+ M − If ′

(p2

q
, p

)
+ MD(q, p)−M + If ′(p, q),

which is equivalent to the first part of (2.22). �
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�����������
4. The inequality (2.22) is obviously equivalent to the following one:

mD(q, p) 6 If ′

(p2

q
, p

)
− If ′(p, q)− If (p, q) 6 MD(q, p).

The above results have natural applications when the Kullback-Leibler distance is

compared with a number of other divergence measures arising in information theory.

3. Some particular cases

Using Theorem 1, we are able to point out the following particular cases which
may be of interest in information theory.

Proposition 6. Let p, q be two probability distributions with the property that

(3.1) 0 < r 6 pi

qi
= ri 6 R < ∞ for all i ∈ {1, . . . , n}.

Then we have the inequality

(3.2)
1
R

D(p, q) 6 D(q, p) 6 1
r
D(p, q).

���������
. Consider the mapping f : [r, R] → � , f(t) = − ln t. Define g(t) =

tf ′′(t) = t ·
(
1/t2

)
= 1/t. Then obviously

sup
t∈[r,R]

g(t) =
1
r
and inf

t∈[r,R]
g(t) =

1
R

.

Also,

If (p, q) = −
n∑

i=1

qi ln
(pi

qi

)
=

n∑

i=1

qi ln
( qi

pi

)
= D(q, p).

Now, using (2.11) with m = 1/R andM = 1/r, we deduce the desired inequality. �

Corollary 2. With the above assumptions for p and q, we have

(3.3) r 6 D(p, q)
D(q, p)

6 R.

Corollary 3. Assume that p, q satisfy the condition

(3.4)
∣∣∣pi

qi
− 1

∣∣∣ 6 ε for all i ∈ {1, . . . , n}.
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Then we have the inequality

∣∣∣D(p, q)
D(q, p)

− 1
∣∣∣ 6 ε.

The following proposition connecting the χ2-distance with the Kullback-Leibler

distance holds.

Proposition 7. Let p, q be two probability distributions satisfying the condi-

tion (3.1). Then we have the inequality

(3.5) 2r 6 Dχ2(p, q)
D(p, q)

6 2R.

���������
. Consider the mapping f : [r, R] → � , f(t) = (t − 1)2. Define g(t) =

tf ′′(t) = 2t. Then, obviously,

sup
t∈[r,R]

g(t) = 2R and inf
t∈[r,R]

g(t) = 2r.

Since
If (p, q) = Dχ2(p, q),

we deduce the desired inequality by applying (2.11) for m = 2r and M = 2R. �
�����������

5. The following inequality is well known in literature:

(3.6) D(p, q) 6 Dχ2(p, q).

For a simple proof of this fact as well as for different applications in information

theory, see [27].

Now, observe that from the first inequality in (3.5) we have

(3.7) D(p, q) 6 1
2r

Dχ2(p, q).

We remark that if 1
2r 6 1, i.e., r > 1

2 , the inequality (3.7) is better than (3.6).

The following corollary is obvious.

Corollary 4. Assume that the probability distributions p, q satisfy the condi-

tion (3.4). Then

(3.8)
1
2

∣∣∣Dχ2(p, q)
D(p, q)

− 2
∣∣∣ 6 ε.
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The following inequality connecting the Kullback-Leibler distance with h(p, q),
defined in Introduction, holds.

Proposition 8. Assume that the probability distributions p, q satisfy the condi-

tion (3.1). Then we have the inequality

(3.9)
1

4
√

R
D(p, q) 6 h2(p, q) 6 1

4
√

r
D(p, q).

���������
. Consider the mapping f(t) = 1

2 (
√

t − 1)2. Then f ′(t) = 1
2 − 1

2
√

t
and

f ′′(t) = 1

4
√

t3
. Define g : [r, R] → � by

g(t) = tf ′′(t) =
1

4
√

t
.

Then obviously

sup
t∈[r,R]

g(t) =
1

4
√

r
and inf

t∈[r,R]
g(t) =

1
4
√

R
.

Since
If (p, q) = h2(p, q),

we deduce the desired inequality (3.9) by using (2.11) for m = 1
4
√

R
and M = 1

4
√

r
.

�
�����������

6. The following inequality is well known in literature (see for exam-
ple [25]):

(3.10) D(p, q) > 2h2(p, q)

for any probability distributions p, q.

From the second inequality in (3.9) we have

(3.11) D(p, q) > 4
√

rh2(p, q).

