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REGULARITY OF PRESSURE IN THE NEIGHBOURHOOD OF

REGULAR POINTS OF WEAK SOLUTIONS OF THE

NAVIER-STOKES EQUATIONS*

����� � � � � �
	
� � �
,  � � � � � � � � 	 , Praha

Abstract. In the context of the weak solutions of the Navier-Stokes equations we study
the regularity of the pressure and its derivatives in the space-time neighbourhood of regular
points. We present some global and local conditions under which the regularity is further
improved.

Keywords: Navier-Stokes equations, regularity of weak solutions, regular and singular
points

MSC 2000 : 35Q35, 35Q30

Introduction

Let Ω be either � 3 or a bounded domain in � 3 with C2+µ boundary ∂Ω (µ > 0),
T > 0 and QT = Ω× (0, T ). In QT we deal with the Navier-Stokes equations

∂u

∂t
− ν ·∆u+ (u · ∇)u+∇P = 0,(1)

∇ · u = 0,(2)

u(x, 0) = u0(3)

and (if Ω is a bounded domain)

(4) u = 0 on ∂Ω× (0, T ),

where u = (u1, u2, u3) and P denote the velocity and pressure and ν > 0 is the
viscosity coefficient.

*This work has been supported by the Research Plan of the Czech Ministry of Education
No. J04/98/210000010, by the Institute of Hydrodynamics, project No. 5476, and by the
Grant Agency of ASCR, grant No. A2060302.
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As is usual in the standard theory of the Navier-Stokes equations, define D(Ω) =
{ψ ∈ C∞0 (Ω)3;∇·ψ = 0 in Ω} and let H(Ω) and V (Ω) be the completion of D(Ω) in
L2(Ω)3 and W 1,2(Ω)3, respectively. Define also DT = {η ∈ C∞0 (Ω× [0, T ))3;∇ · η =
0 in Ω× [0, T )}.

Definition 1. Let u0 ∈ H(Ω). A measurable function u : QT → � 3 is called a
weak solution of the problem (1)–(4) if u ∈ L2(0, T, V (Ω)) ∩ L∞(0, T,H(Ω)) and

∫ T

0

∫

Ω

[
u · ∂η

∂t
− ν∇u · ∇η − u · ∇u · η

]
dx dt = −

∫

Ω

u0 · η(·, 0) dx

for all η ∈ DT .

The existence of a weak solution of (1)–(4) was proved in many articles (see e.g. [1],

[3] or [9]). However, the problem of regularity and uniqueness of weak solutions has
not yet been solved. It is not known whether weak solutions obtained by different

methods coincide or not. Let us point out that if not stated explicitly we do not
consider any concrete weak solution (constructed, for example, by the Faedo-Galerkin
method—see [9]) in this chapter but all the conclusions hold for any weak solution

from Definition 1.
We say that a point (x0, t0) ∈ QT is a regular point of u if there exists a neigh-

bourhood U of (x0, t0) in QT such that u ∈ L∞(U)3.
Let (x0, t0) ∈ QT be a regular point. In this paper we are mainly interested in

the smoothness of the time derivative ∂u/∂t in a neighbourhood of (x0, t0). More
precisely, we ask whether ∂u/∂t ∈ C(Q′)3, where Q′ = Bδ(x0)× (t0 − ε, t0 + ε) and
δ, ε are some positive numbers. The problem was already studied in [5] where it was
concluded (among other) that

(5)
∂u

∂t
∈ C(Q′)3.

To prove this result (see Theorem 7 in [5]) the author used the second part of the

Main Theorem from [7]. He verified all the necessary assumptions, particularly
∂u/∂t ∈ L4/3(t0− ε, t0 + ε, L2(Bδ(x0))3) for some ε, δ > 0 and concluded finally that
(5) is an immediate consequence of the Main Theorem. Unfortunately, in our opinion,
it is not the case. In fact, Serrin’s theorem does not yield such a strong regularity of

∂u/∂t in Q′ and therefore, we still consider the question mentioned above an open
problem. Its solution would be useful in the study of the local regularity of solutions

of the Navier-Stokes equations.
We begin the next chapter with the presentation of a few observations concerning

the regularity of ∂u/∂t and P near regular points—Theorem 2 and Theorem 4. We
stress that due to the non-existence of the boundary the results for Ω = � 3 are
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stronger than those for a bounded Ω. Next, we present some simple (global and
local) additional conditions on u and P under which the regularity of ∂u/∂t and P
in the neighbourhood of a regular point of u can be improved.

