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A MAXIMUM LIKELIHOOD ESTIMATOR 
OF AN INHOMOGENEOUS P O I S S O N POINT 
PROCESS INTENSITY USING BETA SPLINES 

P A V E L K R E J Č Í Ř 

The problem of estimating the intensity of a non-stationary Poisson point process arises 
in many applications. Besides non parametric solutions, e. g. kernel estimators, parametric 
methods based on maximum likelihood estimation are of interest. In the present paper 
we have developed an approach in which the parametric function is represented by two-
dimensional beta-splines. 

1. INTRODUCTION 

The problem of estimating the intensity of non-stationary two-dimensional Poisson 
point process is encouraged by the study of producing a risk map of tick-borne 
encephalitis and Lyme borreliosis in central Bohemia described in [10] and [4]. The 
data consisted of a record of the locations of events of the mentioned two diseases 
over last thirty years. The task was to estimate the risk map of the diseases using 
the available data. Recently, a Bayesian approach has been applied to this problem 
by [9]. 

The results given in [10] were carried out using a non-parametric kernel estimator, 
where the kernel function chosen was the density of Gaussian distribution. There 
was a problem with choice of the parameter called 'bandwidth'. The parameter esti
mated by using an optimalisation criteria provided a too smooth density estimator. 
Choosing the value approximately half of the theoretically optimal bandwidth, the 
results were more acceptable from practical point of view. 

The problem of estimating the intensity of inhomogeneous point processes has 
been intensively studied over several last years. The basic concept is described 
in [3], further investigation concerning the maximum likelihood method was reported 
in [2, 5]. 

We have developed a method of estimating the intensity of a non-stationary 
Poisson point process based on the two-dimensional quadratic beta-splines and using 
the maximum likelihood method for the estimation of the parameters. The method 
can be applied after relaxing the assumption of Poisson property, too: in that case 
we use the approach of pseudo-likelihood as described in [1]. 
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2. MAXIMUM LIKELIHOOD ESTIMATOR 

The maximum likelihood estimator of parameters of a Poisson point process intensity 
function was recommended by [2]. The intensity function is a parametric function 
Afl(x), where x G B, B is a Borel subset of lRd, 0 G 0 is the unknown parameter, 
0 is the parametric space. The log-likelihood function is then of the form 

k 

L(6) = L(6]xu ... }xk) = y2\og\e(xi) - / A*(:r)d:r, (1) L(0;xi,...,xk) = y~)\og\9(xi)- / Xe(x)dx, 
••=1 J B 

where x\,..., xk is the sample realization of the Poisson point process. 
Berman and Turner ili [2] suggest a couple of parametric functions for A, ba

sically combinations of polynomials and exponential functions. Although the one 
dimensional results presented here are quite convincing and the possible extension 
to higher dimensions is proposed to be straightforward, we decided to use a different 
type of parametric function for the intensity prototype. The function is based on 
the quadratic beta splines. The main advantage of this choice is that the initial 
estimator of the parameters is graphical and provides a good starting position for 
the inevitable iteration process. 

For a better understanding we have decided to start with one dimensional case 
and then to explain the two dimensional estimator. Thus the popular phrase that 
the extension to higher dimension is straightforward is avoided here. 

2.1. Quadratic beta-splines 

Let us explain first the nature of the quadratic beta-spline. The usage of spline 
curves in mathematics has been discussed many times, see e.g. [7] in numerical 
mathematics. 

Basically, let x = (x, y) G M2 be a two dimensional point. The single quadratic 
spline is defined by three points. Namely by two end-points, say x\ and x2) and one 
control-point, say c. The spline is then 

f(t) = aji(l - t)2 + 2rf(l - t) + x2t
2, (2) 

t G (0,1), which assures that the curve starts in the point x\, ends in the point x2. 
c — xi is the tangent vector of the curve at the point #1, x2 — c is the tangent vector 
of the curve at the point x2. 

The usual quadratic beta-spline consists from n single beta-splines joining conse
quent! vely to each other in order to the whole curve is continuous and smooth. The 
quadratic beta-spline is then defined by two end-points and a sequence of n control 
points. For convenience, let the start-point be sen, the end-point xn and the control 
points c i , . . . , c n . The ith quadratic spline is defined by end-points asi_i, X{ and 
the control-point is c,-. The usual convention is that the intermediate end-points 
aj 1 , . . . , xn-\ are calculated as 

-. = 2 1 ± ? ± 1 , ' (3) 
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which is convenient but not necessary for the smoothness of the beta-spline. In fact, 
it is sufficient when the ith end-point lies anywhere on the line between ith and 
(i + l)st control-points. 

