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K Y B E R N E T I K A — V O L U M E 41 ( 2005 ) , NUMBER 3, PAGES 3 4 9 - 3 6 0 

DOMINATION IN THE FAMILIES 
OF FRANK AND HAMACHER t-NORMS 

P E T E R SARKOCI 

Domination is a relation between general operations defined on a poset. The old open 
problem is whether domination is transitive on the set of all t-norms. In this paper we 
contribute partially by inspection of domination in the family of Frank and Hamacher t-
norms. We show that between two different t-norms from the same family, the domination 
occurs iff at least one of the t-norms involved is a maximal or minimal member of the 
family. The immediate consequence of this observation is the transitivity of domination on 
both inspected families of t-norms. 
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1. INTRODUCTION 

The concept of domination has been introduced within the framework of proba­
bilistic metric spaces for triangle functions and for building cartesian products of 
probabilistic metric spaces [12]. Afterwards the domination of t-norms was studied 
in connection with construction of fuzzy equivalence relations [2, 3, 13] and con­
struction of fuzzy orderings [1]. Recently, the concept of domination was extended 
to the much general class of aggregation operators [9]. The domination of aggrega­
tion operators emerges when investigating which aggregation procedures applied to 
the system of T-transitive fuzzy relations yield a T-transitive fuzzy relation again [9] 
or when seeking aggregation operators which preserves the extensionality of fuzzy 
sets with respect to given T-equivalence relations [10]. The most general definition 
of domination considered so far demands the operations to be defined on arbitrary 
poset [4]. 

Definition 1. Let (P,>) be a poset and let A: Pm -> P , B: Pn -> P be two 
operations defined on P with arity m and n, respectively. Then we say that A 
dominates B (A ^> B in symbols) if each matrix (xij) of type mxn over P satisfies 

A(B(xhi, Xi,2, • • • , Xhn), . . . , .B(xmfi, Xm,2, . . . , Xm,n)) 

> B(A(xhX, £2,1, • • • , ZmA), . . . , 4(^1,71, X2,n, • • , XmyTl)). 
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Let us recall that a t-norm [12, 8] is a monotone, associative and commutative 
binary operation T: [0, l ] 2 —• [0,1] with neutral element 1. Important examples of 
t-norms are: the minimum T M , the product Tp, the Lukasiewicz t-norm TL and the 
drastic t-norm T D given by 

TM(x,y) = min(x,y), 

TP(x,y) = xy, 

Tj,(x,y) = max(0, x + y - 1), 

T*(x,y) = h m"(^) = 1 

I 0 otherwise. 

We say that a t-norm Ti is stronger than a t-norm T2(Ti > T2 in symbols) if 
any x,y e [0,1] satisfy T\(x,y) > T2(x,y). We use the notation Ti > T2 whenever 
simultaneously Ti > T2 and Ti ^ T2 hold. One can easily show that each t-norm is 
weaker than T M and stronger than T D . Particularly, Tp and TL satisfy T M > Tp > 
TL > T D . It is obvious that > is a partial order on the set of all t-norms, i.e., the 
reflexive, antisymmetric and transitive relation. 

By Definition 1 we have that two t-norms Ti and T2 satisfy Ti > T2 iff for each 
x, y,u,ve [0,1] 

Ti(T2(x,y),T2(u,v))>T2(Ti(x,u),Ti(y,v)). (1) 

It is easy to show that each t-norm T satisfies TM ^> T, T ^> Tu and T ^> T. 
Moreover, by [8, 11], the representative t-norms Tp and TL satisfy Tp >> TL. If 
T\ ^> T2 then by inequality (1), the neutrality of 1 and the commutativity of t-
norms we have that any y, u £ [0,1] satisfy 

Ti(y,u)= Ti(T2(l,y),T2(u,l)) 

> T2(Ti(l,u),Ti(y,l)) =T2(u,y) = T2(y,u) 

so that Ti > T2, see [8]. This means that satisfaction of Ti > T2 is a necessary 
condition for Ti ^> T2 or, in other words, that domination is a subrelation of >. The 
converse implication does not hold as it is demonstrated by results of this paper. 
Domination of t-norms is moreover an antisymmetric relation which is a consequence 
of the fact that it is a subrelation of the antisymmetric relation >. The old open 
problem [12, Problem 12.11.3] is whether domination is transitive on the set of all 
t-norms. If it were true domination would be a partial order. 