1. Discussion of known results

Let us start with some obvious properties of weak solutions of (1)–(4) in a space-
time neighbourhood of regular points which follow from [7] and [5].

Thus, let (x0, t0) ∈ QT be a regular point of u. Then there exist ε, δ > 0, Q′ =
Bδ(x0)× (t0 − ε, t0 + ε) such that
(i) u(·, t) ∈ C∞(Bδ(x0))3 for almost every t ∈ (t0 − ε, t0 + ε) and every space
derivative of u is bounded in compact subregions of Q′ (see [7]);

(ii) ∂u/∂t ∈ L4/3(t0 − ε, t0 + ε, L2(Bδ(x0))3) (see [5]);
(iii) Dγ

xu(x, ·) are absolutely continuous functions of time in (t0 − ε, t0 + ε) for al-
most every x ∈ Bδ(x0) and every multi-index γ = (γ1, γ2, γ3), where Dγ

x =
∂|γ|/(∂xγ1

1 . . . ∂xγ3
3 ), |γ| = γ1 + γ2 + γ3 (see [7]).

It follows from (i) that the functions Dγ
xu(·, t), t ∈ (t0− ε, t0 + ε)\A, where A is a

subset of � of Lebesgue measure 0, are uniformly bounded and uniformly continuous
in (Bδ1(x0))3 for every δ1 ∈ (0, δ). Using the Arzelà-Ascoli theorem and the weak
continuity of u as a function from (t0 − ε, t0 + ε) into L2(Bδ(x0)), we get that

(6) u(·, t) ∈ C∞(Bδ(x0))3 for every t ∈ (t0 − ε, t0 + ε)

and Dγ
xu are continuous functions in Bδ(x0)× (t0 − ε, t0 + ε) for every γ.

In the following two theorems we present further results on regularity of space
derivatives of pressure and space derivatives of the time derivative of velocity. Since

we have no information concerning the behavior of the pressure derivatives on ∂Ω,
we use the cut-off function technique (see e.g. [5]). Therefore, the results are de-

termined by the initial global regularity of pressure as presented in [8] or [6]. The
second theorem is stated exclusively for Ω = � 3 . In this case we use the integral

representation of P (see [1]) which holds for any weak solution. It is interesting that
due to the non-existence of the boundary ∂Ω, Theorem 4 gives stronger results than
Theorem 2.

Theorem 2. Let Ω ⊂ � 3 be a bounded domain with a smooth boundary or

Ω = R3, let u be a weak solution of (1)–(4) and P the associated pressure. Let
further (x0, t0) ∈ QT be a regular point of u and ε, δ the numbers from (i), (ii) and

(iii). Then Dγ
x∂u/∂t,D

γ
xP ∈ Lα(t0 − ε, t0 + ε, L∞(Bδ1(x0))3) for every multi-index

γ, |γ| > 0, δ1 ∈ (0, δ) and α ∈ (1, 2).

575



���������
. Let δ1 ∈ (0, δ) and α ∈ (1, 2). As follows from [8] or [6] we can suppose

that P ∈ Lr(ξ, T, Ls(Ω1)) for every ξ > 0 provided Ω1 ⊂ Ω is a bounded domain,
2/r + 3/s = 3, r ∈ (1, 2) and s ∈ (3/2, 3). Thus, we have

(7) P ∈ Lα(t0 − ε, t0 + ε;L1(Bδ(x0))).

Let ϕ ∈ C∞( � 3 ),

(8) ϕ ∈ 〈0, 1〉 in � 3 , ϕ ≡ 1 in B(2δ1+δ)/3(x0) and ϕ ≡ 0 in � 3 \B(2δ+δ1)/3(x0).

For almost every t ∈ (t0 − ε, t0 + ε and for every x ∈ Bδ1(x0) it is possible to write

P(x, t) = (ϕP)(x, t) =
1
4 �

∫

Ω

1
|x− y|ϕ(y)

∂ui

∂yj
(y, t)

∂uj

∂yi
(y, t) dy(9)

+
1
4 �

∫

Ω

1
|x− y|P(y, t)∆ϕ(y) dy +

1
2 �

∫

Ω

x− y

|x− y|3∇ϕ(y)P(y, t) dy

= p1(x, t) + p2(x, t) + p3(x, t).

