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Abstract. This paper solves the scalar Oseen equation, a linearized form of the Navier-
Stokes equation. Because the fundamental solution has anisotropic properties, the problem
is set in a Sobolev space with isotropic and anisotropic weights. We establish some existence
results and regularities in Lp theory.
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1. Introduction

Let Ω be an exterior domain of R2 or the whole space R2 . We consider the following

Oseen’s problem:

−ν∆u+ λ
∂u

∂x1
+ ∇π = f in Ω,(1.1)

divu = g in Ω,

u = u∗ on ∂Ω,

with the condition on u at infinity

(1.2) lim
|x|→+∞

u(x) = u∞.

The viscosity ν, the external force f , the boundary values u∗ on ∂Ω and g are given.

The positive coefficient λ corresponds to the Reynolds number. The unknown veloc-

ity field u is assumed to converge to a constant vector u∞, and the scalar function π

denotes the unknown pressure. C.W. Oseen [14] obtained (1.1) by linearizing the

Navier-Stokes equations, describing the flow of a viscous and incompressible fluid.
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Some authors worked on this problem. We can cite Finn [6], [7], more recently

Galdi [8], Farwig [3], [4], Farwig and Sohr [5] and Amrouche and Razafison [2].

When Ω = R2 , the system (1.1) is written as follows

−ν∆u+ λ
∂u

∂x1
+ ∇π = f in R2 ,(1.3)

divu = g in R2 ,

with the same condition at infinity. Taking the divergence of the first equation

of (1.3), we obtain a decoupled set of equations

∆π = div f + ν∆g − λ
∂g

∂x1
in R2 ,(1.4)

−ν∆u+ λ
∂u

∂x1
= f −∇π in R2 .(1.5)

We use the results obtained in [1] for the Poisson equation to solve Equation (1.4).

Now observe that each component uj of the velocity satisfies

(1.6) −ν∆uj + λ
∂uj

∂x1
= fj −

∂π

∂xj
in R2 .

Thus, we see that if we solve the scalar equation

(1.7) −ν∆u+ λ
∂u

∂x1
= f in R2 ,

we can apply to the Oseen problem the results obtained for this last equation. The

aim of this paper is then to study the scalar Oseen equation (1.7). Since the fun-

damental solution of this equation has anisotropic decay properties, see (3.6), (3.9),

we will work in Sobolev spaces with an isotropic weight and with the anisotropic

weight introduced by Farwig [3] in the particular Hilbertian case (p = 2). The

case λ = 0 yields the Laplace equation studied by Amrouche-Girault-Giroire [1] in

weighted Sobolev spaces. This paper is divided into five sections. In Section 2, we

introduce the functional spaces and we recall some preliminary results. We give also

a density result for D(R2 ) in an anisotropic weighted space and a characterization of

homogeneous Sobolev spaces. In Section 3, by adapting a technique used by Stein,

we obtained results on Oseen’s potential which we use then to solve Equation (1.7),

where the left-hand side f is given on the one hand in Lp(R2 ) and on the other hand

in W−1,p
0 (R2 ). We also look at the case where f belongs at the same moment to

two spaces with different powers p and q. We consider, in Section 4, the case where

f belongs to spaces Lp with anisotropic weights. Finally, in Section 5, we consider
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the limit case when λ tends to zero and we compare the limit with the solution of

Poisson’s equation. The main results of this paper are given by the theorems below.

In Theorem 1, we give (Lp, Lq) continuity properties for the Oseen operators

f 7→ O ∗ f , f 7→ ∂O/∂xi ∗ f , and f 7→ ∂2O/∂xj∂xk ∗ f , where O is the fundamental
scalar Oseen solution, which is defined in Section 3. We observe that the continuity

results obtained for the Oseen equation (1.7) are better than the classic properties

of the Riesz potential associated to the Laplace operator corresponding to the case

λ = 0.

Theorem 1.1. Let f ∈ Lp(R2 ) with 1 < p < ∞. Then, ∂2O/∂xj∂xk ∗ f ∈
Lp(R2 ), ∂O/∂x1 ∗ f ∈ Lp(R2 ) and they satisfy the estimate

∥∥∥ ∂2O
∂xj∂xk

∗ f
∥∥∥

Lp(R2)
+

∥∥∥ ∂O
∂x1

∗ f
∥∥∥

Lp(R2)
6 C‖f‖Lp(R2).

Moreover,

1) i) if 1 < p < 2, then ∇O ∗ f ∈ L3p/(3−p)(R2 ) ∩L2p/(2−p)(R2 ) and

‖∇O ∗ f‖L3p/(3−p)(R2) + ‖∇O ∗ f‖
L2p/(2−p)(R2) 6 C‖f‖Lp(R2).

ii) If p = 2, then ∇O∗ f ∈ Lr(R2 ) for any r > 6 and the following estimate holds:

‖∇O ∗ f‖Lr(R2) 6 C‖f‖Lp(R2).

iii) If 2 < p < 3, then ∇O∗f ∈ L3p/(3−p)(R2 )∩L∞(R2 ) and we have the estimate

‖∇O ∗ f‖L3p/(3−p)(R2) + ‖∇O ∗ f‖L∞(R2) 6 C‖f‖Lp(R2).

2) If 1 < p < 3
2 , then O ∗ f ∈ L3p/(3−2p)(R2 ) ∩ L∞(R2 ) and

‖O ∗ f‖L3p/(3−2p)(R2) + ‖O ∗ f‖L∞(R2) 6 C‖f‖Lp(R2).

In Theorem 2, we give similar results for the case when f belongs to a negative

weighted Sobolev space W−1,p
0 (R2 ) and we observe again that we obtain results

better than in the case λ = 0.
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Theorem 1.2. Let f ∈W−1,p
0 (R2 ) satisfy the compatibility condition

〈f, 1〉
W−1,p

0 (R2)×W 1,p′

0 (R2)
= 0, when 1 < p 6 2.

i) If 1 < p < 3, then u = O ∗ f ∈ L3p/(3−p)(R2 ) is the unique solution of Equa-

tion (3.1) such that ∇u ∈ Lp(R2 ) and ∂u/∂x1 ∈ W−1,p
0 (R2 ). Moreover, we have the

estimate

‖u‖L3p/(3−p)(R2) + ‖∇u‖Lp(R2) +
∥∥∥ ∂u

∂x1

∥∥∥
W−1,p

0 (R2)
6 C‖f‖W−1,p

0 (R2),

and u ∈ L2p/(2−p)(R2 ) when 1 < p < 2, u ∈ Lr(R2 ) for any r > 6 when p = 2, and

u ∈ L∞(R2 ) when 2 < p < 3.

ii) If p > 3, then Equation (3.1) has a solution u ∈ W̃ 1,p
0 (R2 ) that is unique up to

a constant, and we have

inf
k∈R‖u+ k‖

W̃ 1,p
0 (R2)

6 C‖f‖W−1,p
0 (R2).

Theorem 1.3 is concerned with the case when f belongs to Lp spaces with

anisotropic weight.

Theorem 1.3. Assume that 2 < p < 32
11 and f ∈ Lp

1/2,1/4(R2 ). Then u =

O ∗ f ∈ Lp
−1/2,1/4(R2 ), ∂u/∂x2 ∈ Lp

0,1/4(R2 ), ∂u/∂x1 ∈ Lp
1/2,1/4(R2 ), and ∇2u ∈

(Lp
1/2,1/4(R2 ))2×2. Moreover, we have the estimates

∫R2

(1 + r)−p/2(1 + s)p/4|u|p dx+

∫R2

(1 + r)p/2(1 + s)p/4(|∂u/∂x1|p + |∇2u|p) dx

+

∫R2

(1 + s)p/4
∣∣∣ ∂u
∂x2

∣∣∣
p

dx 6 C

∫R2

(1 + r)p/2(1 + s)p/4|f |p dx,

where r = |x|, s = r − x1 = |x| − x1, and the anisotropic weighted L
p spaces are

defined in Section 4.
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2. Functional spaces and preliminaries

In this paper, p is a real number in the interval ]1, +∞[ and its conjugate is

denoted by p′. A point in R2 is denoted x = (x1, x2) and we denote as above:

r = |x| = (x2
1 + x2

2)
1/2, ̺ = (1 + r2)1/2, s = r − x1,

s′ = r + x1, for a, b ∈ R, ηa
b = (1 + r)a(1 + s)b.

For R > 0, BR denotes the open ball of radius R centered at the origin and B
′
R =R2 \ BR. For any j ∈ Z, Pj is the space of polynomials of degree lower than or

equal to j and if j is negative we set, by convention, Pj = 0. Let B be a Banach

space, with dual space B′ and a closed subspace X of B. We denote by B′ ⊥ X the

subspace of B′ orthogonal to X defined by

B′ ⊥ X = {f ∈ B′ ; ∀ v ∈ X : 〈f, v〉 = 0}.

For m ∈ N∗ , we set

(2.1) k = k(m, p, α) =

{−1 if α+ 2/p /∈ {1, . . . ,m},

m− α− 2/p if α+ 2/p ∈ {1, . . . ,m}

and we define the weighted Sobolev space

Wm,p
α (R2 ) = {u ∈ D′(R2 ); ∀λ ∈ N2 :

if 0 6 |λ| 6 k, then ̺α−m+|λ|(lg ̺)−1∂λu ∈ Lp(R2 );

if k + 1 6 |λ| 6 m, then ̺α−m+|λ|∂λu ∈ Lp(R2 )},

where lg ̺ = ln(1+̺). It is a reflexive Banach space equipped with its natural norm:

‖u‖W m,p
α (R2)

=

( ∑

06|λ|6k

‖̺α−m+|λ|(lg ̺)−1∂λu‖p
Lp(R2) +

∑

k+16|λ|6m

‖̺α−m+|λ|∂λu‖p
Lp(R2)

)1/p

.

Its semi-norm is defined by

|u|W m,p
α (R2) =

( ∑

|λ|=m

‖̺α∂λu‖p
Lp(R2)

)1/p

.

The logarithmic weight appears only when α + 2/p ∈ {1, . . . ,m}. We refer to
Kufner [11], Hanouzet [9], and Amrouche-Girault-Giroire [1] for a detailed study
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of the space Wm,p
α (Rn ). However, we recall some properties and results that we use

in this paper. For any λ ∈ N2 , the mapping

(2.2) u ∈Wm,p
α (R2 ) 7→ ∂λu ∈Wm−|λ|,p

α (R2 )

is continuous. When α+2/p /∈ {1, . . . ,m}, we have the following continuous embed-
ding and density

(2.3) Wm,p
α (R2 ) ⊂Wm−1,p

α−1 (R2 ) ⊂ . . . ⊂W 0,p
α−m(R2 ),

where

W 0,p
α (R2 ) = {u ∈ D′(R2 ) ; ̺αu ∈ Lp(R2 )};

also note that the mapping

(2.4) u ∈Wm,p
α (R2 ) 7→ ̺γu ∈ Wm,p

α−γ(R2 )

is continuous, which is not the case if α + 2/p ∈ {1, . . . ,m}. The space Wm,p
α (R2 )

contains the polynomials of degree lower than or equal to j, denoted Pj , where j ∈ N
is defined by

(2.5) j =

{ [
m− α− 2/p

]
if α+ 2/p /∈ Z−,

m− 1 − α− 2/p otherwise.

The following theorem is fundamental (see [1]).

Theorem 2.1. Let m > 1 be an integer and α a real number, then there exists

a constant C such that

(2.6) ∀u ∈Wm,p
α (R2 ) inf

µ∈Pj

‖u+ µ‖W m,p
α (R2) 6 C|u|W m,p

α (R2),

where j is the highest degree of a polynomial contained in Wm,p
α (R2 ).

We define the space

Hp = {v ∈ Lp(R2 ), div v = 0}.