When inspecting domination, the tool of (^-transform can be helpful. Let ip be 
an order isomorphism of the interval [0,1] and let T be an arbitrary t-norm. Define 
T^ : [0 , l ] 2 -> [0 , l ]by 

Tv(x,y) = tp-1(T(iP(x)Mv))) 

to be the (^-transform of T. It is easy to show that T^ is again a t-norm [8]. 
Moreover, for arbitrary t-norms Ti and T2 and for arbitrary order isomorphism <p 
the satisfaction of Ti » T2 is equivalent to (Ti)^ > (T2)^ so that ^-transforms 
preserve domination [9]. Let us recall that a t-norm is strict (nilpotent) iff there 
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exists <p such that T = (Tp)^ (T = (TL)V) [8]. Moreover, it is clear that each </> 
transform of a strict (nilpotent) t-norm is again strict (nilpotent). Thus in order to 
characterize pairs of dominating strict (nilpotent) t-norms it suffices to characterize 
strict (nilpotent) t-norms dominating Tp (TL) . 

The following result relates domination and powers of additive generators [8]. Let 
T be a continuous Archimedean t-norm with additive generator / and let A G ]0, oo[ 
be a positive number. Define T^ to be a t-norm with additive generator / A (x) , i. e., 
the A-power of / . It is known that for each A > \x is T(A) > T^). This construction 
of dominating t-norms gives rise to many parametrical families of t-norms such as 
the Aczel-Alsina or the Dombi family. 

Although the structure of domination on the set of all t-norms is still unknown, 
it is possible to inspect it on particular families of t-norms. One of the oldest results 
of this type is due to Sherwood [11] who solved the structure of domination on 
the family of Schweizer-Sklar t-norms. Another result of this type is the above 
mentioned solution of domination in the Aczel-Alsina or the Dombi family. In 
the next two sections we inspect another two important families - the Frank and 
Hamacher t-norms. 

2. FRANK t-NORMS 

Frank t-norms T F are given as 

TM(x,y) A = 0 
Tj>(x,y) A = l 

-t(*,v) TL(x,y) A = oo ( 2 ) 

logA ^ ' - j W y - 1 * + l ) otherwise 

where A G [0, oo] is the characterizing parameter of the Frank t-norm. Note that the 
family of Frank t-norms is strictly decreasing in A which means that T F > Tf2 iff 
Ai < A2. In [5] M. J. Frank solved the problem of characterization of all continuous 
t-norms T such that the function F: [0, l ] 2 -* [0,1] given by 

F(x,y) = x + y-T(x,y) 

is associative. Each Tf solves this problem. 
In what follows we find out which Ai,A2 G [0,oo] satisfy T F > Tfa. Recall that 

for Ai = 0 the question is trivial as T0
F = T M dominates any t-norm. Particular^ 

for Ai = 1 and A2 = 00 the question is solved as well since TX
F = Tp ^> TL = T^ , 

see, for example, the already mentioned work of Sherwood [11]. Finally Tfx > T £ 
cannot be satisfied for Ai > A2 due to the decreasingness of the Frank family. That's 
why we consider Ai < A2 in the following. 

Lemma 2. Let An = [a^aft x [a!2la
r
2] x . •. x [al

n1 < ] , a[ < < , % = 1,2,... , n, be an 
n-dimensional interval. Let / : An —• R be a real function, linear in each argument. 
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Moreover, let the value of / be nonnegative in each vertex of An, i. e., at each point 
with coordinates (61, &2 , . . . , bn), h G {a\, ar}. Then / is nonnegative on whole An. 

P r o o f . By induction with respect to the dimension n. The statement is obvious 
for n = 1. 