Using (i), (8) and the equality

∂

∂xk

1
|x− y| = − ∂

∂yk

1
|x− y| ,

we see that

(10)
∂p1

∂xk
(x, t) =

1
4 �

∫

Ω

1
|x− y|

∂

∂yk

(
ϕ(y)

∂ui

∂yj
(y, t)

∂uj

∂yi
(y, t)

)
dy, k = 1, 2, 3

and the following conclusion can be derived from (10) and (i):

(11) ∇p1 ∈ L∞(t0 − ε, t0 + ε;L∞(Bδ1(x0))3).

Differentiating further (10), we obtain

(12) Dγ
xp1 ∈ L∞(t0 − ε, t0 + ε;L∞(Bδ1(x0))3)

for every γ. Using (7), (8) and the facts that

∇ϕ ≡ 0 on B(2δ1+δ)/3(x0) ∪ ( � 3 \B(2δ+δ1)/3(x0))

and
1

|x− y| ∈ C
∞( � 3 \ {x}),
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we get by differentiating the last two integrals in (9) that

(13) Dγ
xp2, D

γ
xp3 ∈ Lα(t0 − ε, t0 + ε;L∞(Bδ1(x0))3).

It follows from (12) and (13) that

(14) Dγ
xP ∈ Lα(t0 − ε, t0 + ε;L∞(Bδ1(x0))3).

Finally, using (i), (1) and (14), we conclude that

Dγ
x

∂u

∂t
∈ Lα(t0 − ε, t0 + ε;L∞(Bδ1(x0))3)

and the proof is complete. �
��� �"!#��$

3. Suppose that the assumptions of Theorem 2 are satisfied and P ∈
Lβ(t0 − ε, t0 + ε;L1(Bδ(x0))), β ∈ 〈2,∞〉. Then the proof of Theorem 2 gives that
Dγ

xp2, D
γ
xp3 ∈ Lβ(t0 − ε, t0 + ε;L∞(Bδ1(x0))3) and consequently Dγ

x∂u/∂t,D
γ
xP ∈

Lβ(t0 − ε, t0 + ε;L∞(Bδ1(x0))3).

Since Dγ
x∂u/∂t ∈ Lα(t0 − ε, t0 + ε;L∞(Bδ1(x0))3), we have

∫ t0+ε

t0−ε

ess sup
x∈Bδ1 (x0)

∣∣∣∣Dγ
x

∂u

∂t
(x, t)

∣∣∣∣
α

dt(15)

=
∥∥∥∥Dγ

x

∂u

∂t

∥∥∥∥
α

Lα(t0−ε,t0+ε;L∞(Bδ1 (x0))3)

= cα <∞.

It follows from (15), (i) and (iii) that

ess sup
x∈Bδ1 (x0)

{‖Dγ
xu(x, ·)‖W 1,α(t0−ε,t0+ε)} 6 c <∞.

Therefore, using also the continuity of Dγ
xu in Q

′ and the reflexivity of the space

W 1,α(t0 − ε, t0 + ε), we get that

Dγ
xu(x, ·) ∈W 1,α(t0 − ε, t0 + ε) for every x ∈ Bδ1(x0)(16)

and

sup
x∈Bδ1 (x0)

{‖Dγ
xu(x, ·)‖W 1,α(t0−ε,t0+ε)} 6 c <∞.

Using (6) and (16), we obtain that Dγ
xu ∈ C0,1−1/α(Bδ1(x0) × (t0 − ε, t0 + ε))3,

α ∈ (1, 2), where the distance in the space-time is defined as d((x, t), (x′ , t′)) =
|x−x′|+ |t− t′|. Note that Ladyzhenskaya and Seregin proved a similar result in [6].
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Theorem 4. Let Ω = R3 and let the assumptions of Theorem 2 be satisfied.

Then Dγ
x∂u/∂t,D

γ
xP ∈ L∞(t0 − ε, t0 + ε, L∞(Bδ1(x0))3) for every multi-index γ,

|γ| > 0 and δ1 ∈ (0, δ).
���������

. Let δ1 < δ2 < δ. It is known (see e.g. [1]) that for almost every

t ∈ (t0 − ε, t0 + ε) and every x ∈ Bδ1(x0),

P(x, t) =
1
4 �

∫

R3

1
|x− y|

∂ui

∂yj
(y, t)

∂uj

∂yi
(y, t) dy(17)

=
1
4 �

∫

Bδ2 (x0)

1
|x− y|

∂ui

∂yj
(y, t)

∂uj

∂yi
(y, t) dy

+
1
4 �

∫
% 3\Bδ2 (x0)

1
|x− y|

∂ui

∂yj
(y, t)

∂uj

∂yi
(y, t) dy

= p̂1(x, t) + p̂2(x, t).

