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Abstract. Some inequalities for the Stieltjes integral and applications in numerical in-
tegration are given. The Stieltjes integral is approximated by the product of the divided
difference of the integrator and the Lebesgue integral of the integrand. Bounds on the
approximation error are provided. Applications to the Fourier Sine and Cosine transforms
on finite intervals are mentioned as well.
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1. Introduction

The following definitions will be used throughout the paper.

A function w : [a, b] → � is said to be of r-H-Hölder type if for x, y ∈ [a, b] it
satisfies the conditions

|w(x) − w(y)| 6 H |x− y|r, r ∈ (0, 1] and H > 0.

A 1-L-Hölder type function is also said to be L-Lipschitzian. A function w is said
to be of bounded variation if for any division In of [a, b], In : a = x0 < x1 < . . . <

xn = b, the variation of w on In is finite, which means that

n−1∑

i=0

|w(xi+1)− w(xi)| < ∞.
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The total variation of w on [a, b] is denoted by
b∨
a
(w), where

b∨

a

(w) := sup
{n−1∑

i=0

|w(xi+1)− w(xi)|, In is a division of [a, b]
}

.

In [5], [6], the authors considered the functional

(1.1) D(f ; u) :=
∫ b

a

f(x) du(x)− [u(b)− u(a)]
1

b− a

∫ b

a

f(t) dt

provided that the integrals involved exist, and established various bounds for the

absolute value of D(f ; u).
Applications to approximating the Stieltjes integral were also provided in both [5]

and [6]. In [2] general results for three-point approximations of the Stieltjes integral

were investigated.

In this paper we point out other similar inequalities in an effort to complete the

picture and apply them in the numerical approximation of the Stieltjes integral∫ b

a
f(x) du(x). Approximations for the Fourier Sine and Cosine transforms on finite

intervals are mentioned as well (see also [7] and [9]).

2. The case of Lipschitzian integrators

Throughout this section, the integrator u : [a, b] → � in the Stieltjes integral∫ b

a
f(t) du(t) is assumed to be Lipschitzian with a constant L.

The following theorem holds.

Theorem 1. Assume that u : [a, b] → � is as above.
(i) If f : [a, b] → � is of bounded variation, then

(2.1) |D(f ; u)| 6 3
4
L(b− a)

b∨

a

(f).

(ii) If f : [a, b] → � is of r-H-Hölder type, then

(2.2) |D(f ; u)| 6 2HL(b− a)r+1

(r + 1)(r + 2)
.
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(iii) If f : [a, b] → � is absolutely continuous, then

(2.3) |D(f ; u)| 6





1
3
L(b− a)2‖f ′‖∞ if f ′ ∈ L∞[a, b];

21/qL(b− a)1/q+1‖f ′‖p

(q + 1)1/q(q + 2)1/q
if f ′ ∈ Lp[a, b],

p > 1,
1
p

+
1
q

= 1;

3
4
L(b− a)‖f ′‖1.

���������
. First, let us observe that D(f, u) defined in (1.1) satisfies the identity

(2.4) D(f ; u) =
∫ b

a

(
f(x)− 1

b− a

∫ b

a

f(t) dt

)
du(x).

It is well known that if p : [c, d] → � is Riemann integrable and v : [c, d] → � is
L-Lipschitzian, then the Stieltjes integral

∫ d

c
p(t) dv(t) exists and

(2.5)

∣∣∣∣
∫ d

c

p(t) dv(t)
∣∣∣∣ 6 L

∫ d

c

|p(t)| dt.

Taking the modulus in (2.4) and using (2.5) we get

(2.6) |D(f ; u)| 6 L

∫ b

a

∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t) dt

∣∣∣∣ dx.