We remark that if 4
√

r > 2, i.e., r > 1
4 , then the inequality in (3.11) is better than

(3.10).
The following result establishes a connection between the triangular discrimina-

tion ∆ and the Kullback-Leibler distance.

Proposition 9. Assume that the probability distributions p, q satisfy the condi-

tion (3.1).
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(i) If 0 < r 6 1
2 , then we have

(3.12) 8 min
{

r

(r + 1)3
,

R

(R + 1)3

}
D(p, q) 6 ∆(p, q) 6 32

27
D(p, q).

(ii) If 1
2 < r < 1, then we have

(3.13)
8R

(R + 1)3
D(p, q) 6 ∆(p, q) 6 8r

(r + 1)3
D(p, q).

���������
. Consider the mapping f(t) = (t−1)2

t+1 . We have

f ′(t) = 1− 4
(t + 1)2

and

f ′′(t) =
8

(t + 1)3
.

Define
g : [r, R] → � , g(t) = tf ′′(t) =

8t

(t + 1)3
, t ∈ [r, R].

We have

g′(t) =
8(1− 2t)
(t + 1)4

,

which shows that g has the maximum realized at t0 = 1
2 and

max
t∈(0,∞)

g(t) = g
(1

2

)
=

32
27

.

We have two cases:

1) If 0 < r 6 1
2 , then

sup
t∈[r,R]

g(t) =
32
27

and

inf
t∈[r,R]

g(t) = min[g(r), g(R)] = min
{

8r

(r + 1)3
,

8R

(R + 1)3

}
.

2) If 1
2 < r < 1, then

sup
t∈[r,R]

g(t) = g(r) =
8r

(r + 1)3

and

inf
t∈[r,R]

g(t) = g(R) =
8R

(R + 1)3
.
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Applying the inequality (2.11), we deduce (3.12) and (3.13). We omit the details.

�
�����������

7. It is clear, by the above arguments, that for every probability dis-
tribution we have the inequality

(3.14) ∆(p, q) 6 32
27

D(p, q).

We know (see Topsoe [24]) that

(3.15) 2h2(p, q) 6 ∆(p, q) 6 4h2(p, q).

Now, as D(p, q) > 2h2(p, q), we obtain

(3.16) ∆(p, q) 6 2D(p, q),

which is not as good as our result (3.14).

Let us compare the Rényi α-divergence with the Kullback-Leibler distance. The

following proposition holds:

Proposition 10. Assume that probability distributions p, q satisfy the condi-

tion (3.1). Then

α(α − 1)rα−1D(p, q) + 1 6 exp[α(α − 1)Rα(p, q)](3.17)

6 α(α − 1)Rα−1D(p, q) + 1

for α > 1.
���������

. Consider the mapping f : (0,∞) → � , f(t) = tα − 1, α > 1. Then
f ′(t) = αtα−1 and f ′′(t) = α(α − 1)tα−2. Define g : [r, R] → � , g(t) = tf ′′(t) =
α(α − 1)tα−1. It is obvious that

sup
t∈[r,R]

g(t) = α(α − 1)Rα−1 and inf
t∈[r,R]

g(t) = α(α − 1)rα−1.

Now, observe that f(1) = 0, i.e., f is normalised and so we can apply the inequal-
ity (2.11) getting

α(α− 1)rα−1D(p, q) 6
n∑

i=1

qi

[(pi

qi

)α

− 1
]

6 α(α− 1)Rα−1D(p, q),

i.e.,

α(α− 1)rα−1D(p, q) + 1 6 %α(p, q) 6 α(α− 1)Rα−1D(p, q) + 1

and the proposition is proved. �
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We define the Bhattacharyya distance (see [27]) by B(p, q) = − ln[γ(p, q)], where

γ(p, q) =
n∑

i=1

√
piqi.

The following proposition holds.

Proposition 11. Assume that the probability distributions p, q satisfy the con-

dition (3.1). Then

(3.18) 4
√

r[1− exp[−B(p, q)]] 6 D(p, q) 6 4
√

R[1− exp[−B(p, q)]].

���������
. Consider the mapping f : (0,∞) → � , f(t) =

√
t − 1. Then f is

normalised, f ′(t) = 1
2 t−

1
2 , f ′′(t) = − 1

4 t−
3
2 . Define g : [r, R] → � , g(t) = tf ′′(t) =

− 1
4 t−

1
2 . It is obvious that

sup
t∈[r,R]

g(t) = g(R) = − 1
4
√

R
and inf

t∈[r,R]
g(t) = g(r) = − 1

4
√

r
.