Theorem 2.1 permits to prove that the following divergence operator is an isomor-

phism (see [1]):

(2.7) div : Lp′

(R2 )/Hp −→W−1,p′

0 (R2 )⊥P[1−2/p].

The next result is a consequence of Theorem 2.1 (see [1]):
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Proposition 2.2. Let m > 1 be an integer and u a distribution such that

∀λ ∈ N2 : |λ| = m, ∂λu ∈ Lp(R2 ).

(i) If 1 < p < 2, then there exists a unique polynomial K(u) ∈ Pm−1 such that

u+K(u) ∈Wm,p
0 (R2 ), and

(2.8) inf
µ∈P[m−2/p]

‖u+K(u) + µ‖W m,p
0 (R2) 6 C|u|W m,p

0 (R2).

(ii) If p > 2, then u ∈Wm,p
0 (R2 ) and

(2.9) inf
µ∈P[m−2/p]

‖u+ µ‖W m,p
0 (R2) 6 C|u|W m,p

0 (R2).

When 1 < p < 2, we have the following characterization of the space W 1,p
0 (R2 ):

(2.10) W 1,p
0 (R2 ) = {v ∈ L2p/(2−p)(R2 ) ; ∇v ∈ Lp(R2 )}.

We recall the space introduced in [2]:

(2.11) W̃ 1,p
0 (R2 ) =

{
u ∈ W 1,p

0 (R2 ) ;
∂u

∂x1
∈W−1,p

0 (R2 )
}
,

which is a Banach space for its natural norm:

‖u‖
W̃ 1,p

0 (R2) = ‖u‖W 1,p
0 (R2) +

∥∥∥ ∂u

∂x1

∥∥∥
W−1,p

0 (R2)
.

Also, we define

(2.12) W̃ 2,p
0 (R2 ) =

{
u ∈ W 2,p

0 (R2 ) ;
∂u

∂x1
∈ Lp(R2 )

}
,

which is a Banach space for its natural norm:

‖u‖
W̃ 2,p

0 (R2)
= ‖u‖W 2,p

0 (R2) +
∥∥∥ ∂u

∂x1

∥∥∥
Lp(R2)

.

Its dual space denoted W̃−2,p′

0 (R2 ) can be characterized as follows (see also Re-

mark 2.5).
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Proposition 2.3. Let f ∈ W̃−2,p′

0 (R2 ). Then:

(i) If p 6= 2, there exist f0 ∈W 0,p′

2 (R2 ), F ∈ (W 0,p′

1 (R2 ))2, H ∈ (Lp′

(R2 ))2×2, and

h ∈ Lp′

(R2 ) such that for all v ∈ W̃ 2,p
0 (R2 ), we have

〈f, v〉
W̃−2,p′

0 (R2)×W̃ 2,p
0 (R2)

= 〈f0, v〉W 0,p′

2 ×W 0,p
−2

+ 〈F ,∇v〉
W 0,p′

1 ×W 0,p
−1

(2.13)

+
〈
H ,∇2v

〉
Lp′×Lp +

〈
h,

∂v

∂x1

〉
Lp′×Lp

.

(ii) If p = 2, then (2.13) holds if we take the weight ̺ lg ̺ instead of ̺ in the

definition of W 0,p′

1 (R2 ) and W 0,p
−1 (R2 ), and ̺2 lg ̺ instead of ̺2 in the definition of

W 0,p′

2 (R2 ) and W 0,p
−2 (R2 ).

P r o o f. i) Suppose p 6= 2. Let E = W 0,p
−2 (R2 ) × (W 0,p

−1 (R2 ))2 × (Lp(R2 ))2×2 ×
Lp(R2 ), equipped with the norm:

‖ψ‖E = ‖ψ0‖W 0,p
−2

+

n∑

i=1

‖ψi‖W 0,p
−1

+

n∑

j,k=1

‖ψj,k‖Lp + ‖Ω‖Lp ,

where ψ = (ψ0, ψi, ψj,k,Ω). It is clear that the following operator is an isometry

T : v ∈ W̃ 2,p
0 (R2 ) 7→

(
v,∇v,∇2v,

∂v

∂x1

)
∈ E.

For all f ∈ W̃−2,p′

0 (R2 ) the operator defined by L(h) =
〈
f, T−1h

〉
is continuous on

T (W̃ 2,p
0 (R2 )) which is a closed subspace of E. Thus, by the Hahn-Banach theorem,

we can extend L to an element L̃ of the dual of E. Now, by the Riesz theorem,

there exist f0 ∈ W 0,p′

2 (R2 ), F ∈ (W 0,p′

1 (R2 ))2, H ∈ (Lp′

(R2 ))2×2 and h ∈ Lp′

(R2 )

satisfying (2.13).

ii) If p = 2, we take ̺ lg ̺Fi ∈ Lp′

(R2 ) in the definition of W 0,p′

1 (R2 ), ̺2 lg ̺f0 ∈
Lp′

(R2 ) in the definition of W 0,p′

2 (R2 ) and we proceed as in the case i). Let us note

that, when 1 < p < 2, we can take F = 0 thanks to Theorem 2.1. �

The last proposition permits to prove the next result.

Proposition 2.4. D(R2 ) is dense in W̃ 2,p
0 (R2 ).

P r o o f. Let f ∈ W̃−2,p′

0 (R2 ) be such that

(2.14) ∀ϕ ∈ D(R2 ) 〈f, ϕ〉
W̃−2,p′

0 (R2)×W̃ 2,p
0 (R2)

= 0.
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i) If p′ 6= 2, by the previous proposition, there exist f0 ∈ W 0,p′

2 (R2 ), F ∈
(W 0,p′

1 (R)2 )2, H ∈ (Lp′

(R2 ))2×2, and h ∈ Lp(R2 ) satisfying (2.13). In particu-

lar, taking v = ϕ ∈ D(R2 ) in this equation, we have by (2.14):

f0 − divF + div(divH) − ∂h

∂x1
= 0,

in the sense of distributions. Now, by (2.3), we have the continuous embedding

and density W 1,p
0 (R2 ) ⊂ W 0,p

−1 (R2 ). Thus, by duality, we have the embedding

W 0,p′

1 (R2 ) ⊂ W 1,p′

0 (R2 ), so F ∈ (W−1,p′

0 (R2 ))2, which implies divF ∈ W−2,p′

0 (R2 ).

By the same argument, we deduce that f0 ∈ W−2,p′

0 (R2 ), thus the last equation

yields
∂h

∂x1
= f0 − divF + div(divH) ∈W−2,p′

0 (R2 ) ∩W−1,p′

0 (R2 ).

So, Equation (2.13) can be written:

〈f, v〉
W̃−2,p′

0 (R2)×W̃ 2,p
0 (R2)

=
〈
f0 − divF + div(divH) − ∂h

∂x1
, v

〉
W−2,p′

0 (R2)×W 2,p
0 (R2)

.

Let v ∈ W̃ 2,p
0 (R2 ). Since D(R2 ) is dense in W 2,p

0 (R2 ), there exists a sequence ϕk ∈
D(R2 ) such that ϕk −→ v in W 2,p

0 (R2 ). We then obtain

〈f, v〉
W̃−2,p′

0 (R2)×W̃ 2,p
0 (R2)

= lim
k→∞

〈
f0 − divF + div(divH) − ∂h

∂x1
, ϕk

〉
W−2,p′

0 (R2)×W 2,p
0 (R2)

= 0.

ii) If p = 2, we take (̺ lg ̺)F ∈ Lp′

(R2 ) and (̺2 lg ̺)f0 ∈ Lp′

(R2 ) and obtain, by

the previous embeddings, F ∈ (W−1,p′

0 (R2 ))2 and f0 ∈ W−2,p′

0 (R2 ). We can proceed

as in the case i); the density result holds and finishes the proof. �

R em a r k 2.5. Property (2.13) is equivalent to

(2.15) W̃−2,p′

0 (R2 ) =
{
f ∈ D′(R2 ) ; f = f0 + divF + div(divH) +

∂h

∂x1

}
,

where f0,F ,H , and h are defined in Proposition 2.3.

Using the same technique as in the proof of the Payne-Weinberger inequality, we

get the following:
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Lemma 2.6. Let u ∈ D′(R2 ) be such that ∇u ∈ Lp(R2 ).

i) If 1 < p < 2, then there exists a unique constant u∞ defined by

(2.16) u∞ = lim
r→∞

1

2π

∫ 2p
0

u(r cos θ, r sin θ) dθ

and such that

(2.17) u− u∞ ∈W 1,p
0 (R2 ).

Moreover, we have

(2.18) u− u∞ ∈ L2p/(2−p)(R2 ),

with the estimate

(2.19) ‖u− u∞‖L2p/(2−p)(R2) 6 C‖∇u‖Lp(R2),

and

(2.20)

∫ 2p
0

|u(r cos θ, r sin θ) − u∞|p dθ 6 Crp−2

∫

{|x|>r}

|∇u|p dx.

ii) If p > 2, then u ∈ W 1,p
0 (R2 ) and

(2.21) |u(x)| 6 Cr1−2/p‖u‖W 1,p
0 (R2) and r(2/p)−1|u(x)| −→ 0.

The next result is a corollary of the previous lemma.

Corollary 2.7. Let u ∈ D′(R2 ) be such that ∇2u ∈ (Lp(R2 ))2×2. Then:

i) If 1 < p < 2 then there exists a unique vector A ∈ R2 such that

∇u+A ∈ L2p/(2−p)(R2 ),

where A is defined by

(2.22) A = − lim
r→∞

1

2π

∫ 2p
0

∇u(r cos θ, r sin θ) dθ.

Moreover, u+A · x ∈W 2,p
0 (R2 ) and satisfies

(2.23) inf
k∈R‖u+A · x+ k‖W 2,p

0 (R2) 6 C‖u‖W 2,p
0 (R2).

ii) If p > 2, then u ∈ W 2,p
0 (R2 ) and

(2.24) inf
µ∈P1

‖u+ µ‖W 2,p
0 (R2) 6 C‖u‖W 2,p

0 (R2).

Now, with these last results, we can give a precise definition of the limit at infinity.
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Definition 2.8. Let u ∈ D′(R2 ) be such that ∇u ∈ Lp(R2 ). We say that u

tends to u∞ ∈ R at infinity and we denote
lim

|x|→∞
u(x) = u∞,

if

lim
r→∞

∫ 2p
0

|u(r cos θ, r sin θ) − u∞| dθ = 0.

R em a r k 2.9. Let u ∈ D′(R2 ) be such that ∇u ∈ Lp(R2 ). If 1 < p < 2, we have

the equivalence of the following statements

i) u− u∞ ∈W 1,p
0 (R2 ),

ii) lim
|x|→∞

u(x) = u∞ in the sense of Definition 2.8.

Finally, we recall the following lemma.

Lemma 2.10. Let r and p be two reals such that 1 < r < ∞ and p > 2. Let

u ∈ Lr(R2 ) and ∇u ∈ Lp(R2 ). Then u is a continuous function on R2 and

lim
|x|→∞

u(x) = 0.

3. The scalar Oseen equation in R2

In this section, we propose to solve the scalar Oseen equation (1.7). In order to

simplify the notation, we assume without loss of generality λ = ν = 1:

(3.1) −∆u+
∂u

∂x1
= f in R2 ,

f ∈ D′(R2 ). To that end, let us define the operator

(3.2) T : u 7→ −∆u+
∂u

∂x1
.

3.1. Study of the kernel

We consider the kernel of the operator T when it is defined on the tempered

distributions S′(R2 ). Let u be an element of the kernel, by Fourier transform we can

write

4π
2|ξ|2û(ξ) + 2πiξ1û(ξ) = 0.
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Setting

û(ξ) = v(ξ) + iw(ξ),

it follows that

(3.3)

{
4π

2|ξ|2v(ξ) − 2πξ1w(ξ) = 0,

2πξ1v(ξ) + 4π
2|ξ|2w(ξ) = 0.