Let us assume that the claim of the lemma is true for all intervals of dimension 
n — 1 and that An and / fulfill all assumptions of the lemma. Consider arbitrary 
x = (x\,x2,... ,xn) G An. Define points 

x* = [x\, x2,..., xn—\, an), 

x* = (x\,x2,...,xn-\,an) 

to be the left and right projections of the point x along the last coordinate. Further 
define functions /* and /* by expressions 

/*(-Ei,Z2,. . . ,xn_i) = /Oz i ? z 2 , . . . , : r n _ i , a n ) , 
f*(x\,x2,...,xn-\) = f(x\,x2,...,xn-\,an). 

Both functions /* and /* are defined on (n — l)-dimensional interval 

,4n_i = [a[,ar\] x [al
2,a

r
2] x •-. x [al

n_\,ar
n_\] 

and both functions are linear in each argument. On vertices of An-\ both functions 
attain nonnegative values. Indeed, let v = (v\, v2,..., vn-\) be any vertex of An-\. 
Then f*(v) = f(v\,v2,..., vn-\, al

n) is a value of / at one vertex of An which is by 
assumption nonnegative. Analogically for /*. 

Thus /* and /* are nonnegative on An-\ by assumption. Particularly, 

f*(x\,x2,...,xn-\)
 =f(x+) > 0, 

f*(x\,x2,...,xn-\) = f(x*) > 0. 

By assumptions, the function g(y) = f(x\,... ,xn-\,y) is linear on [an ,an] and 

g(al
n) = / ( * * ) > 0, 

g(Xn) = f(x), 

g(ar
n) = / ( x * ) > 0 . 

Thus f(x) = g(xn) > 0. • 

Proposition 3. Tf > TL for each A G ]0,1[ U ]1,00[. 

P r o o f . We have to show that any x, y, u, v G [0,1] satisfy the inequality 

T*(Th(x,y),TL(u,v)) >Th(T^(x,u),T^(y,v)). (3) 

Let us consider two mutually exclusive cases. First that the left-hand side of (3) 
equals zero and the second that it is positive: 
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(i) Since for A G ]0,1[ U ]1, oo[ Tf is strict, the left-hand side of (3) can be zero iff 
at least one of the Lukasiewitz t-norms involved attains the value 0. Without loss 
of generality assume TL(x, y) -= 0 which is equivalent to x + y - 1 < 0. It suffices to 
show that 

Th(T*(x,u),T*(y,v)) = max(0,Tf(x,u) + Tf{y,v) - 1) = 0 

or simply Tf (x,u) + T£(y,v) - 1 < 0. But from the nondecreasingness of Tf and 
from the neutrality of 1 it follows 

TZ(x,u)+TZ(y,v)-l<TV(x,l)+T*(y,l)-l=x + y-l<0. 

(ii) Assume that the left-hand side of (3) is positive, so that x + y - I > 0 &s well 
a s u + ^ - l > 0 holds. Inequality (3) can be rewritten in the form 

Tf(x + y - l,u + v - 1) > max(0,Tf (x,u) + T f (y,v) - 1) 

which is further equivalent to 

Tf(x + y - l,u + v - 1) > Tf{x,u) + T f (y,v) - 1 

since the left-hand side is positive. After expansion of the definitions of Tf the 
inequality can be rewritten as 

l ogA 
(-^-iX-^i-i) 

A - l + 1 _ Ь g л 

(AT-D(A ^ + 1][Í__Ш_І2 + 1] 

and by further de-logarithmation we end up with 

sgn(A-l) 

(A^-l)(A"-l) 
A-l + 1 

A - l A 
> 0 . 

Note that the multiplicative constant sgn(A — 1) prevents the reversion of the order 
after de-logarithmation whenever A G ]0,1[. 

The expression on the left-hand side is nonnegative for any x, y,u,v G [0,1]. 
Indeed, by substitution Ax = X, \y=Y, \U=U and Xv = V where X, F, U, V G 
[min(l, A),max(l, A)] we obtain 

sgn(A-l) > 0. (4) 

Let us define the function G: [min(l, A),max(l, A)]4 —> R in variables X, Y, U, V to 
be the value of the expression on the left-hand side of (4). One can easily see that G 
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is linear in each argument. A very simple computation reveals that G attains zero 
value at all vertices of [min(l, A),max(l, A)]4 up to the following seven exceptions 

G ( l , 1,1,1) = s g n ( A - l ) ( A 3 - l ) ^ 

G(A,1,1,1) = G(1,A,1,1) = - g ° ( A - l ) ( A - l ) ^ 0 > 

G(1.1,A,1)--.G(1>1,1,A) = « 8 ° ( A - 1 ) ( A - D ^ 0 > 

G(1,A,A,1) = G(A,1,1.A) = S g n ( A " X
1)(A " 1 } > 0. 