2.2. One dimensional es t imator 

The equation (1) was used in [2] in the form with the right hand side integral replaced 
by a numerical approximation. We will show further, how beta splines can simplify 
the situation. 

The maximum of (1) can be found from the series of equations: 

dL(0) y^ d\e(xj) 1 d f . 

where n + 2 is the number of parameters to be estimated. One advantage of the 
spline method is that the partial derivatives of XQ do not depend on the estimated 
parameters at all. Another advantage of using splines is that the integral can be 
calculated directly in one dimensional case and, with some care, in higher dimensions 
as well. 

Let us show a simple example. The simplest one is estimating the intensity of 
an inhomogeneous Poisson point process on the interval (a, 6) using just one spline. 
Then the estimates of three parameters, say 0o, 6\ and 02 are needed. Let the 
parameter 0\ be the control-point and the remaining two be the end-points of the 
spline. Naturally, the end points lie at the ends of the interval, we demand 

A* (a) = 0o, 

A, (6) = e2 

and then 

\0(x) = 0O(1 - tf + 20i*(l -t) + 92t
2, (5) 

where x £ (a, b), x = a(l — t) + bt. The derivatives of the intensity function are: 

d\9(x) 

o 
д\ (x) 

= 2 ť ( l - ť ) , 
01 

d\e(x) _ 2 

62 

The choice of the initial estimators is natural. Let $ = {SBI, .. .,»*} be the 
underlying point process. Let #(B n $) denote the number of the process points in 
a Borel set B. Then the initial parameters are chosen as 

_ # ( g n ( q , a + (6-q)/4)) 
00 ~ !T^)/4 ' 
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øi = 

03 = 

# ( Ф П ( o + (6-a)/4,6-(6-a)/4)) 

(6 - o)/2 

# ( Ф П ( 6 - ( 6 - o ) / 4 , 6 ) ) 

(6-o)/4 

The integral in the formula (1) for calculating the maximum likelihood estimator 
can be evaluated as 

/ X (x)dx = 
J а 

( ( 6 - ^ + 0 1 + * . , n = 1 

.. ,0p + 2 ^ + 2 0 2 + 0 3 0 

(6-o) - , n = 2 

go + 2 0 1 + 3 E r = 3 2 ^ + 20n-i+0n . , 
(0 a) — , n>z. 

To calculate the partial derivatives of the integral is straightforward. 
For illustration of this process we tried to simulate a simple process on the line 

between points 0 and 10. The test process consisted of 20 points located as shown 
in the Table 1. 

Table 1. The test point process. 

No. 1 2 3 4 5 6 7 8. 9 10 
Pos. 3.21 3.45 4.12 5.28 6.11 6.12 6.56 6.82 7.11 7.22 

No. 11 12 13 14 15 16 17 18 19 20 
Pos. 7.98 7.99 8.98 9.01 9.10 9.13 9.23 9.28 9.34 9.52 

Then we calculated the intensity as a single spline first. The iteration process is 
shown in Figure 1. The iteration was carried out by the method, where all the partial 
derivatives have been calculated and then the parameters shifted in the direction of 
its partial derivative multiplied by an appropriate small constant w. In our case we 
chose w = 0.01. The maxima for the log-likelihood function was reached after 4739 
steps. 

I t e r = 1 

L = 0.4256 

- ^ H I I l II • I - » -

Iter = 2000 Iter = 4739 
CO 

тr 

C\J 

o 

L = 1.2605 

6 8 10 

co 

cм 

o 

L= 1.2606 

IM I llll H Ь 
8 10 0 2 4 6 8 10 

Fig. 1. Three steps of calculating the intensity as a single spline. 

The graphs in Figure 1 show the estimated log-likelihood value L, so the difference 
in the last 2000 steps is not big. For practical purposes it would be probably sufficient 
to take the estimator after 1000 or 2000 steps. 
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Increasing the number of splines in the beta-spline, the theory is not more compli
cated. Given x € (a, 6) and n the number of the splines, the first step is to calculate 
two variables, which can be done as follows: 

i = 

t = 

nx 
b — а 
nx 

b — a 
if i = n then t = 1 

else i = i 4-1; 

(6) 

The n means number of the splines in the beta-spline. Thus i denotes to which 
spline the point x belongs, and t means the offset from the beginning of the spline 
normalized to the interval (0,1). The value of the intensity is then given by 

[ 0„(1 - *) 2 + 20it(l - *) + 5(*i + h)t2, i = 1 

M*) = < \{ei-l+ei){i-t)2 + 29it{\-t) + \{ei + ei+1)t2, » = 2 . . . . , n - i 

[ l{On_1+0n){l-t)2+20nt{l-t) + ±{9n + 0n+l)t2, I = T». 
(7) 

Note that the parameters 90 and 9n+i correspond to the start and end values of the 
intensity respectively. The other points between are control points. 

n = 2 

L = 1.3419 

II I I l i l i I BII 

n = 4 

ю 

n = 3 

n = 5 

0 2 4 6 8 10 0 2 4 6 8 10 

Pig. 2. The estimators of the intensity function for beta-splines containing more than 
one spline. 