Since the determinant of the above system is 16π
4|ξ|4 + 4π

2ξ21 , we deduce that, for

ξ 6= 0, the support of û is included in {0}. Then we have

û(ξ) =
∑

cαδ
(α), cα ∈ C , with a finite sum.

By the inverse Fourier transform, we get

u(x) =
∑

dαx
α, dα ∈ C , with a finite sum,

that is, u is a polynomial. Setting for all integers k

(3.4) Sk =
{
q ∈ Pk ; −∆q +

∂q

∂x1
= 0

}
,

if T is defined on S′(R2 ), then kerT = Sk, and we have:

Lemma 3.1. Let f ∈ S′(R2 ) be a tempered distribution and let u ∈ S′(R2 ) be

a solution of (3.1). Then u is uniquely determined up to a polynomial in Sk.

Let us notice that S0 = R and S1 is the space of polynomials of degree less than

or equal to one and independent of x1.

3.2. The fundamental solution

Following the idea of [8], we look for the fundamental solution O of the scalar
Oseen equation in the form

O(x) = ex1/2f
(r

2

)
.

We find by direct computations:

(
−∆O +

∂O
∂x1

)
=

1

2πr2
ex1/2

(( r
2

)2

f ′′
(r

2

)
+
r

2
f ′

( r
2

)
−

( r
2

)2

f
(r

2

))
,

where, for y = 1
2r,

y2f ′′(y) + yf ′(y) − y2f(y) = 0
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is the modified Bessel equation. Although K0, the singular solution (at y = 0) of

this equation cannot be given explicitly, we can give an estimate in a neighborhood

of zero and also when y is large:

(i) When y is small

(3.5) K0(y) = ln
1

y
+ ln 2 − γ + σ(y),

where γ is the Euler constant and σ satisfies

dkσ

dyk
= o(y−k).

Thus, when r is close to zero,

(3.6) O(x) = − 1

2π

ex1/2
{
ln

1

r
+ 2 ln 2 − γ + σ(r)

}
.

(ii) When r −→ +∞, using the asymptotic expansion given in [10], we have

K0

(r
2

)
=

(
π

r

)1/2

e−r/2
[
1 − 1

4r
+O(r−2)

]
,

K ′
0

(r
2

)
=

(
π

r

)1/2

e−r/2
[
−1 − 3

4r
+O(r−2)

]
.

As the derivatives of O are given by

∂O
∂x1

= − 1

4π

ex1/2
[
K0

( r
2

)
+
x1

r
K ′

0

(r
2

)]
,(3.7)

∂O
∂x2

= − x2

4πr
ex1/2K ′

0

(r
2

)
,(3.8)

we can deduce the behavior of the fundamental solution O and these derivatives
when r tends to infinity:

O(x) = − 1

2
√

πr
e−s/2

[
1 − 1

4r
+O(r−2)

]
,(3.9)

∂O
∂x1

= − 1

4
√

πr
e−s/2

[s
r
− r + 3x1

8r2
+O(r−2)

]
,(3.10)

∂O
∂x2

=
x2

4r
√

πr
e−s/2

[
1 +

3

4r
+O(r−2)

]
.(3.11)

Using the inequality

∀ b ∈ R e−s/2 6 Cb(1 + s)b,
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we obtain the following anisotropic estimates

|O(x)| 6 Cr−1/2(1 + s)−1,
∣∣∣ ∂O
∂x1

(x)
∣∣∣ 6 Cr−3/2(1 + s)−1,(3.12)

∣∣∣ ∂O
∂x2

(x)
∣∣∣ 6 Cr−1(1 + s)−1.

Let f and g be two functions defined on an interval I ⊂ R. We denote f ∼ g on J ⊂ I

if there exist two positive constants C1 and C2 such that C1g(t) 6 f(t) 6 C2g(t) for

all t in J .

To study the integrability properties of the fundamental solution and its deriva-

tives, we need the following result.

Lemma 3.2. Assume that 2− α−min(1
2 , β) < 0. Then, there exists a constant

C > 0 such that, for all µ > 1, we have

(3.13)

∫

|x|>µ

r−α(1 + s)−β dx 6

{
Cµ2−α−min( 1

2 ,β) if β 6= 1
2 ,

Cµ3/2−α ln r if β = 1
2 .

P r o o f. First we prove the following result:

(3.14)

∫

∂Br

r−α(1 + s)−β dσ ∼
{
r1−α−min( 1

2 ,β) if β 6= 1
2 ,

r
1
2−α ln r if β = 1

2 .

Using the polar coordinates, we have for s = r(1 − cos θ):

I =

∫

∂Br

r−α(1 + s)−β dσ = 2r1−α

∫ p
0

(1 + r(1 − cos θ))−β dθ.

Since r2 sin2 θ = 2rs− s2,

I = 2r1−α

∫ 2r

0

(1 + s)−β(2rs− s2)−1/2 ds.

i) When 0 < s 6 1, 1 + s ∼ 1, thus

∫ 1

0

(1 + s)−β(2rs− s2)−1/2 ds ∼ r−1/2

∫ 1

0

s−1/2 ds ∼ r−1/2.

ii) When 1 < s < r, 1 + s ∼ s and 2rs− s2 = s(2r − s) ∼ rs, thus

∫ r

1

(1 + s)−β(2rs− s2)−1/2 ds ∼ r−1/2

∫ r

1

s−1/2−β ds ∼ r−min( 1
2 ,β),
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and, if β = 1
2 , we get

∫ r

1

(1 + s)−β(2rs− s2)−1/2 ds ∼ r−1/2 ln r.

iii) When r < s < 2r, 1 + s ∼ r and 2rs− s2 ∼ r(2r − s), thus

∫ 2r

r

(1 + s)−β(2rs− s2)−1/2 ds ∼ r−1/2−β

∫ 2r

r

(2r − s)−1/2 ds ∼ r−β .

So,

I ∼ r1−α−min( 1
2 ,β)

(
rmin( 1

2 ,β)− 1
2 + 1 + rmin( 1

2 ,β)−β
)
∼

{
r1−α−min( 1

2 ,β) if β 6= 1
2 ,

r
1
2−α ln r if β = 1

2 .

By this equivalence we deduce:

(3.15)

∫

|x|>µ

r−α(1 + s)−β dx < +∞ ⇐⇒ 2 − α− min
(1

2
, β

)
< 0.

When this condition is satisfied we obtain our result. �

Using Lemma 3.2 with estimate (3.12), we deduce

(3.16) ∀ p > 3 O ∈ Lp(R2 ) and ∀ p ∈
]3

2
, 2

[
∇O ∈ Lp(R2 ),

which means in particular that O ∈ W 1,p
0 (R2 ) for any 3

2 < p < 2. Note also that

(3.17) O ∈ L1
loc(R2 ) and ∇O ∈ L1

loc(R2 ),

and for BR = R2 \ B(0, R)

(3.18) ∀ p > 3 O ∈ Lp(BR) and ∀ p > 3

2
∇O ∈ Lp(BR).

With the weighted L∞ estimates obtained in [10, Theorems 3.5, 3.7, and 3.8], we get

estimates on the convolution of Ŏ with a function ϕ ∈ D(R2 ) as follows.
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Lemma 3.3. For any ϕ ∈ D(R2 ) we have the estimates

|Ŏ ∗ ϕ(x)| 6 Cϕ
1

|x|1/2(1 + |x| + x1)1/2
,(3.19)

∣∣∣ ∂

∂x1
(Ŏ ∗ ϕ)(x)

∣∣∣ 6 Cϕ
1

|x|3/2(1 + |x| + x1)1/2
,(3.20)

∣∣∣ ∂

∂x2
(Ŏ ∗ ϕ)(x)

∣∣∣ 6 Cϕ
1

|x|(1 + |x| + x1)
,(3.21)

where Cϕ depends on the support of ϕ and Ŏ(x) = O(−x).

R em a r k 3.4. 1) The dependence on |x| of Ŏ ∗ ϕ and its first derivatives is the
same that of Ŏ, but the dependence on 1 + s′ is a little bit different.

2) By Lemma 3.2 and these last estimates we find that

(3.22) ∀ q > 3

2
Ŏ ∗ ϕ ∈ W 1,q

0 (R2 ).

3.3. Oseen potential and existence results

Using the weak-type (p, q) operators and the Marcinkiewicz Interpolation Theo-

rem, we have the following.

Theorem 3.5. Let f be given in Lp(R2 ). Then ∂2O/∂xj∂xk ∗ f ∈ Lp(R2 ),

∂O/∂x1 ∗ f ∈ Lp(R2 ) and they satisfy the estimate

(3.23)
∥∥∥ ∂2O
∂xj∂xk

∗ f
∥∥∥

Lp(R2)
+

∥∥∥ ∂O
∂x1

∗ f
∥∥∥

Lp(R2)
6 C‖f‖Lp(R2).

Moreover:

i) If 1 < p < 3
2 , then O ∗ f ∈ L3p/(3−2p)(R2 ) and

(3.24) ‖O ∗ f‖L3p/(3−2p)(R2) 6 C‖f‖Lp(R2).

ii) If 1 < p < 3, then (∂O/∂xi) ∗ f ∈ L3p/(3−p)(R2 ) and

(3.25)
∥∥∥∂O
∂xi

∗ f
∥∥∥

L3p/(3−p)(R2)
6 C‖f‖Lp(R2).

P r o o f. By the Fourier transform, we obtain from Equation (3.1):

F
( ∂2O
∂xj∂xk

∗ f
)

=
−4π

2ξjξk
4π

2|ξ|2 + 2πiξ1
F(f).
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The function ξ 7→ m(ξ) = (−4π
2ξjξk)/(4π

2|ξ|2 + 2πiξ1) is of class C2 in R2 \ {0} and
satisfies for every α = (α1, α2) ∈ N2

∣∣∣∂
|α|m

∂ξα
(ξ)

∣∣∣ 6 B|ξ|−α,

where |α| = α1 + α2 and B is a constant. Thus, the linear operator

T : f 7→ ∂2O
∂xj∂xk

∗ f(x) =

∫R2

e2pixξ −4π
2ξjξk

4π
2|ξ|2 + 2πiξ1

F(f)(ξ) dξ

is continuos from Lp(R2 ) to Lp(R2 ). So, ∂2O/∂xj∂xk ∗ f ∈ Lp(R2 ) and satisfies

(3.26)
∥∥∥ ∂2O
∂xj∂xk

∗ f
∥∥∥

Lp(R2)
6 C‖f‖Lp(R2)

(see Stein [17, Theorem 3.2, p. 96]). Now, from Equation (3.1), we deduce that

∂O/∂x1 ∗ f ∈ Lp(R2 ) and the estimate

(3.27)
∥∥∥ ∂O
∂x1

∗ f
∥∥∥

Lp(R2)
6 C(‖∆O ∗ f‖Lp(R2) + ‖f‖Lp(R2)),

which proves the first part of the proposition and Estimate (3.23). Next, to prove i)

and ii), we adapt the technique used by Stein in [17] which studied the convolution

of f ∈ Lp(Rn ) with the kernel |x|α−n. We split the function K into K1 +K∞, where

K1(x) = K(x) if |x| 6 µ and K1(x) = 0 if |x| > µ,

K∞(x) = 0 if |x| 6 µ and K∞(x) = K(x) if |x| > µ.

The function K denotes successively O and ∂O/∂xi and the positive number µ will

be fixed in the sequel.

1) Estimate (3.24). According to (3.6), we have O1 ∈ L1(R2 ) and by (3.16),

O∞ ∈ Lp′

(R2 ), thus O1 ∗ f exists almost everywhere and O∞ ∗ f exists everywhere,
so O ∗ f = O1 ∗ f + O∞ ∗ f exists almost everywhere. Next, we shall show that
f 7→ O ∗ f is of weak-type (p, q) with q = 3p/(3 − 2p) in the sense that:

(3.28) mes{x ; |(O ∗ f)(x)| > λ} 6

(
Cp,q

‖f‖Lp(R2)

λ

)q

, for all λ > 0.