(i) In [4], the author proved the following Ostrowski type inequality for functions
of bounded variation:

(2.7)

∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t) dt

∣∣∣∣ 6 1
b− a

[
1
2
(b− a) +

∣∣∣x− a + b

2

∣∣∣
] b∨

a

(f)

for any x ∈ [a, b]. Then, by (2.6), we may state that

|D(f ; u)| 6 L

b− a

∫ b

a

[
1
2
(b− a) +

∣∣∣x− a + b

2

∣∣∣
]

dx

b∨

a

(f)

=
L

b− a
·
[1
2
(b− a)2 +

1
4
(b− a)2

] b∨

a

(f)

and the inequality (2.1) is proved.
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(ii) In [1], the following inequality of Ostrowski type for r-H-Hölder type functions,

f has been pointed out:

∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t) dt

∣∣∣∣ 6 H

r + 1

[(b− x

b− a

)r+1

+
(x− a

b− a

)r+1
]
(b− a)r

for any x ∈ [a, b]. Then, by (2.6), we have

|D(f ; u)| 6 H

r + 1
(b− a)r

{
1

(b− a)r+1

[∫ b

a

(b− x)r+1 dx +
∫ b

a

(x− a)r+1 dx

]}

=
2HL(b− a)r+1

(r + 1)(r + 2)

and the inequality (2.2) is proved.
(iii) Using the following set of inequalities of Ostrowski type for absolutely continu-

ous functions [1]:

∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t) dt

∣∣∣∣(2.8)

6





[
1
4

+
(x− (a + b)/2

b− a

)2
]
(b− a)‖f ′‖∞, if f ′ ∈ L∞[a, b];

1
(q + 1)1/q

[(b− x

b− a

)q+1

+
(x− a

b− a

)q+1
]1/q

(b− a)1/q‖f ′‖p

if f ′ ∈ Lp[a, b];[
1
2

+
∣∣∣x− (a + b)/2

b− a

∣∣∣
]
‖f ′‖1

for any x ∈ [a, b], we have from (2.6)

|D(f ; u)|(2.9)

6





L · (b− a)‖f ′‖∞
∫ b

a

[
1
4

+
(x− (a + b)/2

b− a

)2
]

dx,

L

(q + 1)1/q
(b− a)1/q‖f ′‖p

∫ b

a

[(b− x

b− a

)q+1

+
(x− a

b− a

)q+1
]1/q

dx,

L · ‖f ′‖1

∫ b

a

[
1
2

+
∣∣∣x− (a + b)/2

b− a

∣∣∣
]

dx.

Since ∫ b

a

[
1
4

+
(x− (a + b)/2

b− a

)2
]

dx =
1
3
(b− a),

this proves the first part of (2.3).
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Using Hölder’s integral inequality, we have

∫ b

a

[(b− x

b− a

)q+1

+
(x− a

b− a

)q+1
]1/q

dx

6
(∫ b

a

dx

)1/p(∫ b

a

{[(x− a

b− a

)q+1

+
(b− x

b− a

)q+1]1/q}q

dx

)1/q

=
(b− a)21/q

(q + 2)1/q

and by (2.9) and (2.6) we deduce the second part of (2.3).

The last part of (2.3) is obvious and we omit the details. �

3. The case of integrators of bounded variation

Throughout this section, the integrator u : [a, b] → � in the Stieltjes integral∫ b

a f(t) du(t) is assumed to be of bounded variation. The following result holds.

Theorem 2. Let u : [a, b] → � be a function of bounded variation.
(i) If f : [a, b] → � is continuous and of bounded variation, then

(3.1) |D(f ; u)| 6
b∨

a

(f)
b∨

a

(u).

(ii) If f : [a, b] → � is of r-H-Hölder type with r ∈ (0, 1] and H > 0, then

(3.2) |D(f ; u)| 6 H

r + 1
(b− a)r

b∨

a

(u).

(iii) If f : [a, b] → � is absolutely continuous, then

(3.3) |D(f ; u)| 6





1
2
(b− a)‖f ′‖∞

b∨
a
(u) if f ′ ∈ L∞[a, b];

1
(q + 1)1/q

(b− a)1/q‖f ′‖p

b∨
a
(u), p > 1,

1
p

+
1
q

= 1;

‖f ′‖1

b∨
a
(u).
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���������
. It is well known that if p : [c, d] → � is continuous and v : [a, b] → � is

of bounded variation, then the Riemann-Stieltjes integral
∫ d

c p(t) dv(t) exists and

(3.4)

∣∣∣∣
∫ d

c

p(t) dv(t)
∣∣∣∣ 6 sup

t∈[c,d]

|p(t)|
d∨

c

(v).

Using the identity (2.4) and taking the modulus, we get via (3.4)

(3.5) |D(f ; u)| 6 sup
x∈[a,b]

∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t) dt

∣∣∣∣
b∨

a

(u).