The calculation of intensity estimators using higher beta-splines is shown in Fig
ure 2. The splines have been estimated for 2,3,4 and 5 divisions of the interval 
(0,10). The estimated maximum log-likelihood is shown in the graphs as 'L', as well 
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as in Figure 1. Obviously the value of log-likelihood increases with the number of 
partitions of the interval. It would probably not decrease until the number of points 
of the process is reached. To obtain an optimal value for ra, some penalty function 
should be introduced. 

A note concerning the iteration process follows. The end-points should never be 
negative. On the other hand, the negative control point does not necessarily mean 
that some part of the spline is negative. But it would be certainly good to introduce 
a rule, by which the negative control point is reset to 0 when the sum with one of 
the neighbour control points is less than zero. 

2.3. Two dimensictnal estimator 

The extension of the quadratic beta-spline method of an inhomogeneous Poisson 
point intensity estimation from dimension one to dimension two is really not difficult 
when the window is a rectangle. The position of the parameters to be estimated 
is schematically shown in Figure 3. The window, which is a rectangular set B is 
partitioned into m x n subsets denoted as Bij. They are emphasized be the solid 
rectangles in Figure 3. 

I 
*» 

I 

I 
ß 2 2 ß 2 3 ß 2 4 

20 I . - i 

1 
1 

# 22 # 23 

ß11 1 ß 1 2 ß 1 3 ß 1 4 

10 > # 12 # 13 

oo t 01 f 02 03 

Fig. 3. The position of the parameter in the dimension two. 

The parameters in the centers of the sets B{j are the central control-points. The 
parameters on the boundary are the control-points, the parameters at the four cor
ners are the end-points. The initial parameters are estimated as the number of the 
points of the process in the surrounding rectangle divided by the area of the rect
angle. The rectangles correspond to the sets B\$ for the very central control-points. 
For the parameters on the boundary and their neighbouring central control-points, 
the rectangle is smaller as shown in Figure 3, marked by the dashed lines. 

A simple two dimensional quadratic spline, for example for the square B22 is then 
calculated as 

A*(s,tf) = C l l ( l - 5 ) 2 ( l - t ) 2 + 2 c 1 2 8 ( l - 5 ) ( l ~ t ) 2 + c i 3 5 2 ( l - t ) 2 
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+ 2 c 2 i ( l - s) 2ť(l - t) + 4c 2 2 s(l - s)t(l -t) + 2c 2 3 s 2 í ( l - t) 
+ c 3 i ( l - s)H2 + 2c 3 2 s(l - s)ť + c33s

2t2, 

where 5 and t play the same role as t in (6) and 

cп = 4vØ i i+Ø12+Ø21+Ø22) 

cl2 = 2vØ- 2 +0 2 2 ) 

ClЗ = 4 ^ 1 2 + 0 - 3 +022 +023) 

C21 = | ( 0 2 1 + 0 2 2 ) 

C22 = 022 

c23 = 2^ 2 2 +^ 2 3 ) 

cзi = 4 (Ø21 + Ø22 + Ø31 + ^3 2) 

cзг = г ( 0 2 2 +Ø32) 

cзз = 4 (Ø22 + Ø23 + Ø32 + Ø33) 

Prom the computational point of view, some attention is required when calculat
ing all the partial derivatives correctly, but it is just a technical problem. Also the 
dummy points can be removed easily as well as in the one dimensional case, since 
the integral in the log-likelihood function follows the rule 

/ \ (x)dx={Ьx-а*){Ь«-аy) 

Jв 9ran 

/ 0OO + 20oi + 3002 + 3003 + 3004+ •• • \ 
20io + 30ii + 60i2 + 60i3 + 60i4 + • • • 
3020 + 6021 + 9022 + 9023 + 9024 + • • • 
3030 + 6031 + 9032 + 9033 + 9034 + • • • 

v - I 

(8) 

where (ax,bx) are the bounds in x-direction, (ay,by) are the bounds in y-direction. 
Of course, a modification of the above formula is necessary if one of the partition 
numbers ra, n is less than three. 

A more complicated situation occurs when the window is a non-rectangular area, 
which is the case in our application and in practice probably the most frequent case. 
The summation part of the log-likelihood equation is calculated without changes. 
The problem is how to estimate the integral. There would be again possible some 
solution using dummy points, but we looked for a better approximation of the inte
gral. 