We have:

mes{x ; (O ∗ f)(x) > 2λ} 6 mes{x ; (O1 ∗ f)(x) > λ} + mes{x ; (O∞ ∗ f)(x) > λ},
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and

mes{x ; |(O1 ∗ f)(x)| > λ} 6
‖O1‖p

L1(R2)‖f‖
p
Lp(R2)

λp
,

‖O∞ ∗ f‖L∞(R2) 6 ‖O∞‖Lp′(R2)‖f‖Lp(R2).

Note that it is enough to prove the inequality (3.28) for ‖f‖Lp(R2) = 1.

i) Estimate of I =
∫
|x|<µ |O(x)| dx.

If 0 < µ 6 1, then by (3.6), I 6 Cµ.

If µ > 1,

I =

∫

|x|<1

|O(x)| dx+

∫

1<|x|6µ

|O(x)| dx.

Since O ∈ L1
loc(R2 ), ∫

|x|<1

|O(x)| dx 6 C 6 Cµ.

Further, from the estimate (3.12) and by using Lemma 3.2, we have

∫

1<|x|<µ

|O(x)| dx 6 C

∫

1<|x|<µ

r−1/2(1 + s)−1 dx 6 Cµ,

thus

(3.29) ∀µ > 0 ‖O1‖L1(R2) 6 Cµ.

ii) Estimate of J =
∫
|x|>µ

|O(x)|p′

dx.

If µ > 1, |O(x)|p′ ∼ e−p′s/2r−p′/2 6 Cr−p′/2(1 + s)−p′

. Thus by Lemma 3.2, for

p′ > 3, we have J 6 Cµ3/2−p′/2.

If 0 < µ 6 1,

J =

∫

µ<|x|<1

|O(x)|p′

dx+

∫

|x|>1

|O(x)|p′

dx = J1 + J2.

Proceeding as previously, we get J2 6 C 6 Cµ3/2−p′/2. We also have

J1 =

∫

µ<|x|61

ep′x1/2|− ln r + 2 ln 2 + γ + o(r)|p′

dx 6 C 6 Cµ3/2−p′/2.

Thus

(3.30) for p′ > 3 and µ > 0 ‖O∞‖Lp′(R2) 6 Cµ(3−p′)/2p′

.
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Setting λ = Cµ(3−p′)/2p′

, which implies µ = C′λ2p′/(3−p′) = C′λ2p/(2p−3), we get

mes{x ∈ R2 ; |(O∞ ∗ f)(x)| > λ} = 0.

So, for 1 < p < 3
2 , we have

mes{x ∈ R2 ; (|O ∗ f)(x)| > 2λ} 6 C
‖O1‖p

L1(R2)

λp
6 C

µp

λp
6 C

( 1

λ

)3p/(3−2p)

,

which proves the inequality (3.28).

2. Estimate (3.25). We also have K1 ∈ L1(R2 ) and K∞ ∈ Lp′

(R2 ), where

K = ∂O/∂xi, i = 1, 2.

i) Estimate of
∫
|x|>µ |∂O/∂xi(x)|p′

dx.

Using estimate (3.12), we get for µ > 1 and p < 3:

(3.31)

∫

|x|>µ

∣∣∣ ∂O
∂xi

(x)
∣∣∣
p′

dx 6 Cµ3/2−3p′/2
6 Cµ3/2−p′

.

For µ < 1,

∫

|x|>µ

∣∣∣ ∂O
∂xi

(x)
∣∣∣
p′

dx =

∫

µ<|x|<1

∣∣∣ ∂O
∂xi

(x)
∣∣∣
p′

dx+

∫

|x|>1

∣∣∣ ∂O
∂xi

(x)
∣∣∣
p′

dx.

The case µ > 1 yields

∫

|x|>1

∣∣∣ ∂O
∂xi

(x)
∣∣∣
p′

dx 6 C 6 Cµ3/2−p′

.

We also have

∫

µ<|x|<1

∣∣∣ ∂O
∂xi

(x)
∣∣∣
p′

dx 6

∫ 1

µ

r1−q dr

∫ p
0

e(p′/2)r cos θ|sin θ + C′|p′

dθ

6 C

∫ 1

µ

r1/2−q dr 6 Cµ3/2−p′

.

So, by these two inequalities and (3.31), we get

(3.32)
∥∥∥ ∂O
∂xi

∥∥∥
Lp′(R2)

6 Cµ(3−2p′)/p′

.
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ii) Estimate of J =
∫
|x|<µ

|∂O/∂xi(x)| dx.
If 0 < µ < 1,

J =

∫

|x|<µ

∣∣∣ex1/2x2

r2
+ o

(1

r

)∣∣∣dx =

∫ µ

0

∫ p
−p e(r/2) cos θ|sin θ + C′| dr dθ

6 C

∫ µ

0

dr 6 Cµ 6 Cµ1/2.

If µ > 1,

J =

∫

|x|<1

∣∣∣ ∂O
∂xi

∣∣∣ dx+

∫

1<|x|<µ

∣∣∣ ∂O
∂xi

∣∣∣ dx = J1 + J2.

The preceding case yields J1 6 C 6 Cµ1/2. By Estimate (3.12) and Lemma 3.2 we

have

J2 6 C

∫

|x|<µ

dx

r(1 + s)
6 C

∫ µ

0

r−1/2 dr 6 Cµ1/2.

We obtain then

(3.33)
∥∥∥ ∂O
∂xi

∥∥∥
L1(R2)

6 Cµ1/2.

As previously, we have, for 1 < p < 3 and all λ > 0:

mes
{
x ∈ R2 ;

∣∣∣
( ∂O
∂xi

∗ f
)
(x)

∣∣∣ > 2λ
}

6 C
( 1

λ

)3p/(3−p)

.

Now, using the Marcinkiewicz Theorem, the operator R : f 7→ O ∗ f is continuous
from Lp(R2 ) into L3p/(3−2p)(R2 ) and Ri : f 7→ ∂O/∂xi ∗f is continuous from Lp(R2 )

into L3p/(3−p)(R2 ). �

R em a r k 3.6. i) We can prove that O ∈ L3,∞(R2 ), i.e.

(3.34) sup
µ>0

µ3 mes{x ∈ R2 ; |O(x)| > µ} < +∞.

So that, thanks to the weak Young inequality (cf. Reed and Simon [16]):

(3.35) ‖O ∗ f‖L3p/(3−2p),∞(R2) 6 C‖O‖L3,∞(R2)‖f‖Lp,∞(R2).

This estimate shows that if 1 < p < 3
2 , then there exist p0 and p1 such that 1 < p0 <

p < p1 <
3
2 and such that the operator

T : f 7→ O ∗ f

is continuous from Lp0(R2 ) into L(3p0)/(3−2p0),∞(R2 ) as well as from Lp1(R2 ) into

L(3p1)/(3−2p1),∞(R2 ). The Marcinkiewicz interpolation theorem allows again to con-

clude that the operator T : Lp(R2 ) −→ L3p/(3−2p)(R2 ) is continuous.

ii) The same remark is true for ∇O which belongs to L3/2,∞(R2 ).

By Theorem 3.5 and the Sobolev embedding we easily obtain the following result.
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Theorem 3.7. Let f ∈ Lp(R2 ) with 1 < p < ∞. Then, ∂2O/∂xj∂xk ∗ f ∈
Lp(R2 ), ∂O/∂x1 ∗ f ∈ Lp(R2 ) and they satisfy the estimate

(3.36)
∥∥∥ ∂2O
∂xj∂xk

∗ f
∥∥∥

Lp(R2)
+

∥∥∥ ∂O
∂x1

∗ f
∥∥∥

Lp(R2)
6 C‖f‖Lp(R2).

Moreover:

1) i) If 1 < p < 2, then ∇O ∗ f ∈ L3p/(3−p)(R2 ) ∩L2p/(2−p)(R2 ) and

(3.37) ‖∇O ∗ f‖L3p/(3−p)(R2) + ‖∇O ∗ f‖L2p/(2−p)(R2) 6 C‖f‖Lp(R2).

ii) If p = 2, then ∇O ∗ f ∈ Lr(R2 ) for any r > 6 and the following estimate holds

(3.38) ‖∇O ∗ f‖Lr(R2) 6 C‖f‖Lp(R2).

iii) If 2 < p < 3, then ∇O∗ f ∈ L3p/(3−p)(R2 )∩L∞(R2 ) and we have the estimate

(3.39) ‖∇O ∗ f‖L3p/(3−p)(R2) + ‖∇O ∗ f‖L∞(R2) 6 C‖f‖Lp(R2).

2) If 1 < p < 3
2 , then O ∗ f ∈ L3p/(3−2p)(R2 ) ∩ L∞(R2 ) and

(3.40) ‖O ∗ f‖L3p/(3−2p)(R2) + ‖O ∗ f‖L∞(R2) 6 C‖f‖Lp(R2).

R em a r k 3.8. i) Applying the Young Inequality and (3.16), we verify that if

f ∈ Lp(R2 ) with 1 < p < 3
2 , then O ∗ f ∈ Lq(R2 ) for all q ∈ ]3p/(3 − 2p),+∞[, a

property a little weaker than (3.40).

ii) The same remark is true for ∇O ∗ f .

By using Theorem 3.7 and Lemma 3.1, it is clear that if f ∈ Lp(R2 ), then the

solutions of Equation (3.1) are of the form

(3.41) u = O ∗ f +Q, with Q ∈ S[2−3/p].

This means that O ∗ f is the solution of Equation (3.1): unique if 1 < p < 3
2 , up to

a constant if 3
2 6 p < 3, and up to an element of S1 if p > 3.

By Theorem 3.7, we have the following result for a given f ∈ Lp(R2 ).
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Theorem 3.9. Let f ∈ Lp(R2 ), then Equation (3.1) has at least a solution u of

the form (3.41) such that ∇2u ∈ (Lp(R2 ))2×2, ∂u/∂x1 ∈ Lp(R2 ), and

(3.42) ‖∇2u‖Lp(R2) +
∥∥∥ ∂u

∂x1

∥∥∥
Lp(R2)

6 C‖f‖Lp(R2).

Moreover:

1) If 1 < p < 3
2 , then u ∈ L3p/(3−2p)(R2 ) ∩ L∞(R2 ), ∇u ∈ L3p/(3−p)(R2 ) ∩

L2p/(2−p)(R2 ) and they satisfy

‖u‖L3p/(3−2p)(R2) + ‖u‖L∞(R2) + ‖∇u‖L3p/(3−p)(R2)(3.43)

+ ‖∇u‖L2p/(2−p)(R2) 6 C‖f‖Lp(R2).

2) i) If 3
2 6 p < 2, then ∇u ∈ L3p/(3−p)(R2 ) ∩L2p/(2−p)(R2 ) and

(3.44) ‖∇u‖L3p/(3−p)(R2) + ‖∇u‖L2p/(2−p)(R2) 6 C‖f‖Lp(R2).

ii) If p = 2, then ∇u ∈ Lr(R2 ) for any r > 6 and the following estimate holds:

(3.45) ‖∇u‖Lr(R2) 6 C‖f‖Lp(R2).

iii) If 2 < p < 3, then ∇u ∈ L3p/(3−p)(R2 ) ∩L∞(R2 ) and

(3.46) ‖∇u‖L3p/(3−p)(R2) + ‖∇u‖L∞(R2) 6 C‖f‖Lp(R2).

3) If p > 3, then u ∈W 2,p
0 (R2 ) and we have the estimate

(3.47) inf
λ∈S1

‖u+ λ‖W 2,p
0 (R2) 6 C‖f‖Lp(R2).

R em a r k 3.10. Another demonstration of Theorem 3.9 consists in using the

Fourier approach. Let (fj)j∈N ⊂ D(R2 ) be a sequence converging to f in Lp(R2 ).