The proof follows now as in Theorem 1, and we omit the details. �

4. A quadrature formula

Consider a partition of the interval [a, b] given by

(4.1) In : a = x0 < x1 < . . . < xn−1 < xn = b.

Denote hi := xi+1 − xi (i = 0, . . . , n− 1) and define the quadrature

(4.2) An(f, u; In) :=
n−1∑

i=0

u(xi+1)− u(xi)
xi+1 − xi

∫ xi+1

xi

f(t) dt.

We also define the norm of the division In by

(4.3) νIn(h) := max{hi | i ∈ {1, . . . , n− 1}}.

In [6] (see also [8, p. 468]), the authors pointed out some results in approximating
the Riemann-Stieltjes integral

∫ b

a
f(x) du(x) in terms of the quadrature rules defined

by (4.2).

The following new result for Lipschitzian integrators holds.

Theorem 3. Assume that In is a division of the interval [a, b] as defined in (4.1)
and u : [a, b] → � is Lipschitzian with a constant L.

(i) If f : [a, b] → � is of bounded variation, then the remainder Rn(f, u; In) in the
representation

(4.4)
∫ b

a

f(x) du(x) = An(f, u; In) + Rn(f, u; In)
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satisfies the estimate

(4.5) |Rn(f, u; In)| 6 3
4
LνIn(h)

b∨

a

(f).

(ii) If f : [a, b] → � is of r-H-Hölder type, then we have the estimate

|Rn(f, u; In)| 6 2HL

(r + 1)(r + 2)

n−1∑

i=0

hr+1
i 6 2HL(b− a)(νIn(h))r

(r + 1)(r + 2)
.

(iii) If f : [a, b] → � is absolutely continuous, then

|Rn(f, u; In)|(4.6)

6





1
3
L‖f ′‖∞,[a,b]

n−1∑

i=0

h2
i if f ′ ∈ L∞[a, b];

21/qL‖f ′‖p,[a,b]

(q + 1)1/q(q + 2)1/q

(n−1∑

i=0

h1+q
i

)1/q

if f ′ ∈ Lp[a, b],

p > 1,
1
p

+
1
q

= 1;

3
4
LνIn(h)‖f ′‖1,[a,b]

where νIn(h) is given by (4.3) and An(f, u; In) by (4.2).
���������

. The proof follows by Theorem 1 and we omit the details. �

Further, using of Theorem 2, we may point out the following result for integrators
of bounded variation.

Theorem 4. Assume that In is a division of the interval [a, b] as defined by (4.1)
and u : [a, b] → � is of bounded variation on [a, b].
(i) If f : [a, b] → � is continuous and of bounded variation on [a, b], then the
remainder in (4.4) satisfies the estimate

(4.7) |Rn(f, u; In)| 6 max
i=0,...,n−1

{xi+1∨

xi

(f)
} b∨

a

(u).

(ii) If f : [a, b] → � is of r-H-Hölder type with r ∈ (0, 1], H > 0, then we have the
estimate

(4.8) |Rn(f, u; In)| 6 H

r + 1
[νIn(h)]r

b∨

a

(u).
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(iii) If f : [a, b] → � is absolutely continuous, then

|Rn(f, u; In)|(4.9)

6





1
2
νIn(h)‖f ′‖∞,[a,b]

b∨
a
(u) if f ′ ∈ L∞[a, b];

1
(q + 1)1/q

[νIn(h)]1/q‖f ′‖p,[a,b]

b∨
a
(u) p > 1,

1
p

+
1
q

= 1;

max
i=0,...,n−1

{∫ xi+1

xi

|f ′(t)| dt

} b∨

a

(u).

5. Approximating Fourier Sine and Cosine transforms

For a function f : [0,∞) → � and 0 6 a < b < ∞, consider the Fourier Sine and
Cosine transforms on the finite interval [a, b]:

FS(s) = FS(s; a, b) :=
∫ b

a

f(x) sin(sx) dx, s ∈ [0,∞),(5.1)

FC(s) = FC(s; a, b) :=
∫ b

a

f(x) cos(sx) dx, s ∈ [0,∞).(5.2)

We also need the following trigonometric means for p, q ∈ � :

SIN(p, q) :=





sin p− sin q

p− q
if p 6= q;

cos q if p = q

(5.3)

and

COS(p, q) :=





cos p− cos q

p− q
if p 6= q;

− sin q if p = q.