When the window is a non-rectangular set, say A, then we take the smallest 
rectangle B containing the whole set A. The rectangle B is partitioned into sub-
rectangles corresponding to the estimated parameters. The task is to calculate the 
integral of the intensity using the sub-rectangles. The spline over one sub-rectangle 
is calculated using 9 points, which are calculated from the beta-spline parameters 
as explained earlier. When the sub-rectangle is all contained in the set A, then the 
integral over this sub-rectangle is simply the area of the sub-rectangle multiplied by 
the average of all the nine points defining the spline. 

What shall we do when the sub-rectangle is not all contained in the window A? 
Of course there are some methods how to estimate the integral anyway, but we need 
the estimator of the integral to be a linear combination of the nine points defining 
the spline. We have developed a simple rule how to estimate the integral. Say, we 
want to calculate the integral over the rectangle B^. First we need to estimate the 
area of A fl B{j. Then for many purposes we need to have a rule how to find out 
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which point lies inside the set A and which lies outside. We will use this routine to 
determine which of the nine points lie inside A. Then we calculate weights for each 
particular configuration in the following way. 

The base is the situation, when only one point from nine lies inside the set A. 
There are three basic possibilities. The point is a corner, an edge or the center. For 
each situation, we have established the weights shown in Figure 4. If more than one 
point is contained in the window, the weight for each point is the sum of weights 
created by the superposition of the elementary situation with appropriate rotations. 

a) 
1369 370 37 

b) 

962 1628 962 

c) 

676 1144 676 

370 37 10 b) 260 440 260 c) 1144 1936 1144 

37 10 r 
b) 

26 44 26 
c) 

676 1144 676 

Fig. 4. The weights for the three basic situations of the window intersection with the 
rectangle, a) the corner is in the window, b) the edge is in the window, c) the center is in 

the window. 

Then all nine weights are normalized to the sum 1 and the integral is estimated 
as the weighted sum of the nine points multiplied by the area of A f) Bij. This rule 
does not seem to be simple, it really requires quite complicated programing. On the 
other hand, given the partition of the rectangle L?, the weights are calculated once 
and then just appear in the derivatives of the integral. 

3. APPLICATION 

The described two dimensional method has been applied in the mapping of the 
disease-risk study. The problem of mapping risk of tick-borne encephalitis and Lyme 
borreliosis in Central Bohemia region has been introduced in [10]. The data consist 
of cases of both the diseases over last thirty years. 

The result of calculating an inhomogeneous Poisson intensity estimator in the 
dimension two using the method of quadratic beta-splines is shown in Figure 5. 

The general theory of estimation of the disease risk was discussed by Stern et 
al [9] and then by Machek [6]. The problem of tick-borne disease-risk mapping has 
been solved using Bayesian approach in [8], where an additional information about 
the forest density in Central Bohemia region is also taken into the account. 

There is another additional information included in [10], namely the population 
density in Central Bohemia region. In order to calculate the correct map of risk, 
Zeman takes into the account only the cases, when the inhabitants have been infected 
in their living place or in its close neighbourhood. This approach, together with the 
population density, allows to estimate the total risk as explained in [6], i.e. if the 
population density is estimated as p(x) the total risk is given by 

r{x) = C A(-0 
p(x)> 

xЄB, (9) 

where C is a normalisation constant. 
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0 0.112 0 0.188 
Fig. 5. Two intensities of tick-borne encephalitis cases in central Bohemia calculated by 
the spline method. The first intensity is calculated using the grid 6 x 5 splines, the second 
is produced by the grid 12 x 10. Both intensities are calculated by ten steps of iterations. 
The gray scales show the intensities, the numbers correspond to estimated mean number 

of cases per square kilometer. 

301 0 0.00493 

Fig. 6. The map of estimated population density (left) and risk of tick-borne 
encephalitis (right) in central Bohemia calculated by the spline method. The maps were 

produced by the grid 12 x 10 splines. The gray scale of population density corresponds to 
the number of inhabitants per square kilometer. The big towns of central Bohemia region 

are matched with the dark spots. The empty place in the middle of the region is the 
capital Praha, which was not considered in this study. The unit of the risk map is the 

probability of developing the disease. 

The population density p(x) can be introduced into the present method as follows 
(Figure 6, left). The data consisted of spatial point (coordinates of a town or a 
village) and corresponding number of inhabitants. So it could be treated as a non-
simple process or as a marked process. In fact, there is no limitation in the presented 
method, as the log-likelihood function (1) can be modified by adding the mark in 
front of the logarithm in the sum. The method described in this paper allows to 
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calculate after some modification also the risk map. The result is shown in Figure 6 
(right). 
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