Then the sequence (uj) given by

(3.48) uj = F−1(m0(ξ)f̂j), m0(ξ) = (4π|ξ|2 + 2iπξ1)
−1,

is a solution of Equation (3.1) with the right-hand side fj . Let us recall now the
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Lizorkin Theorem (see [12]). Let D = {ξ ∈ R2 ; |ξ1| > 0, |ξ2| > 0} and
m : D −→ C be a continuous function such that its derivatives ∂km/∂ξk1

1 ∂ξk2
2 are

continuous and satisfy

(3.49) |ξ1|k1+β|ξ2|k2+β
∣∣∣ ∂km

∂ξk1
1 ∂ξk2

2

∣∣∣ 6 M,

where k1, k2 ∈ {0, 1}, k = k1 + k2, and 0 6 β < 1. Then, the operator

T : g 7→ F−1(m0F(g)), m0(ξ) =
1

4π
2|ξ|2 + 2iπξ1

is continuous from Lp(R2 ) into Lr(R2 ) with 1/r = 1/p− β.

Applying this continuity property with fj ∈ Lp(R2 ) and β = 2
3 , we show that

(uj) is bounded in L
3p/(3−2p)(R2 ) if 1 < p < 3

2 , so this sequence admits a subsequence

still denoted (uj) which converges weakly to a solution u of Equation (3.1) with

right-hand side f . For the derivative of uj with respect to x1, the multiplier which

intervenes is of the form m(ξ) = 2iπξ1(4π
2|ξ|2 + 2iπξ1)

−1, so that (3.49) is satisfied

for β = 0, so r = p. The same property takes place for the second derivatives with

m(ξ) = −4π
2ξ1ξ2(4π

2|ξ|2 + 2iπξ1)
−1. Finally, we verify, with β = 1

3 , that the first

derivative of (uj) with respect to x2 is bounded in L
3p/(3−p)(R2 ), which implies that

∂u/∂x2 ∈ L3p/(3−p)(R2 ).

In order to study Equation (3.1) with a right-hand side f ∈ W−1,p
0 (R2 ), we give

the following definition of the convolution of f with the fundamental solution O:

∀ϕ ∈ D(R2 ) 〈O ∗ f, ϕ〉 =: 〈f, Ŏ ∗ ϕ〉
W−1,p

0 (R2)×W 1,p′

0 (R2)
,

where Ŏ(x) = O(−x).

Theorem 3.11. Let f ∈ W−1,p
0 (R2 ) satisfy the compatibility condition

(3.50) 〈f, 1〉
W−1,p

0 (R2)×W 1,p′

0 (R2)
= 0, when 1 < p 6 2.

i) If 1 < p < 3, then u = O ∗ f ∈ L3p/(3−p)(R2 ) is the unique solution of Equa-

tion (3.1) such that ∇u ∈ Lp(R2 ) and ∂u/∂x1 ∈ W−1,p
0 (R2 ). Moreover, we have the

estimate

(3.51) ‖u‖L3p/(3−p)(R2) + ‖∇u‖Lp(R2) +
∥∥∥ ∂u

∂x1

∥∥∥
W−1,p

0 (R2)
6 C‖f‖W−1,p

0 (R2),

and u ∈ L2p/(2−p)(R2 ) if 1 < p < 2, u ∈ Lr(R2 ) for any r > 6 if p = 2, and

u ∈ L∞(R2 ) if 2 < p < 3.
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ii) If p > 3, then Equation (3.1) has a solution u ∈ W̃ 1,p
0 (R2 ) that is unique up to

a constant, and we have

(3.52) inf
k∈R‖u+ k‖

W̃ 1,p
0 (R2)

6 C‖f‖W−1,p
0 (R2).

P r o o f. Let f ∈ W−1,p
0 (R2 ) satisfy the condition (3.50). Thanks to Lemma 3.3

and Remark 3.4, if ϕ→ 0 in D(R2 ), we have Ŏ ∗ϕ→ 0 in W 1,p′

0 (R2 ) for all p ∈ ]1, 3[

which implies that O ∗ f ∈ D′(R2 ). We also know, by the isomorphism (2.7), that

there exists F ∈ Lp(R2 ) such that

(3.53) f = divF and ‖F ‖Lp(R2) 6 C‖f‖W−1,p
0 (R2).

i) Suppose now that 1 < p < 3. Then,

〈 ∂

∂xj
(O ∗ f), ϕ

〉
D′(R2)×D(R2)

= −
〈
O ∗ f, ∂ϕ

∂xj

〉
D′(R2)×D(R2)

=
〈
F ,∇

(
Ŏ ∗ ∂ϕ

∂xj

)〉
Lp(R2)×Lp′(R2)

=
〈
F ,∇ ∂

∂xj
(Ŏ ∗ ϕ)

〉
Lp(R2)×Lp′(R2)

.

Moreover, by (3.23),

∣∣∣
〈 ∂

∂xj
(O ∗ f), ϕ

〉
D′(R2)×D(R2)

∣∣∣ 6 ‖F ‖Lp(R2)

∥∥∥∇ ∂

∂xj
(Ŏ ∗ ϕ)

∥∥∥
Lp′(R2)

6 C‖f‖W−1,p
0 (R2)‖ϕ‖Lp′(R2).

That is, ∥∥∥ ∂

∂xj
(O ∗ f)

∥∥∥
Lp(R2)

6 C‖f‖W−1,p
0 (R2).

With the same condition on p as in the previous case, for all ϕ ∈ D(R2 ), we have

〈O ∗ f, ϕ〉D′(R2)×D(R2) = −〈F ,∇(Ŏ ∗ ϕ)〉Lp(R2)×Lp′(R2),

and by (3.25)

|〈O ∗ f, ϕ〉D′(R2)×D(R2)| 6 ‖F ‖Lp(R2)

∥∥∥ ∂

∂xj
(Ŏ ∗ ϕ)

∥∥∥
Lp′(R2)

6 C‖f‖W−1,p
0 (R2)‖ϕ‖L3p/(4p−3)(R2).
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Note that 1 < p < 3 ⇐⇒ 1 < 3p/(4p− 3) < 3. Consequently, O ∗ f ∈ L3p/(3−p)(R2 )

and

‖O ∗ f‖L3p/(3−p)(R2) 6 C‖f‖W−1,p
0 (R2).

Moreover, by the Sobolev embedding, O ∗ f ∈ L2p/(2−p)(R2 ) if 1 < p < 2, O ∗ f
belongs to Lr(R2 ) for all r > 6 if p = 2 and belongs to L∞(R2 ) if 2 < p < 3. We

have thus showed that if 1 < p < 3, the operator

R : W−1,p
0 (R2 ) ⊥ P[1−2/p′] −→W 1,p

0 (R2 ) ∩ L3p/(3−p)(R2 ),(3.54)

f 7→ O ∗ f,

is continuous.

ii) Suppose now that p > 3 and let f ∈ W−1,p
0 (R2 ). Then we have the rela-

tion (3.53). Now, since D(R2 ) is dense in Lp(R2 ), there exists a sequence Fm ∈
D(R2 ) such that Fm → F in Lp(R2 ). Set fm = divFm and ψm = O ∗ fm. For all

ϕ ∈ D(R2 ), we have 〈∂ψm

∂xj
, ϕ

〉
=

〈
Fm,∇

∂

∂xj
(Ŏ ∗ ϕ)

〉
.

Thus, according to the inequality (3.36), we have

∣∣∣
〈∂ψm

∂xj
, ϕ

〉∣∣∣ 6 C‖Fm‖Lp(R2)‖ϕ‖Lp′(R2)(3.55)

6 C‖f‖W−1,p
0 (R2)‖ϕ‖Lp′(R2).

Hence, ∇ψm is bounded in L
p(R2 ). We can apply Theorem 2.1: for each m, there

exists a constant Cm such that ψm + Cm ∈W 1,p
0 (R2 ) and

‖ψm + Cm‖W 1,p
0 (R2) 6 C‖f‖W−1,p

0 (R2).

From this it follows that ψm +Cm converges weakly to some function u ∈W 1,p
0 (R2 )

and

−∆u+
∂u

∂x1
= f,

so that Equation (3.1) admits a solution u and, moreover, u ∈ W̃ 1,p
0 (R2 ). �

R em a r k 3.12. i) If 1 < p < 2, then, since the solution u of Equation (3.1) given

by Theorem 3.11 belongs in particular to W 1,p
0 (R2 ), we deduce that

lim
|x|→∞

u(x) = 0
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in the sense of Definition 2.8. Consequently, for any given constant u∞, the dis-

tribution v = u + u∞ is the unique solution of Equation (3.1) that is such that

∇v ∈ Lp(R2 ), ∂v/∂x1 ∈ W−1,p
0 (R2 ), and

lim
|x|→∞

v(x) = u∞.

ii) If 2 < p < 3, then, by Lemma 2.10, the same result holds with pointwise

convergence.

Corollary 3.13. Assume 1 < p < 3. If u is a distribution such that ∇u ∈
Lp(R2 ) and ∂u/∂x1 ∈ W−1,p

0 (R2 ), then there exists a unique constant k such that

u+ k ∈ L3p/(3−p)(R2 ) and

(3.56) ‖u+ k‖L3p/(3−p)(R2) 6 C
(
‖∇u‖Lp(R2) +

∥∥∥ ∂u

∂x1

∥∥∥
W−1,p

0 (R2)

)
.

Moreover, if 1 < p < 2, then u+k ∈ L2p/(2−p)(R2 ) and u(x) tends to the constant −k
when |x| tends to infinity in the sense of Definition 2.8. If p = 2, then u+ k belongs

to Lr(R2 ) for any r > 6. If 2 < p < 3, then u belongs to L∞(R2 ), is continuous

in R2 , and tends to −k pointwise.
P r o o f. Set g = −∆u + ∂u/∂x1 ∈ W−1,p

0 (R2 ). Since P[1−2/p′] contains at

most the constants and according to the density of D(R2 ) in W̃ 1,p
0 (R2 ), g satisfies

the compatibility condition (3.50). By the previous theorem, there exists a unique

v ∈ L3p/(3−p)(R2 ) such that ∇v ∈ Lp(R2 ) and ∂v/∂x1 ∈ Lp(R2 ), and satisfying both

T (u− v) = 0 (T is the Oseen operator, see (3.2)) and the estimate

‖v‖L3p/(3−p)(R2) 6 C
(
‖∆u‖W−1,p

0 (R2) +
∥∥∥ ∂u

∂x1

∥∥∥
W−1,p

0 (R2)

)
(3.57)

6 C
(
‖∇u‖Lp(R2) +

∥∥∥ ∂u

∂x1

∥∥∥
W−1,p

0 (R2)

)
.

Setting w = u − v, we have for i = 1, 2 that ∂w/∂xi ∈ Lp(R2 ) and T (∂w/∂xi) = 0.

We deduce then by Lemma 3.1 that ∇u = ∇v, thus there exists a unique con-
stant k such that v = u+ k. The last properties are consequences of Lemma 2.6 and

Lemma 2.10.

R em a r k 3.14. Let u ∈ D′(R2 ) be such that ∇u ∈ Lp(R2 ).

i) When 1 < p < 2, thanks to Proposition 2.2, we know that there exists a unique

constant k such that u + k ∈ L2p/(2−p)(R2 ). Here, by the fact that in addition

∂u/∂x1 ∈ W−1,p
0 (R2 ), we have even u+ k ∈ L3p/(3−p)(R2 ).

ii) When 2 6 p < 3, u is only in W 1,p
0 (R2 ) but it is in no space Lr(R2 ). But,

if moreover ∂u/∂x1 ∈ W−1,p
0 (R2 ), then u + k ∈ L3p/(3−p)(R2 ) for some unique

constant k, and u ∈ Lr(R2 ) for any r > 6 if p = 2, while u ∈ L∞(R2 ) otherwise.
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As a consequence of Theorems 3.9 and 3.11, we solve Equation (3.1) when the

data f belongs to the intersection of two weighted spaces. We have then the two

following results.