It follows from (i) that p̂1 ∈ L∞(t0 − ε, t0 + ε, L∞(Bδ1(x0))3). If we use twice
integration by parts and take into consideration that u∇u, |u|2 ∈ L1(R3) we get

p̂2(x, t) =
1
4 �

∫

∂Bδ2 (x0)

1
|x− y|

∂ui

∂yj
(y, t)uj(y, t)ni(y) dyS(18)

− 1
4 �

∫

∂Bδ2 (x0)

∂

∂yi

(
1

|x− y|

)
ui(y, t)uj(y, t)nj(y) dyS

+
1
4 �

∫

R3\Bδ2 (x0)

∂2

∂yi∂yj

(
1

|x− y|

)
ui(y, t)uj(y, t) dy,

where n = (n1, n2, n3) is the outer normal vector. Using (18), (i) and the facts that
uiuj ∈ L∞(t0−ε, t0+ε, L1( � 3 )) and the functions ψ(y) = 1/|x− y|, x ∈ Bδ1(x0) and
all their first and second space derivatives in y are uniformly bounded in � 3 \Bδ2(x0),
we see that p̂2 ∈ L∞(t0 − ε, t0 + ε;L∞(Bδ1(x0))3). From this and (17) one can
conclude

(19) P ∈ L∞(t0 − ε, t0 + ε;L∞(Bδ1(x0))3).

Now the proof follows immediately from Theorem 2 and Remark 3. �
Let us remark that since Dγ

x∂u/∂t ∈ L∞(t0 − ε, t0 + ε;L∞(Bδ1(x0))3), we have

ess sup
x∈Bδ1 (x0)

{‖Dγ
xu(x, ·)‖W 1,β(t0−ε,t0+ε)} 6 c <∞

for every β ∈ 〈1,∞〉 and

(20) Dγ
xu(x, ·) ∈ W 1,β(t0 − ε, t0 + ε) holds for every x ∈ Bδ1(x0)

provided β ∈ 〈1,∞). Moreover, we also have u ∈ C0,λ(Bδ1(x0)× (t0− ε, t0 + ε))3 for
every λ ∈ (0, 1).
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��� �"!#��$
5. Let u be a weak solution of (1)–(4) and let P be the associated

pressure. Then P ∈ L5/3(QT ).
���������

. We use the integral representation of P (the first equation in (17)) and
apply twice integration by parts. We get for almost every t ∈ (0, T ) that

P(x, t) = −1
3
|u(x, t)|2 + lim

ε→0+

1
4 �

∫

R3
ε(x)

∂2

∂yi∂yj

(
1

|x− y|

)
ui(y, t)uj(y, t) dy

for almost every x ∈ � 3 , where � 3
ε (x) = � 3 \ Bε(x). The conclusion of Remark 5 is

obtained by using the Calderón-Zygmund theorem (see [2] or [4]) and the fact that

u ∈ L10/3(QT ). �

2. Application of additional conditions

From now on till the end of the chapter suppose that Ω is a bounded domain.
Our intention is to prove Theorem 2 for α > 2. Unfortunately, we are not able to
prove it generally. At first, we present a few global additional conditions on u and
p, under which Theorem 2 holds for α > 2. Thus, let the assumptions of Theorem 2
be satisfied and δ1 ∈ (0, δ). Moreover, we suppose that it is possible to write

(21) (t0 − ε, t0 + ε) =
⋃

α∈Γ

Iα ∪G,

where Γ is at most countable, Iα are open disjoint intervals, one-dimensional
Lebesgue measure of G is zero and u, P are smooth functions in Ω × Iα. These

assumptions hold, for example, for the weak solution of (1)–(4) constructed by the
Faedo-Galerkin method (see [9]) or for the weak solutions of (1)–(4) satisfying the

strong energy inequality (see [4]).
There exists an orthogonal decomposition of L2(Ω)3 (see [9]),

(22) L2(Ω)3 = H1 ⊕H2 ⊕H3,

where

H1 = {v ∈ L2(Ω)3, div v = 0, γνv = 0},
H2 = {v = ∇p, p ∈W 1,2

0 (Ω)}

and

H3 = {v = ∇q, q ∈W 1.2(Ω), ∆q = 0},
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where γνv is the restriction of v · ν to ∂Ω for every v ∈ C∞(Ω) and ν is the normal
vector to ∂Ω (see [9]). Coming back to the equation (1), we can decompose all terms
in (1) on the intervals Iα. Denote by P1, P2, P3, P12, P13, P23, respectively, the
projections from (L2(Ω))3 onto the spaces H1, H2, H3, H1⊕H2, H1⊕H3, H2⊕H3.