A 

which all are nonnegative values. Thus the function G satisfies all assumptions of 
Lemma 2 by which G is nonnegative which proves inequality (4). • 

Proposition 3 together with T M > TL and Tp > TL show that any Frank t-norm 
dominates TL. Further we discuss the mutual domination of nonextremal Frank 
t-norms. 

Lemma 4. Let / : R —> R be n-times differentiate in 0, f^(0) = 0 for all i = 
0,1 , . . .n - 1 and / ( n ) (0 ) < 0. There exists 5 > 0 such that f(x) < 0 for each 
xe]o,6*[. 

P r o o f . The claim of the lemma is a well-known result of real analysis. • 

Proposi t ion 5. There does not exist Ai, A2 £ ]0,00[ such that Ai < A2 and T^ ^> 

P r o o f . Suppose arbitrary Ai,A2 £ ]0,co[ with Ai < A2. We shall show that 
there exists some x G ]0,1[ such that 

Tl(Tl(x,x),Tl(x,x)) < Tl(Tl(x,x),Tl(x,x)) (5) 

so that the defining inequality for domination (1) is violated. Let us define the 
function 5f: [0,1] —> [0,1] to be the diagonal of a Frank t-norm so that 5f(x) = 
T^(x,x) for any x G [0,1]. Due to the strictness of Tf we know that 5f is an order 
isomorphism of the interval [0,1]. Inequality (5) can be rewritten into the form 

Sl(6l(x))<6l(6l(x)). (6) 

Further define the function f(\u\2)' [0,1] -* R by expression 

f(XlM)(x) = Sl(6l(x))-6F
X2(6l(x)), 

Now another alternative reformulation of (5) is that there exists some x > 0 such 
that fxux2(x) < 0. We prove this claim by means of Lemma 4. 
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Let us compute Sf as well as its first and second derivatives which we will use 
later: 

\x* A = l , 

r _ _ _ r _ _ _ _ \ -i-1 
siw(x)-1 (A'-D'+A-I A ^ x 

f 2A*ln(A)((2A--l)(A-l)-(A--l)a) 
<*A (X) = I ((A--l)-+A-l)- A ^ -1 

[2 A = l. 

Their values at point 0 are 

*? (0) - -0 ^ ( 1 ) ( 0 ) = 0 Sf2)(0) = ( f ^ ^ | (7) 

so that the first nonzero derivative of Sf at point 0 is the second derivative. 
Thereout the first nonzero derivative of /(AI,A2)> according to its definition, is the 
fourth derivative for which we have 

/((A4:,A2)(0) = 3 ^ ( 2 ) ( 0 ) ( C ( 2 ) ( 0 ) ) 2 - 3SA
P

2
(2)(0) (*A

F
X

(2)(0))2 . (8) 

Now we can compute the value of this derivative for all feasible combinations of Ai 
and A2. Let us distinguish three mutually exclusive cases - the first that A2 = 1, 
then Ai = 1 and finally, Ai 7-- 1 ^ A2. 

(i) Let us consider Ai < A2 = 1. Combining (7) and (8) we obtain the expression 

f(4) (0) - -24-------- (------- - l\ 

t(A.,l)W- ^ A i _ 1 ^ i _ 1 . l j 
The sign of this derivative is determined by the sign of the expression in parenthesis. 
Under the assumption Ai < 1, the expression in parenthesis is positive because the 
expression ln(A)/(A — 1) is decreasing, continuous on ]0,1[ U ]1,00[ and 

Urn £ 4 = 1. 
A—l A - l 

Thus the first nonzero derivative of /(Ai,i) is negative at point 0. 