Proposition 3.15. Suppose that f ∈W−1,p
0 (R2 )∩W−1,q

0 (R2 ) with 1 < p < q <

∞ and that f satisfies the compatibility condition (3.50). Then, Equation (3.1) has
a solution u ∈ W̃ 1,p

0 (R2 ) ∩ W̃ 1,q
0 (R2 ) satisfying

‖∇u‖Lp(R2) + ‖∇u‖Lq(R2) +
∥∥∥ ∂u

∂x1

∥∥∥
W−1,p

0

+
∥∥∥ ∂u
∂x1

∥∥∥
W−1,q

0 (R2)
(3.58)

6 C(‖f‖W−1,p
0 (R2) + ‖f‖W−1,q

0 (R2)).

Moreover:

i) The solution u is unique if p < 3 and unique up to a constant if p > 3. It is

equal to O ∗ f if p < 3.

ii) If p < q < 2, then u ∈ L3p/(3−p)(R2 ) ∩ L2q/(2−q)(R2 ) and

(3.59) ‖u‖L3p/(3−p)(R2) + ‖u‖L2q/(2−q)(R2) 6 C(‖f‖W−1,p
0 (R2) + ‖f‖W−1,q

0 (R2)).

iii) If p < q = 2, then u ∈ Lr(R2 ) for any r > 3p/(3 − p) and

(3.60) ‖u‖Lr(R2) 6 C(‖f‖W−1,p
0 (R2) + ‖f‖W−1,q

0 (R2)).

iv) If p < 3 and q > 2 then u ∈ L3p/(3−p)(R2 ) ∩ L∞(R2 ) with the estimate

(3.61) ‖u‖L3p/(3−p)(R2) + ‖u‖L∞(R2) 6 C(‖f‖W−1,p
0 (R2) + ‖f‖W−1,q

0 (R2)).

P r o o f. Let f ∈ W−1,p
0 (R2 ) ∩ W−1,q

0 (R2 ) satisfy the compatibility condi-

tion (3.50) with 1 < p < q < ∞. We know that there exist u ∈ W̃ 1,p
0 (R2 ) and

v ∈ W̃ 1,q
0 (R2 ) which are solutions of (3.1). Moreover, by a uniqueness argument we

have necessarily ∇u = ∇v and Estimate (3.58) comes from (3.51).
i) If p > 3, then u − v = k, where k is an arbitrary constant, so u = v + k ∈

W̃ 1,p
0 (R2 ) ∩ W̃ 1,q

0 (R2 ). If p < 3, then u = O ∗ f .
ii) Suppose that q < 2, then we know that u = O ∗ f ∈ L3p/(3−p)(R2 ) and

u = v ∈ L2p/(2−p)(R2 ) and u satisfies Estimate (3.59).

iii) If q = 2, then, by Theorem 3.11, u = O∗f ∈ L3p/(3−p)(R2 ) and u = v ∈ Lr(R2 )

for any r > 3p/(3 − p).

iv) If p < 3 and q > 2, we know that u = O∗f ∈ L3p/(3−p)(R2 ). Since∇u ∈ Lq(R2 )

with q > 2, it follows that u ∈ L∞(R2 ) and we have Estimate (3.61). �
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R em a r k 3.16. When f ∈W−1,q
0 (R2 ) with q > 3, we have seen that O ∗ f is not

necessarily defined. But if moreover f ∈ W−1,p
0 (R2 ) with p < 3, and satisfies the

compatibility condition (3.50), then O ∗ f makes sense in W̃ 1,p
0 (R2 ) and belongs to

W̃ 1,q
0 (R2 ).

Proposition 3.17. Let f ∈ Lp(R2 )∩W−1,p
0 (R2 ) satisfy the compatibility condi-

tion (3.50). Then Equation (3.1) has a solution u = O∗f such that ∇u ∈W 1,p
0 (R2 ),

∂u/∂x1 ∈ W 1,p
0 (R2 ) ∩W−1,p

0 (R2 ) and

(3.62) ‖∇u‖W 1,p +
∥∥∥ ∂u

∂x1

∥∥∥
W 1,p

+
∥∥∥ ∂u

∂x1

∥∥∥
W−1,p

6 C(‖f‖Lp + ‖f‖W−1,p
0

).

Moreover:

i) If p < 3
2 , then u is unique, belongs to L

3p/(3−2p)(R2 ) ∩ W 1,3p/(3−p)(R2 ) and

satisfies the estimate

(3.63) ‖u‖L3p/(3−2p)(R2) + ‖u‖W 1,3p/(3−p)(R2) 6 C(‖f‖Lp + ‖f‖W−1,p
0

).

ii) If 3
2 6 p < 3, then u is unique in W 1,3p/(3−p)(R2 ) and satisfies the estimate

(3.64) ‖u‖W 1,3p/(3−p)(R2) 6 C(‖f‖Lp(R2) + ‖f‖W−1,p
0 (R2)).

iii) If p > 3, then u belongs to W 2,p
0 (R2 ) ∩ W̃ 1,p

0 (R2 ), is unique up to a constant,

and

(3.65) inf
k∈R(‖u+ k‖W 2,p

0 (R2) + ‖u+ k‖
W̃ 1,p

0 (R2)
) 6 C(‖f‖Lp + ‖f‖W−1,p

0
).

P r o o f. The proof is the same as the one given for the previous proposition. �

Now we take f more regular, for example f ∈W−1,p
0 (R2 )∩W 0,q

1 (R2 ), and we find

what regularity we obtain for the solution u.

Proposition 3.18. Let p and q be two real numbers such that 1 < p < ∞,
q > 2, and 1

p = 1
q + 1

2 . Suppose that f ∈ W−1,p
0 (R2 ) ∩W 0,q

1 (R2 ) and satisfies the

compatibility condition (3.50). Then the unique solution of Equation (3.1) given by

Proposition 3.15 possesses the additional properties

∇2u ∈ (W 0,q
1 (R2 ))2×2 and

∂u

∂x1
∈W 0,q

1 (R2 ).

P r o o f. From the relation 1
p = 1

q + 1
2 we have 1 < p < 2, and since q > 2,

P[1−2/q′] = P[1−2/p] = {0}.
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Since W 0,q
1 (R2 ) ⊂ W−1,q

0 (R2 ), it follows that f ∈ W−1,p
0 (R2 ) ∩ W−1,q

0 (R2 ) and

satisfies the compatibility condition (3.50) for p and q.

i) If 2 < q < 3, then Equation (3.1) has a unique solution u ∈ L3p/(3−p)(R2 ) ∩
L3q/(3−q)(R2 ) such that ∇u ∈ Lp(R2 ) ∩ Lq(R2 ) and ∂u/∂x1 ∈ W−1,p

0 (R2 ) ∩
W−1,q

0 (R2 ). Further,

−∆
(
̺
∂u

∂xj

)
+

∂

∂x1

(
̺
∂u

∂xj

)
= ̺

∂f

∂xj
− 2∇̺∇

( ∂u

∂xj

)
− ∂u

∂xj
∆̺+

∂u

∂xj

∂̺

∂x1
=: F.

Since ∇u ∈ Lq(R2 ), in view of (2.3), (2.2), and (2.4), the terms ̺ ∂f/∂xj,

∇̺∇(∂u/∂xj), and ∂u/∂xj ∆̺ belong to W−1,q
0 (R2 ). On the other hand, since

∇u ∈ Lp(R2 ), the term ∂u/∂xj · ∂̺/∂x1 belongs to L
p(R2 ). By the Sobolev

embedding and the relation between p and q, Lp(R2 ) ⊂ W−1,q
0 (R2 ) because

W 1,q′

0 (R2 ) ⊂ Lp′

(Rn ), and we deduce that F ∈ W−1,q
0 (R2 ). Thus, by Theo-

rem 3.11, there exists a unique vj ∈ L3q/(3−q)(R2 ), such that ∇vj ∈ Lq(R2 ) and

∂vj/∂x1 ∈W−1,q
0 (R2 ), satisfying

−∆
(
vj − ̺

∂u

∂xj

)
+

∂

∂x1

(
vj − ̺

∂u

∂xj

)
= 0.

We deduce that wj = vj − ̺ ∂u/∂xj is a polynomial. Since ∇vj ∈ Lq(R2 ) and

q > 2, we have, by Proposition 2.2, vj ∈ W 1,q
0 (R2 ) ⊂ W 0,q

−1 (R2 ). We have also

̺ ∂u/∂xj ∈ W 0,q
−1 (R2 ), so wj ∈ P[1−2/q] = P0. Thus, there exists a constant k

such that ̺ ∂u/∂xj = vj + k ∈ W 1,q
0 (R2 ), which implies ∂u/∂xj ∈ W 1,q

1 (R2 ) and so

∇2u ∈ (W 0,q
1 (R2 ))2×2. The same argument proves that ∂u/∂x1 ∈ W 0,q

1 (R2 ).

ii) If q > 3, then Equation (3.1) has, in view of Proposition 3.15 ii), a unique

solution u ∈ W̃ 1,q
0 (R2 )∩W̃ 1,p

0 (R2 ). The right-hand side F also belongs toW−1,q
0 (R2 )

and we proceed as previously. �

4. Study in anisotropic weighted spaces

In this section we consider the case when the weight is anisotropic, of the form

rα(1+s)β or ηα
β = (1+r)α(1+s)β. Note that the behavior at infinity of these weights

is not uniform. In fact, in the parabola s = 1 we have rα(1 + s)β ∼ ηα
β ∼ rα and out

of a sector Sλ,R = {x ∈ R2 ; x1 > λr, 0 < λ < 1} we have rα(1 + s)β ∼ ηα
β ∼ rα+β .

It is for this reason that these functions are called anisotropic weights. For R > 0,

we denote by BR the ball centered at the origin with the radius R, B
′
R = R2 \ BR,

and we define the space

Lp
α,β(Ω) = {v ∈ D′(Ω); ηα

β v ∈ Lp(Ω)},
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where Ω = R2 or any open domain of R2 . We begin by studying the problem

−∆z +
∂z

∂x1
+ a0z = g in B′

R,(4.1)

z = 0 on ∂B′
R,

where g ∈ Lp
1/2,0(B

′
R) and

(4.2) a0 =
1

8r

2s2 + s+ 2

(1 + s)2
.

First we have the following.

Lemma 4.1. Let p be such that 2 < p < 32
11 and let g ∈ Lp

1/2,0(B
′
R). There

exists R∗ > 0 such that if R > R∗, then Problem (4.1) has a unique solution

z ∈ Lp
−1/2,0(B

′
R) such that ∇2z ∈ (Lp(B′

R))2×2 and ∂z/∂x1 ∈ Lp(B′
R). Moreover,

there exists C > 0 such that

(4.3) ‖z‖Lp
−1/2,0

(B′

R) +
∥∥∥ ∂z

∂x1

∥∥∥
Lp(B′

R)
+ ‖∇2z‖Lp(B′

R) 6 C‖g‖Lp
1/2,0

(B′

R).

P r o o f. For all ε > 0, since g ∈ Lp
1/2,0(B

′
R) and a0 > 0, the problem

−∆zε +
∂zε

∂x1
+ a0zε + εzε = g in B′

R,(4.4)

zε = 0 on ∂B′
R

has a unique solution zε ∈ W 2,p(B′
R). By multiplying the first equation of (4.4) by

r1−p/2|zε|p−2zε and since in two dimensions ∆(r1−p/2) = (1 − 1
2p)

2r−1−p/2, we get

after integration by parts in B′
R

(p− 1)

∫

B′

R

r1−p/2|zε|p−2|∇zε|2 dx+

∫

B′

R

a0r
1−p/2|zε|p dx+ ε

∫

B′

R

r1−p/2|zε|p dx

=
1

p

(
1 − 1

2
p
)2

∫

B′

R

r−1−p/2|zε|p dx+
(1

p
− 1

2

) ∫

B′

R

|zε|p
x1

r
r−p/2 dx

+

∫

B′

R

r1−p/2|zε|p−2zεg dx.