Then

∂u

∂t
= P1

(
∂u

∂t

)
∈ H1,(23)

ν ·∆u = P1(ν ·∆u) + P3(ν ·∆u) ∈ H1 ⊕H3,(24)

∇P = P2(∇P) + P3(∇P) ∈ H2 ⊕H3(25)

and

u∇u = P1(u∇u) + P2(u∇u) + P3(u∇u) ∈ H1 ⊕H2 ⊕H3.(26)

Lemma 6. If u is a weak solution of the system (1)–(4) and P is an associated
pressure then

(u · ∇)u ∈ L∞(t0 − ε, t0 + ε; (W 3,2(Ω)3)∗),(27)

∆P = −∂ui

∂yj
· ∂uj

∂yi
∈ L2(t0 − ε, t0 + ε; (W 3,2(Ω))∗).(28)

���������
. Let ψ ∈W 3,2(Ω)3. Then

∫

Ω

(u · ∇)u · ψ dy = −
∫

Ω

ujui
∂ψi

∂yj
dy.

We estimate ∣∣∣∣
∫

Ω

ujui
∂ψi

∂yj
dy

∣∣∣∣ 6 c‖u‖2
L2(Ω)3‖ψ‖W 3,2(Ω)3

and (27) follows. Similarly, if ψ ∈W 3,2(Ω), then

∫

Ω

∂ui

∂yj

∂uj

∂yi
ψ dy = −

∫

Ω

uj
∂uj

∂yj

∂ψ

∂yi
dy

and
∣∣∣∣
∫

Ω

uj
∂ui

∂yj

∂ψ

∂yi
dy

∣∣∣∣ 6 c‖u‖L2(Ω)3‖∇u‖L2(Ω)9‖ψ‖W 3,2(Ω).

Therefore (28) holds. Lemma 6 is proved. �
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Let us show now that there exists a function ηx = ηx(y) from W 3,2(Ω)3 ∩
W 1,2

0 (Ω)3∩C∞(Ω)3 for every x ∈ Bδ1(x0) such that for almost every t ∈ (t0−ε, t0+ε)

(29) p2(x, t) + p3(x, t) = −
∫

Ω

∇P(y, t) · ηx(y) dy

(the functions p2, p3 were defined in (9)) and therefore

(30) P(x, t) = ϕP(x, t) = p1(x, t)−
∫

Ω

∇P(y, t) · ηx(y) dy.

Moreover, we will show that there exists K > 0 such that

(31) ‖ηx‖W 3,2(Ω)3 6 K

for every x ∈ Bδ1(x0).
Let us recall the following lemma (see [9]).

Lemma 7. Let D ⊂ � 3 be an open bounded domain, ∂D ∈ Cβ , where β =
max(m + 2, 2) and assume that m > −1 is an integer. Let Φ ∈ Wm+1,2(D) and∫

D
Φ dx = 0. Then there exist η ∈Wm+2,2(D)3 and q ∈Wm+1,2(D) such that

−∆η +∇q = 0 in D,(32)

div η = Φ in D,

η = 0 on ∂D.

Moreover,

‖η‖W m+2,2(D) 6 c‖Φ‖W m+1,2(D),

where c = c(D,m).

Take ϕ defined in (8). Denote for every x ∈ Bδ1(x0)

Ψx(y) =
1
4 �

1
|x− y|∆ϕ(y) +

1
2 � ∇y

1
|x− y|∇ϕ(y)−m(Ω)−1,

where m(Ω) denotes the Lebesgue measure of Ω. Then
∫
Ω Ψx(y) dy = 0 and

‖Ψx‖2,2 6 K < ∞ for every x ∈ Bδ1(x0) and for some K > 0. Using Lemma 7, we
obtain a function ηx ∈ W 3,2(Ω)3∩W 1,2