(ii) Let us consider 1 = Ai < A2. Combining (7) and (8) we obtain the expression 

Following the considerations from (i) we find out that / ( i A2)(°) i s negative. 
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(Hi) Let us consider Ai ^ 1 ^ A2. Combining (7) and (8) gives us the expression 

f<4> fn. - «4 ln(Ai)ln(A2) /ln(A!) ln(A2) \ 

AAI.A.)W- 2 4 ( A 1 - I ) ( A 2 - I ) V A 7 ^ I - A ^ T J ' 
The sign of the derivative is determined by the sign of expression in ellipses. Prom 
the decreasingness of this expression and from Ai < A2 it follows that / , y A JO) < 0. 

We distinguished all possible cases and regardless of the values of Ai and A2 the 
value of /(AI,A2)(^) *s nega t1ve. ^n addition, all lower-order derivatives of f(\1,\2) 
vanish at point 0. By Lemma 4 there exists some x G ]0,1[ such that f(x) < 0. • 

Corollary 6. Any case of domination within the family of Frank t-norms is one 
of these 

T F » TA
F 

T M » TA
F 

TA
F » TL 

for arbitrary A G [0,oo]. Moreover, domination is transitive within this family so 
that it is partially ordered by » . 

3. HAMACHER t-NORMS 

Hamacher t-norms form another one-parametric family of t-norms. It has been 
proved in [6, 7] that members of this family are the only ones to be expressed as 
quotient of two polynomials in two variables. The family of Hamacher t-norms is 
parameterized by A G [0,00] 

(TD(X,T/) A = 00 

0 A = x = y = 0 (9) 
A+(l-A)*£+y-*y) ° t h e r w i s e ' 

The Hamacher family is strictly decreasing in A which means that T H > T H iff 
Ai < A2. The drastic t-norm T D = T H is the minimal element and the t-norm T H 

is the maximal element of the family. 
In this section we answer the question for which Ai,A2 G [0,00] the relation 

T H » T H is satisfied. Recall that for A2 = 00 the question is trivial as T H = T D 
is dominated by any t-norm. Moreover, T H » Tj[J cannot be satisfied for Ai > A2 

due to decreasingness within the family of Hamacher t-norms. That is why we will 
only deal with Ai < A2 in the sequel. 
Proposition 7. For each A G ]0,00] it holds that T0

H » Tf*. 

P r o o f . We divide the proof into two parts. We first show that T H » Tp and 
then we prove the claim of proposition by virtue of (^-transform. 
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(i) We show that T^(xy,uv) > T^(x,u)T^(y,v) holds for any x, y,u,v G [0,1]. 
This inequality is trivially fulfilled whenever at least one variable equals 0. Therefore 
assume xyuv > 0. After expansion of the definitions we have 

xyuv xu yv 

xy + uv — xyuv x + u — xuy + v — yv 

or equivalently, by inversion 

xy + uv — xyuv (x + u — xu)(y + v — yv) 

xyuv ~ xyuv 

As the denominators of both fractions are equal and positive, we can drop them, 
and by further manipulation we obtain the third equivalent inequality 

0 < (x + u — xu)(y + v — yv) — xy — uv + xyuv 

or 

0 < xv(l — u)(l —y) + uy(l — v)(l — x) 

where the expression on the right-hand side is evidently nonnegative. 

(ii) Now, let (f\ be the multiplicative generator of the nonextremal Hamacher t-norm 
T H . So that for A E ]0, oo[, ip\ and its inverse are given by 

^w = A+a-Ajz' ^ 1 ( x ) = T+7T Л)x' 

Let us apply the (^-transform to both T H and Tp. Since T H dominates Tp, the 
corresponding (^-transforms do as well. 