Note that a0 > 5
32r , thus

( 5

32
−

∣∣∣1
p
− 1

2

∣∣∣
) ∫

B′

R

r−p/2|zε|p dx(4.5)

6
1

p

(
1 − 1

2
p
)2

∫

B′

R

r−1−p/2|zε|p dx+

∫

B′

R

r1−p/2|zε|p−1|g| dx.
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Moreover, since r > R,

(4.6)
1

p

(
1 − 1

2
p
)2

∫

B′

R

r−1−p/2|zε|p dx 6
1

pR

(
1 − 1

2
p
)2

∫

B′

R

r−p/2|zε|p dx.

Inequalities (4.5) and (4.6) give

( 5

32
−

∣∣∣1
p
− 1

2

∣∣∣ − 1

pR

(
1 − 1

2
p
)2) ∫

B′

R

r−p/2|zε|p dx 6

∫

B′

R

r1−p/2|zε|p−1|g| dx.

Since 2 < p < 32
11 , we have

5
32 − | 1p − 1

2 | − 1
pR (1 − 1

2p)
2 > 0, if R > R∗, with R∗

sufficiently large. Thus, from the previous inequality we obtain
∫

B′

R

r−p/2|zε|p dx 6 C1

∫

B′

R

r1−p/2|zε|p−1|g| dx

6 C1

(∫

B′

R

rp/2|g|p dx

)1/p(∫

B′

R

r−p/2|zε|p dx

)(p−1)/p

.

Thus ∫

B′

R

r−p/2|zε|p dx 6 C

∫

B′

R

rp/2|g|p dx,

where the constant C is independent of R and ε. The sequence (zε) is thus bounded

in Lp
−1/2,0(B

′
R), which is a reflexive space, so zε ⇀ z in Lp

−1/2,0(B
′
R), and

‖z‖Lp
−1/2,0

(B′

R) 6 lim inf
ε→0

‖zε‖Lp
−1/2,0

(B′

R) 6 C‖g‖Lp
1/2,0

(B′

R),

where z satisfies the equation

−∆z +
∂z

∂x1
= g − a0z in B′

R.

Let us show that ∇2z ∈ (Lp(B′
R))2×2 and ∂z/∂x1 ∈ Lp(B′

R). Now, the fact that the

function g − a0zε is bounded in L
p
1/2,0(B

′
R) implies that it is bounded in Lp(B′

R).

Since ∇2zε remains bounded in L
p(B′

R), it follows that ∇2z ∈ (Lp(B′
R))2×2 and

(4.7) ‖∇2z‖Lp(B′

R) 6 lim inf
ε→0

‖∇2zε‖Lp(B′

R) 6 C‖g‖Lp
1/2,0

(B′

R).

Thus, ∂z/∂x1 ∈ Lp(B′
R) and we have Estimate (4.3). It remains to prove that z = 0

on ∂B′
R. Since ∇2zε is bounded in L

p(B′
R), if Ω is a bounded domain such that

BR ⊂ Ω, setting Ω = Ω ∩B′
R, we have

zε ⇀ v in W 2,p(Ω).

Since zε = 0 on ∂B′
R, it follows that v = 0 on ∂B′

R. Moreover, since zε ⇀ z in

Lp
−1/2,0(B

′
R), it follows that v = z|Ω and so z = 0 on ∂B′

R. �
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We know, according to Proposition 3.18, that for f given inW−1,p
0 (R2 )∩W 0,q

1 (R2 ),

where p and q satisfy the relation 1
p = 1

q + 1
2 , we obtain that ∇2u and ∂u/∂x1 belong

to W 0,q
1 (R2 ). But if f is only given in W 0,p

1 (R2 ), we cannot find the same regularity

on ∇2u and ∂u/∂x1. Then we look at f in L
p
α,β, with α + β close to 1. Moreover,

taking account of the conditions put by Kračmar, Novotný, and Pokorný in [10] on α

and β, one takes α = 1
2 and β = 1

4 .

Theorem 4.2. Assume 2 < p < 32
11 and f ∈ Lp

1/2,1/4(R2 ). Then, O ∗ f ∈
Lp
−1/2,1/4(R2 ), ∂/∂x2(O ∗ f) ∈ Lp

0,1/4(R2 ), ∂/∂x1(O ∗ f) ∈ Lp
1/2,1/4(R2 ), and ∇2(O ∗

f) ∈ (Lp
1/2,1/4(R2 ))2×2. Moreover, we have the estimate

‖O ∗ f‖Lp
−1/2,1/4

(R2) +
∥∥∥ ∂

∂x2
(O ∗ f)

∥∥∥
Lp

0,1/4
(R2)

+
∥∥∥ ∂

∂x1
(O ∗ f)

∥∥∥
Lp

1/2,1/4
(R2)

(4.8)

+ ‖∇2(O ∗ f)‖L
p
1/2,1/4

(R2) 6 C‖f‖Lp
1/2,1/4

(R2).

P r o o f. From [10], we have O∗f ∈ Lp
−1/2−ε,1/4(R2 ), ∂/∂x2(O∗f) ∈ Lp

0,1/4(R2 ),

∂/∂x1(O ∗ f) ∈ Lp
1/2−ε,1/4(R2 ), for all ε > 0. It remains to prove that O ∗ f ∈

Lp
−1/2,1/4(R2 ) and ∂/∂x1(O ∗ f) ∈ Lp

1/2,1/4(R2 ). For R > R∗, we use the following

partition of unity

ϕ1, ϕ2 ∈ C∞(R2 ), 0 6 ϕ1, ϕ2 6 1, ϕ1 + ϕ2 = 1 in R2 ,

ϕ1 = 1 in BR and Suppϕ1 ⊂ BR+1.

We set u = O ∗ f and we split u into u = u1 + u2, where u1 = ϕ1u and u2 = ϕ2u.

Since Suppu1 ⊂ BR+1, u1 ∈ Lp
−1/2,1/4(R2 ) and

‖u1‖Lp
−1/2,1/4

(R2) 6 C‖f‖Lp
1/2,1/4

(R2).

Furthermore, u2 is a solution of the following problem

−∆u2 +
∂u2

∂x1
= f̃ in R2 ,

where f̃ = ϕ2f + u∆ϕ1 + 2∇u∇ϕ1 − u(∂ϕ1/∂x1). Since the regularity of ϕ2f

determines that of f̃ , it follows that f̃ ∈ Lp
1/2,1/4(R2 ). Setting v = (1 + s)1/4u2, we

have v ∈ Lp
−1/2−ε,0(R2 ), and v satisfies the equation

−∆v +
∂v

∂x1
= (1 + s)1/4f̃ − 2∇u2 · ∇(1 + s)1/4 − u2

[
∆(1 + s)1/4 − ∂

∂x1
(1 + s)1/4

]
.
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A simple calculation yields

(
∆ − ∂

∂x1

)
(1 + s)1/4 =

1

8r
(2s2 + s+ 2)(1 + s)−7/4,

thus u2[∆(1 + s)1/4 − ∂/∂x1(1 + s)1/4] = a0v, where a0 is defined in (4.2). Hence,

v satisfies Problem (4.1), where g = (1 + s)1/4f̃ − 2∇u2 · ∇(1 + s)1/4 ∈ L1/2,0(B
′
R).

Applying Lemma 4.1, there exists a unique solution w ∈ Lp
−1/2,0(B

′
R) of this problem.

Setting z = v − w, we have z ∈ Lp
−1/2−ε,0(R2 ), and z satisfies

−∆z +
∂

∂x1
+ a0z = 0 in R2 .

Then z = 0, which implies that v ∈ Lp
−1/2,0(R2 ) and

‖v‖Lp
−1/2,0

(R2) 6 C‖g‖Lp
1/2,0

(B′

R) 6 C‖f‖Lp
1/2,1/4

(R2).

Hence u2 ∈ Lp
−1/2,1/4(R2 ) and

‖u2‖Lp
−1/2,1/4

(R2) 6 C‖f‖Lp
1/2,1/4

(R2),

which proves that u ∈ Lp
−1/2,1/4(R2 ) and

(4.9) ‖u‖Lp
−1/2,1/4

(R2) 6 C‖f‖Lp
1/2,1/4

(R2).

Now, using the fact that u2 satisfies

−∆(η
1/2
1/4u2) +

∂

∂x1
(η

1/2
1/4u2) =: F,

where

F = η
1/2
1/4f − u∆(η

1/2
1/4 ϕ2) − 2∇u · ∇(η

1/2
1/4ϕ2) + u

∂

∂x1
(η

1/2
1/4ϕ2) ∈ Lp(R2 ),

we obtain by Theorem 3.9 that there exists a function v such that∇2v ∈ (Lp(R2 ))2×2

and ∂v/∂x1 ∈ Lp(R2 ), satisfying

−∆v +
∂v

∂x1
= −∆(η

1/2
1/4u2) +

∂

∂x1
(η

1/2
1/4 u2).

Moreover,

(4.10) ‖∇2v‖Lp(R2) +
∥∥∥ ∂v

∂x1

∥∥∥
Lp(R2)

6 C‖F‖Lp(R2) 6 C‖f‖Lp
1/2,1/4

(R2).
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We set w = ∇2v −∇2(η
1/2
1/4u2); since ∇2u ∈

⋂
ε>0

(Lp
1/2−ε,1/4(R2 ))2×2, we have

w ∈
⋂

ε>0

Lp
−ε,0(R2 ) and − ∆w +

∂w

∂x1
= 0 in R2 .

Thus w = 0, which implies that

∇2(η
1/2
1/4u) ∈ (Lp(R2 ))2×2.

We thus obtain

∇2u ∈ (Lp
1/2,1/4(R2 ))2×2,

∂u

∂x1
∈ Lp

1/2,1/4(R2 ),

and the estimate

(4.11) ‖∇2u‖L
p
1/2,1/4

(R2) +
∥∥∥ ∂u

∂x1

∥∥∥
Lp

1/2,1/4
(R2)

6 C‖f‖Lp
1/2,1/4

(R2).

This finishes the proof. �

Let us set

Kp
α,β(Ω) = {v ∈ D′(Ω); rα(1 + s)β ∈ Lp(Ω)},

which is a reflexive Banach space when it is equipped with its natural norm. With

the same arguments as above we can prove the following result. The case β = 1
4

corresponds to Theorem 4.2.

Theorem 4.3. Assume 2 6 p < 8/(3 − β) and 0 < β < 1
4 . Then, for f ∈

Kp
1/2,β(R2 ), we have O∗ f ∈ Kp

−1/2,β(R2 ), ∂/∂x2(O∗ f) ∈ Kp
0,β(R2 ), ∂/∂x1(O∗ f) ∈

Kp
1/2,β(R2 ), and ∇2(O ∗ f) ∈ (Kp

1/2,β(R2 ))2×2. Moreover, we have the estimates

‖O ∗ f‖Kp
−1/2,β

(R2) +
∥∥∥ ∂

∂x2
(O ∗ f)

∥∥∥
Kp

0,β
(R2)

+
∥∥∥ ∂

∂x1
(O ∗ f)

∥∥∥
Kp

1/2,β
(R2)

(4.12)

+ ‖∇2(O ∗ f)‖K
p
1/2,β

(R2) 6 C‖f‖Kp
1/2,β

(R2).