0 (Ω)3, div ηx = Ψx and ‖ηx‖W 3,2(Ω) 6 cK <∞
for every x ∈ Bδ1(x0). Obviously, ηx ∈ C∞(Ω)3, since Ψx ∈ C∞(Ω)3. Therefore,
using the equality

∫
Ω P(y, t) dy = 0, we can write

(33) p2(x, t) + p3(x, t) =
∫

Ω

(Ψx(y) +m(Ω)−1)P(y, t) dy = −
∫

Ω

∇P(y, t) · ηx(y) dy.
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Thus, (29)–(31) are verified. We know from the proof of Theorem 2 that p1 ∈
L∞(t0 − ε, t0 + ε;L∞(Bδ1(x0))). Due to (30) this means that to prove

(34) P ∈ Lβ(t0 − ε, t0 + ε;L∞(Bδ1(x0)))

for some β ∈ 〈2,∞〉, it is sufficient to show that
∫
Ω
∇P(y, t) · ηx(y) dy as a function

of (x, t) is from the space Lβ(t0−ε, t0 +ε;L∞(Bδ1(x0))). We use this idea in the the
proof of the two next lemmas, where we present two examples of global conditions

imposed on u under which (34) is satisfied. Recall that (34) then implies (according
to Remark 3) that Theorem 2 holds for α = β > 2. For the sake of simplicity, we
omit in the proof of Lemma 8 and Lemma 9 the dependence of functions on y and t.

Lemma 8. Let g be a function for which ∇g = P3(ν∆u) and suppose that
g|∂Ω ∈ Lβ(t0 − ε, t0 + ε;L1(∂Ω)), β ∈ 〈2,∞〉. Then (34) holds.
���������

. Let x ∈ Bδ1(x0). Suppose that ηx is the function from (29). Using (1)

and (23)–(25) we get for almost every t ∈ (t0 − ε, t0 + ε) that

∫

Ω

∇Pηx dy =
∫

Ω

∇PP23(ηx) dy = −
∫

Ω

(u · ∇)uP23(ηx) dy

+
∫

Ω

ν∆uP23(ηx) dy −
∫

Ω

∂u

∂t
P23(ηx) dy.

Obviously,
∫
Ω
∂u/∂tP23(ηx) dy = 0 and

∫
Ω
ν∆uP23(ηx) dy =

∫
Ω
νP3(∆u)P3(ηx) dy.

Thus,

(35)
∫

Ω

∇Pηx dy = −
∫

Ω

(u · ∇)uP23(ηx) dy +
∫

Ω

νP3(∆u)P3(ηx) dy.

It follows from Lemma 6, (31) and the fact that ‖P23ϕx‖W 3,2(Ω)3 6 c‖ϕx‖W 3,2(Ω)3

that

(36)
∫

Ω

(u · ∇)uP23(ηx) dy 6 C

for some C > 0, every x ∈ Bδ1(x0) and almost every t ∈ (t0 − ε, t0 + ε).
Denote by h the function for which ∇h = P3(ηx). Then ∆h = 0 and

∫

Ω

P3(ν∆u) · P3(ηx) dy =
∫

Ω

∇g · ∇h dy(37)

=
∫

∂Ω

g
∂h

∂n
dyS −

∫

Ω

g∆h dy =
∫

∂Ω

g
∂h

∂n
dyS.
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From ηx ∈ W 1,2
0 (Ω)3 we get that ∂h/∂n = −P2(ηx) · n on ∂Ω and this implies

‖∂h/∂n‖L∞(∂Ω) 6 c‖ηx‖W 3,2(Ω)3 . Therefore,

∣∣∣∣
∫

∂Ω

g
∂h

∂n
dyS

∣∣∣∣ 6 ‖g‖L1(∂Ω)

∥∥∥∥
∂h

∂n

∥∥∥∥
L∞(∂Ω)

6 c‖g‖L1(∂Ω)‖ηx‖W 3,2(Ω)3 6 cK‖g‖L1(∂Ω).

From this inequality and from (33), (35), (36) and (37) we get (34) and Lemma 8 is

proved. �

Lemma 9. Suppose that ∂u/∂n ∈ Lβ(t0 − ε, t0 + ε;L1(∂Ω)3), β ∈ 〈2,∞〉.
Then (34) holds.
���������

. First, we proceed similarly as we did in Lemma 8. Instead of (37) we
estimate (∇h = P3(ηx))

ν

∫

Ω

∆u · P3(ηx) dy =
∫

∂Ω

∂u

∂n
· ∇h dyS −

∫

Ω

∂ui

∂xj

∂2h

∂xi∂xj
dy

=
∫

∂Ω

∂u

∂n
· ∇h dyS −

∫

∂Ω

uinj
∂2h

∂xi∂xj
dyS +

∫

Ω

ui
∂

∂xi
(∆h) dy

=
∫

∂Ω

∂u

∂n
· ∇h dyS.