Applying the inequality (2.11), we have

− 1
4
√

r
D(p, q) 6

n∑

i=1

qi

(√
pi

qi
− 1

)
6 − 1

4
√

R
D(p, q),

i.e.,

1− 1
4
√

r
D(p, q) 6 γ(p, q) 6 1− 1

4
√

R
D(p, q),

which is equivalent to (3.18). �

We define the harmonic divergence by M(p, q) = 1−m(p, q), where

m(p, q) =
n∑

i=1

2piqi

pi + qi
.

The following proposition holds:

Proposition 12. Assume that p, q are two discrete probability distributions.

Then

(3.19) 0 6 M(p, q) 6 16
27

D(p, q).

219



���������
. Consider the mapping f : (0,∞) → � , f(t) = 2t/(t + 1)− 1. Then f is

normalised,

f ′(t) =
2

(t + 1)2
, f ′′(t) = −4t/(t + 1)3.

Define g : [r, R] → � , g(t) = tf ′′(t) = −4t
(t+1)3 . Then

g′(t) =
4(2t− 1)
(t + 1)4

.

It is clear that g is monotonic decreasing on [0, 1
2 ) and monotonic increasing on

( 1
2 ,∞). We have

inf
t∈(0,∞)

g(t) = g
(1

2

)
= −16

27
,

sup
t∈(0,∞)

g(t) = 0.

Applying the inequality (2.11) to m = − 16
27 and M = 0, we deduce

−16
27

D(p, q) 6
n∑

i=1

qi

{[
2pi

qi

pi

qi
+ 1

]
− 1

}
6 0,

which is equivalent to

−16
27

D(p, q) 6 m(p, q)− 1 6 0

and the inequality (3.19) is proved. �

The above result can be improved if we know more information about ri = pi/qi,
i = 1, . . . , n. We can state the following proposition:

Proposition 13. Assume that p, q satisfy the condition (2.10).

(i) If r ∈
(
0, 1

2 ), then

1− 16
27

D(p, q) 6 m(p, q)(3.20)

6 1− 4 min
{

r

(r + 1)3
,

R

(R + 1)3

}
D(p, q).

(ii) If r ∈
[
1
2 , 1), then

(3.21) 1− 4r

(r + 1)3
D(p, q) 6 m(p, q) 6 1− 4R

(R + 1)3
D(p, q).
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.

(i) If r ∈
(
0, 1

2

)
, then

−16
27

6 g(t) 6 max{g(r), g(R)}

= max
{
− 4r

(r + 1)3
,− 4R

(R + 1)3

}

= − 4 min
{

r

(r + 1)3
,

R

(R + 1)3

}
, t ∈ [r, R]

and, applying (2.11), we may write

−16
27

D(p, q) 6 m(p, q)− 1 6 −4 min
{

r

(r + 1)3
,

R

(R + 1)3

}
D(p, q),

and the inequality (3.20) is proved.
(ii) If r ∈

[
1
2 , 1

)
, then

g(r) 6 g(t) 6 g(R) for all t ∈ [r, R],

that is,

− 4r

(r + 1)3
6 g(t) 6 − 4R

(R + 1)3
, t ∈ [r, R].

Applying (2.11), we deduce (3.21). �

Let us consider the J-divergence defined by [26]

J(p, q) =
n∑

i=1

(pi − qi) log
(pi

qi

)
=

n∑

i=1

qi

(pi

qi
− 1

)
log

(pi

qi

)
= If (p, q),

where f : (0,∞) → � , f(x) = (x− 1) lnx.
The following proposition also holds.

Proposition 14. Assume that p, q satisfy the condition (2.10). Then

(3.22)
R + 1

R
D(p, q) 6 J(p, q) 6 r + 1

r
D(p, q).

���������
. Consider f(t) = (t − 1) ln t. Then f ′(t) = ln t − 1/t + 1 and f ′′(t) =

(t + 1)/t2. Define g(t) = tf ′′(t) = 1 + 1/t. Then obviously

sup
t∈[r,R]

g(t) = 1 +
1
r
, inf

t∈[r,R]
g(t) = 1 +

1
R

.

Now, using the inequality (2.11), for M = (r + 1)/r, m = (R + 1)/R, we obtain the
desired result. �
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8. Similar results can be obtained by applying Theorem 3, but we omit

the details.
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