(5.4)

For s 6= 0, observe that

FS(s; a, b) = − 1
s

∫ b

a

f(x) d(cos(sx))

and

FC(s; a, b) =
1
s

∫ b

a

f(x) d(sin(sx)),
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and thus (5.1) and (5.2) may be viewed as Stieltjes integrals with continuous inte-

grators u(x) := cos(sx) and u(x) = sin(sx), respectively. Here x ∈ [a, b] and s > 0.
If we consider the division (see (4.1))

In : a = x0 < x1 < . . . < xn−1 < xn = b,

then the quadrature formula (4.2) may be written for these particular choices as

ASn(f, In, s) = −
n−1∑

i=0

COS(sxi+1, sxi)
∫ xi+1

xi

f(t) dt(5.5)

and

ACn(f, In, s) =
n−1∑

i=0

SIN(sxi+1, sxi)
∫ xi+1

xi

f(t) dt.(5.6)

Consider now u : [a, b] ⊂ (0,∞) → � , u(x) = cos(sx), s > 0. Obviously

‖u′‖∞,[a,b] = sup
x∈[a,b]

|u′(x)| 6 s2(b− a).

Consequently, for a given s, u as defined above is Lipschitzian on [a, b] with the
constant L = s2(b− a).
If u : [a, b] ⊂ (0,∞) → � , u(x) = sin(sx), s > 0, then

‖u′‖∞,[a,b] = sup
x∈[a,b]

|u′(x)| 6 s.

Using Theorem 3, we may state the following result in approximating the Sine and

Cosine transforms.

Proposition 1. Let In be a division of the interval [a, b].
(i) If f : [a, b] → � is of bounded variation, then we have

(5.7) FS(s; a, b) = ASn(f, In, s) + RSn(f, In, s), s > 0

and

(5.8) FC(s; a, b) = ACn(f, In, s) + RCn(f, In, s), s > 0.

The remainders RSn(f, In, s) and RCn(f, In, s) satisfy the estimates

(5.9) |RSn(f, In, s)| 6 3
4
s(b− a)νIn(h)

b∨

a

(f)
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and

(5.10) |RCn(f, In, s)| 6 3
4
νIn(h)

b∨

a

(f).

(ii) If f : [a, b] → � is of r-H-Hölder type, then the remainders satisfy the bounds

|RSn(f, In, s)| 6 2Hs(b− a)
(r + 1)(r + 2)

n−1∑

i=0

hr+1
i 6 2Hs(b− a)2

(r + 1)(r + 2)
[νIn(h)]r(5.11)

and

|RCn(f, In, s)| 6 2H

(r + 1)(r + 2)

n−1∑

i=0

hr+1
i 6 2H(b− a)

(r + 1)(r + 2)
[νIn(h)]r.(5.12)

(iii) If f : [a, b] → � is absolutely continuous, then

|RSn(f, In, s)|(5.13)

6





1
3
s(b− a)‖f ′‖∞,[a,b]

n−1∑

i=0

h2
i if f ′ ∈ L∞[a, b];

21/qs(b− a)‖f ′‖p,[a,b]

(q + 1)1/q(q + 2)1/q

(n−1∑

i=0

hq+1
i

)1/q

if f ′ ∈ Lp[a, b],

p > 1,
1
p

+
1
q

= 1;

3
4
s(b− a)νIn(h)‖f ′‖1,[a,b],

and

|RCn(f, In, s)|(5.14)

6





1
3
‖f ′‖∞,[a,b]

n−1∑

i=0

h2
i if f ′ ∈ L∞[a, b];

21/q‖f ′‖p,[a,b]

(q + 1)1/q(q + 2)1/q

(n−1∑

i=0

hq+1
i

)1/q

if f ′ ∈ Lp[a, b],

p > 1,
1
p

+
1
q

= 1;

3
4
νIn(h)‖f ′‖1,[a,b].

Similar bounds may be obtained from Theorem 4, but we omit the details.

46



� �"!$#%��&
1. For an application in approximating the solutions of an electrical

circuit, see the preprint online [3] where further details are provided. We omit them
here.
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