For α, β ∈ R we denote
Lp

α,β(s′)(R2 ) = {v ∈ D′(Ω); ̺α(1 + s′)βv ∈ Lp(R2 )},

which is a reflexive Banach space when it is equipped with its natural norm

‖v‖Lp

α,β(s′)
(R2) = ‖̺α(1 + s′)βv‖Lp(R2).
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Proposition 4.4. For any given f ∈ L2
1/2,((δ−1)/2)(s′)(R2 ), with δ > 0 close

to zero, Equation (3.1) has a unique solution u ∈ K2
δ/2−1,0(R2 ) such that ∇u ∈

L2
δ/4−1/2,0(R2 ). Moreover, there exists a constant C > 0 such that

(4.13) ‖u‖K2
δ/2−1,0

(R2) + ‖∇u‖L2
δ/4−1/2,0

(R2) 6 C‖f‖L2
1/2,((δ−1)/2)(s′)

(R2).

P r o o f. By the density of D(R2 ) in L2
1/2,((δ−1)/2)(s′)(R2 ) (see [2]), there exists a

sequence (fk) of D(R2 ) such that fk → f in L2
1/2,((δ−1)/2)(s′)(R2 ). Since fk ∈ D(R2 ),

we have fk ∈ K2
1/2,β(R2 ), 0 < β < 1

4 . Thus, from Theorem 4.2, the equation

(4.14) −∆uk +
∂uk

∂x1
= fk in R2 ,

has a solution uk = O ∗ fk ∈ K2
−1/2,0(R2 ) such that ∇uk ∈ K2

0,β(R2 ), ∇2uk ∈
(K2

1/2,β(R2 ))2×2 and ∂uk/∂x1 ∈ K2
1/2,β(R2 ). Multiplying Equation (4.14) by huk

where h = Ŏ ∗ rδ−2 with δ > 0 and Ŏ is the fundamental solution of the operator
−∆ − ∂/∂x1, we obtain after two integrations by parts

(4.15)

∫R2

|∇uk|2h dx+
1

2

∫R2

u2
k

(
−∆h− ∂h

∂x1

)
dx =

∫R2

fkhuk dx.

Since −∆h− ∂h/∂x1 = rδ−2, we have

∫R2

|∇uk|2h dx+
1

2

∫R2

u2
kr

δ−2 dx =

∫R2

fkhuk dx,

and as h > 0 we then get the two inequalities

∫R2

u2
kr

δ−2 dx 6 2

∫R2

fkhuk dx,(4.16)

∫R2

|∇uk|2h dx 6

∫R2

fkhuk dx.(4.17)

A simple calculation yields

(
−∆ − ∂

∂x1

)
(1 + r)δ/2−1 =

2 − δ

4
(1 + r)δ/2−2

(4 − δ

1 + r
− 1

r
− x1

r

)
,

thus

(
−∆ − ∂

∂x1

)
(h−M(1 + r)δ/2−1) >

1

r2−δ
−M

2 − δ

2r
(1 + r)δ/2−1 > 0,
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for 0 < M 6 22+δ/2/(2 − δ) · ((1 − δ)/(2 + δ))1+δ/2. Thus, there exists M > 0 such

that h(x) > M(1 + r)δ/2−1, so from the inequality (4.17), we obtain

(4.18) M

∫R2

(1 + r)δ/2−1|∇uk|2 dx 6

∫R2

fkhuk dx.

The Cauchy-Schwarz inequality gives

∫R2

fkhuk dx 6

(∫R2

f2
kh

2r2−δ dx

)1/2(∫R2

rδ−2u2
k dx

)1/2

.

Hence, from the inequalities (4.16) we get

∫R2

rδ−2u2
k dx 6 4

∫R2

f2
kh

2r2−δ dx = 4

∫R2

f2
k

1 + r

(1 + s′)1−δ
h2r1−δ(1 + s′)1−δ dx.

We adapt the result of Theorem 3.5 obtained in [10]: we have h2r1−δ(1 + s′)1−δ ∈
L∞(R2 ), thus uk ∈ K2

δ/2−1,0(R2 ) and there exists C > 0 such that

(4.19) ‖uk‖K2
δ/2−1,0

(R2) 6 C‖fk‖L2
1/2,(δ/2−1/2)(s′)

6 C‖f‖L2
1/2,(δ/2−1/2)(s′)

.

Now, using the inequalities (4.18) and (4.19), we deduce that ∇uk ∈ L2
δ/4−1/2,0(R2 )

and

(4.20) ‖∇uk‖L2
δ/4−1/2,0

(R2) 6 C‖fk‖L2
1/2,(δ/2−1/2)(s′)

6 C‖f‖L2
1/2,(δ/2−1/2)(s′)

.

So, the sequences uk and vk = ∇uk remain bounded in K2
δ/2−1,0(R2 ) and in

L2
δ/4−1/2,0(R2 ), respectively. These spaces are reflexive, therefore extracting a

subsequence if necessary, we have

uk ⇀ u in K2
δ/2−1,0(R2 ) and ∇uk ⇀ ∇u in L2

δ/4−1/2,0(R2 )

with the estimates

‖u‖K2
δ/2−1,0

(R2) 6 lim inf
k→∞

‖uk‖K2
δ/2−1,0

(R2) 6 C‖f‖L2
1/2,(δ/2−1/2)(s′)

,(4.21)

‖∇u‖L2
δ/4−1/2,0

(R2) 6 lim inf
k→∞

‖∇uk‖L2
δ/4−1/2,0

(R2) 6 C‖f‖L2
1/2,(δ/2−1/2)(s′)

.(4.22)

We get then Estimate (4.13) and we verify easily that u is a solution of Equation 3.1.

The uniqueness of u follows from the fact that the space K2
δ/2−1,0(R2 ) contains no

polynomials. �
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5. Behaviour of uλ when λ→ 0

Assume 1 < p < 2, f ∈ Lp(R2 ), and, for λ > 0, consider the equation

(5.1) −∆uλ + λ
∂uλ

∂x1
= f in R2 .

If we set

y = λx, uλ(x) = v(y), and f(x) = λ2g(y),

then v satisfies the equation

(5.2) −∆v(y) +
∂v

∂y1
(y) = g(y) in R2 ,

where, clearly, g ∈ Lp(R2 ). We know by Theorem 3.9 that, if 1 < p < 2, Equa-

tion (5.2) has a solution v such that, in particular, ∇v ∈ L2p/(2−p)(R2 ), ∇2v ∈
(Lp(R2 ))2×2, ∂v/∂x1 ∈ Lp(R2 ) and

(5.3) ‖∇v‖L2p/(2−p)(R2) + ‖∇2v‖Lp(R2) 6 C‖g‖Lp(R2).

By a simple calculation we obtain from Inequality (5.3) the estimate

(5.4) ‖∇uλ‖L2p/(2−p)(R2) + ‖∇2uλ‖Lp(R2) 6 C‖f‖Lp(R2),

where C does not depend on λ. We deduce that the sequences ∇uλ and ∇2uλ

remain bounded in Lp(R2 ) and (Lp∗

(R2 ))2×2, with p∗ = 2p/(2 − p), respectively.

Now, setting

(5.5) −∆uλ = fλ in R2 ,

then the sequence fλ is bounded in L
p(R2 )∩W−1,p∗

0 (R2 ). These spaces are reflexive,

so extracting a subsequence if necessary, also denoted fλ, we have

fλ ⇀ f in Lp(R2 ) and fλ ⇀ f in W−1,p∗

0 (R2 ).

Further, note that p∗ > 2, so there exist z ∈ W 1,p∗

0 (R2 ) and w ∈W 2,p
0 (R2 ) such that

−∆z = −∆w = f in R2 .

Since∇z ∈ Lp∗

(R2 ),∇w ∈ Lp∗

(R2 ) by Sobolev embedding and∇z−∇w is harmonic,
it follows that ∇z −∇w = 0 in R2 . Hence there exists k ∈ R ⊂W 2,p

0 (R2 ) such that

z = w + k, thus z ∈ W 2,p
0 (R2 ) ∩W 1,p∗

0 (R2 ). Now, since the norm in W 2,p
0 (R2 )/R
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is equivalent to its semi-norm, we deduce from the inequality (5.4) that there exist

kλ ∈ R and u ∈W 2,p
0 (R2 ) ∩W 1,p∗

0 (R2 ) such that

uλ + kλ ⇀ u in W 2,p
0 (R2 ) and in W 1,p∗

0 (R2 ).

Since −∆u = f in R2 , there exists k ∈ R such that z = u+k. We have thus recovered

the result obtained by Amrouche, Girault, and Giroire in [1] for f ∈ Lp(R2 ). The

following proposition is thus acquired.

Proposition 5.1. Assume that 1 < p < 2 and let f ∈ Lp(R2 ). Then

Equation (5.1) has at least a solution uλ of the form (3.41) such that ∇uλ ∈
L3p/(3−p)(R2 )∩L2p/(2−p)(R2 ), ∇2uλ ∈ (Lp(R2 ))2×2, and ∂uλ/∂x1 ∈ Lp(R2 ). More-

over, if 1 < p < 3
2 , then uλ ∈ L3p/(3−2p)(R2 ) ∩ L∞(R2 ). Furthermore, there exists

kλ ∈ R such that, when λ→ 0,

uλ + kλ ⇀ u in W 2,p
0 (R2 ) and in W 1,p∗

0 (R2 ),

where u is the unique solution of Poisson’s Equation

(5.6) −∆u = f in R2 ,

with the estimate

(5.7) ‖∇u‖Lp∗(R2) + ‖∇2u‖Lp(R2) 6 C‖f‖Lp(R2).

For f ∈ W−1,p
0 (R2 ) we have the following result.

Proposition 5.2. Assume 1 < p < 2 and let f ∈ W−1,p
0 (R2 ) satisfy the com-

patibility condition

(5.8) 〈f, 1〉
W−1,p

0 (R2)×W 1,p′

0 (R2)
= 0.

Then Equation (5.1) has a unique solution uλ ∈ L3p/(3−p)(R2 ) ∩ Lp∗

(R2 ) such that

∇uλ ∈ Lp(R2 ) and ∂uλ/∂x1 ∈ W−1,p
0 (R2 ). Moreover,

uλ ⇀ u in W 1,p
0 (R2 ) as λ→ 0,

where u is the unique solution of Poisson’s Equation

(5.9) −∆u = f in R2 ,
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and the following estimate holds

(5.10) ‖u‖Lp∗(R2) + ‖∇u‖Lp(R2) 6 C‖f‖W−1,p
0 (R2).

P r o o f. By Isomorphism (2.7), there exists F ∈ Lp(R2 ) such that f = divF

and

(5.11) ‖F ‖Lp(R2) 6 C‖f‖W−1,p
0 (R2).

Setting

y = λx, uλ(x) = v(y), F (x) = λG(y), and g = divG,

v satisfies Equation (5.2) where g ∈W−1,p
0 (R2 ) ⊥ R. By Theorem 3.11, this equation

has a unique solution v ∈ L3p/(3−p)(R2 ) ∩ Lp∗

(R2 ) such that ∇v ∈ Lp(R2 ) and

∂v/∂x1 ∈W−1,p
0 (R2 ), with the estimate

(5.12) ‖v‖Lp∗(R2) + ‖∇v‖Lp(R2) 6 C‖g‖W−1,p
0 (R2) 6 C‖G‖Lp(R2).

As previously, we get the estimate

(5.13) ‖uλ‖Lp∗(R2) + ‖∇uλ‖Lp(R2) 6 C‖F ‖Lp(R2).

The sequences uλ and ∇uλ remain bounded in L
p∗

(R2 ) and Lp(R2 ), respectively.

These spaces are reflexive, so there exists u ∈ Lp∗

(R2 ) such that uλ ⇀ u in Lp∗

(R2 )

and ∇uλ ⇀ ∇u in Lp(R2 ). We easily verify that u is a solution of Poisson’s Equa-

tion (5.9) and satisfies Estimate (5.10). The uniqueness of u follows by the fact that

the space Lp∗

(R2 ) contains no polynomials. We deduce that u ∈ W 1,p
0 (R2 ) and we

have also recovered the result obtained in [1] for f ∈W−1,p
0 (R2 ). �
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