The (^A-transform of Tp is T H by the definition of multiplicative generator. Now 
we shall show that (^-transform of T H is again T H , i.e., the strongest Hamacher 
t-norm is stable under the (^-transform whenever <p\ is a multiplicative generator 
of a nonextremal Hamacher t-norm. The equality 

<Px1(T?(tpx(x),<px(y)))=T?(x,y) 

is trivially fulfilled whenever xy = 0. Now assume xy > 0. Then we have 

- I , T H / / x / ^ - l ( v>\(x)<px(y)  

^ {To ^ W ' ^ ^ ) ) = ** \Vx(x) + Vx(y)-^(x)Vx(y) 

- i ( W 

^x \X(x + y) + (l-2X)xy 
xy 

x + y-xy 

T?(x,y). 

Since T0

H > T P , by virtue of (/^-transform we have that T0

H > T^ which is our 

claim. n 
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Propos i t ion 8. There does not exist A_, A2 G ]0, oo[ such that A_ < A2 and T j 1 > 

P r o o f . Let A_ and A2 satisfy assumptions of the proposition. We shall show 
that there exists x G ]0,1[ such that 

T»(T»(x,x),TA

I_(x,x)) <T A

I _(r j _(x,x) : T»(x,x)) (10) 

so that the defining inequality for domination (1) is violated. Let us define the 
function oj*: [0,1] —• [0,1] to be the diagonal of a Hamacher t-norm so that d^(x) = 
Tf*(x,x) for any x G [0,1]. The inequality (10) can be rewritten as 

^ ( ^ W X ^ ^ W ) . (ii) 
In order to show-that (11) is satisfied for some x G ]0,1[ it suffices to show that this 
x satisfies 

4 4 

W-(-O) > W,(*)) ( 1 2 ) 

since we consider x ^ 0 and both compositions of the diagonals are positive whenever 
x G ]0,1[. The diagonal of a Hamacher t-norm T™ is given by the expression 

x2 

T " ( x ' x ) = A + ( l - A ) ( 2 - a : ) x 

by which 

«]_(*]_ (x)) - (Лa+(l-Лa)(2-x)x__ 

Ai + (1 - Ai) [2 - л2+(i-л2)(2-x)xj л2+(i-Л2)(2-x)x 

4 

A i ( A 2 ( x - l ) - 2 x ) 2 ( x - l ) 2 + x 2 ( 2 A 2 ( x - l ) 2 + (4-3x)x) 

and 

6n{6u{x)) __ _ (A^CI-AV,)^ 

A2 + (1 - A2) p - A,+(l-A1)(2-x)x] A! + (l-Ai)(2-x)x 

_ X^ 

~ A 2 ( A i ( x - l ) - 2 x ) 2 ( x - l ) 2 + x 2 ( 2 A i ( x - l ) 2 + (4-3x)x) ' 

According to these expressions, (12) can be rewritten in the form 

A i ( A 2 ( x - l ) - 2 x ) 2 ( x - l ) 2 + x 2 ( 2 A 2 ( x - l ) 2 + (4-3x)x) 

> A 2 ( A ! ( x - l ) - 2 x ) 2 ( x - l ) 2 + x 2 ( 2 A i ( x - l ) 2 + (4-3x)x) 

which is further equivalent to 

(A2 - Ai)(x - l ) 2 (AiA2(x - l ) 2 - 2x2) > 0. (13) 

The expression on the left-hand side of (13) is polynomial in x which is a continuous 
function. Moreover, the value of this expression at 0 is (A2 — Ai)AiA2 which is strictly 
positive under assumption A2 > Ai > 0. From continuity and strict positivity at 0, 
it follows that there exists x G ]0,1[ which satisfies (13). • 
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Corol lary 9. Any case of domination within the family of Hamacher t -norms is 
one of these 

rpH 
Âx » rpH 

rpH 
Âo > Jл 
rpH > TD 

for arbitrary A G [0,oo]. Moreover, domination is transitive within this family so 
that it is partially ordered by > . 

4. C O N C L U D I N G R E M A R K S 

Posets ({Tf | A G [0,oo]}-») and ({T^ | A G [0,oo]},») are order isomorphical 
since T £ > Tf2 holds iff Tj^ > T " does so. Results of this paper can be transformed 
to other families of t -norms by means of (^-transforms. 

In Introduction we have mentioned tha t Ti > T2 is not satisfactory for Ti » T2. 
This claim is exemplified by any pair of nonextremal Prank (Hamacher) t -norms. 
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