By virtue of Lemma 6, we have

∣∣∣∣
∫

∂Ω

∂u

∂n
· ∇h dyS

∣∣∣∣ 6
∥∥∥∥
∂u

∂n

∥∥∥∥
L1(∂Ω)3

‖ηx‖W 3,2(Ω)3

and we obtain (34). Lemma 9 is proved. �

Now let us formulate one local condition (see Theorem 10) under which (34) is
satisfied. The following considerations can be done for an arbitrary weak solution of

(1)–(4). Let 2r < δ and x ∈ Br(x0). Let further ζ ∈ C∞(〈0,∞)), ζ ≡ 1 in 〈0, r/2〉
and ζ ≡ 0 in 〈3r/4,∞). Thus, ζ is independent of t ∈ (t0−ε, t0 +ε) and x ∈ Br(x0).
Put ϕx(y) = ζ(|x − y|) for every x ∈ Br(x0) and every y ∈ � 3 . For almost every

t ∈ (t0 − ε, t0 + ε) and for every x ∈ Br(x0) it is possible to write

P(x, t) =
1
4 �

∫

Br(x)

1
|x− y|ϕx(y)

∂ui

∂yj
(y, t)

∂uj

∂yi
(y, t) dy(38)

+
1
4 �

∫

Br(x)

1
|x− y|∆yϕx(y)P(y, t) dy

+
1
2 �

∫

Br(x)

(x− y)
|x− y|3 · ∇yϕx(y)P(y, t) dy.
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It is possible to show that

(39)
∫

Br(x)

[
1

|x− y|∆yϕx(y) + 2∇y

(
1

|x− y|

)
· ∇yϕx(y)− 3

r3

]
dy = 0.

Lemma 7 yields that there exist ηx ∈ C∞(Br(x))3 ∩W 1,2
0 (Br(x))3 such that

(40) ∇ · ηx(y) =
1

|x− y|∆yϕx(y) + 2∇y

(
1

|x− y|

)
· ∇yϕx(y)− 3

r3
on Br(x)

and ‖ηx‖W m+1,2(Br(x))3 are bounded on Br(x0) for every m ∈ N . Decompose ηx on
L2(Br(x))3 as P1(ηx)+P2(ηx)+P3(ηx) and let ∇Q2,x = P2(ηx) and ∇Q3,x = P3(ηx).
Then |Q2,x(y)| 6 c, where c is a positive constant independent of x ∈ Br(x0) and
y ∈ Br(x). This follows from (40) and the fact that Q2,x is a solution of the system

∆Q2,x = ∇ · ηx in Br(x),

Q2,x = 0 on ∂Br(x).

We can see from (40) that ∇ · ηx is spherically symmetric around x and the same
must be true for Q2,x. Consequently, ∂Q2,x/∂n = const. on ∂Br(x) (n is a normal
vector on ∂Br(x)) and since

∫

∂Br(x)

∂Q2,x

∂n
dyS =

∫

Br(x)

∆Q2,x dy =
∫

Br(x)

∇ · ηx dy =
∫

∂Br(x)

ηx · n dyS = 0,

one gets that ∂Q2,x/∂n = 0 on ∂Br(x). Further, Q3,x is a solution of the system

∆Q3,x = 0 in Br(x),
∂Q3,x

∂n
= −∂Q2,x

∂n
= 0 on ∂Br(x),

which gives Q3,x = const. and therefore ∇Q3,x = 0 on Br(x). Thus, we can write
∫

Br(x)

∇ · ηx(y)P(y, t) dy = −
∫

Br(x)

P2(yηx)(y) · ∇P(y, t) dy(41)

=
∫

Br(x)

Q2,x(y)∆P(y, t) dy = −
∫

Br(x)

Q2,x(y)
∂2(uiuj)
∂yi∂yj

(y, t) dy.

Now it follows from (38), (40) and (41) that

P(x, t) =
1
4 �

∫

Br(x)

[
1

|x− y|ϕx(y)−Q2,x(y)
]
∂ui

∂yj
(y, t)

∂uj

∂yi
(y, t) dy(42)

+
3

4 � r3
∫

Br(x)

P(y, t) dy,
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which can be written as

0 =
1
4 �

∫

Br(x)

[
1

|x− y|ϕx(y)−Q2,x(y)
]
∂ui

∂yj
(y, t)

∂uj

∂yi
(y, t) dy(43)

+
3

4 � r3
∫

Br(x)

(P(y, t)−P(x, t)) dy.

The first integral on the right-hand side of (43) is from L∞(t0−ε, t0+ε;L∞(Br(x0))).
Let a+ = max(a, 0) and a− = max(−a, 0) for every a ∈ � . We can conclude:

Theorem 10. Let the assumptions of Theorem 2 be fulfilled. Let further 2r < δ

and x ∈ Br(x0). If (P −P(x, t))+ or (P −P(x, t))− is from the space Lβ(t0− ε, t0 +
ε, L1(Br(x))) for some β ∈ 〈2,∞〉, then P − P(x, t) ∈ Lβ(t0 − ε, t0 + ε, L1(Br(x))).
Consequently, there exists a sufficiently small θ such that P−P(x, t) ∈ Lβ(t0−ε, t0+
ε, L1(Bθ(x0))). Considering now the pressure P −P(x, t) instead of the pressure P ,
we obtain, using Remark 3, that Dγ

x∂u/∂t ∈ Lβ(t0 − ε, t0 + ε, L∞(Bθ1(x0))3) and
Dγ

xP ∈ Lβ(t0−ε, t0+ε, L∞(Bθ1(x0))) for every multi-index γ, |γ| > 1 and θ1 ∈ (0, θ).

Let us now present two consequences of Theorem 10. First, let the assumptions of
Theorem 2 be satisfied. If 2r < δ and there exists x ∈ Br(x0) such that P − P(x, t)
is bounded from below (above) in Br(x) × (t0 − ε, t0 + ε) then P − P(x, t) and all
space derivatives of P are in the space L∞ in a space-time neighbourhood of (x0, t0).
Secondly, suppose that Ω = BR(x0), where x0 ∈ � 3 and R > 0, and x0 is a

regular point of u. We will show that if P+ or P− is from the space Lβ(t0 −
ε, t0 + ε, L1(Bδ1(x0))) for some β ∈ 〈2,∞〉, δ1 ∈ (0, δ), then P ∈ Lβ(t0 − ε, t0 +
ε;L1(Bδ1(x0))). We can suppose that

∫
Ω P(y, t) dy = 0. It is possible to write

P(x0, t) =
1
4 �

∫

Br(x0)

1
|x0 − y|ϕx0(y)

∂ui

∂yj
(y, t)

∂uj

∂yi
(y, t) dy

+
1
4 �

∫

Br(x0)

1
|x0 − y|∆yϕx0(y)P(y, t) dy

+
1
2 �

∫

Br(x0)

(x0 − y)
|x0 − y|3 · ∇yϕx0(y)P(y, t) dy.

Consequently,

P(x0, t) =
1
4 �

∫

Br(x0)

1
|x0 − y|ϕx0(y)

∂ui

∂yj
(y, t)

∂uj

∂yi
(y, t) dy(44)

− 1
4 �

∫

Ω

Q2,x0(y)
∂ui

∂yj
(y, t)

∂uj

∂yi
(y, t) dy,
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where Q2,x0 ∈ C∞(Ω) ∩ W 1,2
0 (Ω) is constructed on Ω in the same way as in the

paragraph preceding Theorem 10. Since

(45)
1
4 �

∫

Ω

Q2,x0(y)
∂ui

∂yj
(y, t)

∂uj

∂yi
(y, t) dy =

1
4 �

∫

Ω

∂2Q2,x0

∂yi∂yj
(y)ui(y, t)uj(y, t) dy,

(44) gives immediately that P(x0, ·) ∈ L∞(t0 − ε, t0 + ε). Using now Theorem 10 we
can conclude that if P+ or P− is from the space Lβ(t0−ε, t0+ε, L1(Bδ1(x0))) for some
β ∈ 〈2,∞〉, then P ∈ Lβ(t0 − ε, t0 + ε, L1(Bδ1(x0))) and therefore Dγ

xP , Dγ
x∂u/∂t ∈

Lβ(t0 − ε, t0 + ε;L∞(Bδ1(x0))3) as follows from Remark 3.
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