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MIXED PSEUDO–ASSOCIATIVITIES OF BANDLER –
KOHOUT COMPOSITIONS OF RELATIONS

Jolanta Sobera

This paper considers compositions of relations based on the notion of the afterset and
the foreset, i. e., the subproduct, the superproduct and the square product introduced
by Bandler and Kohout with modification proposed by De Baets and Kerre. There are
proven all possible mixed pseudo-associativity properties of Bandler – Kohout compositions
of relations.
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1. REVISION OF BANDLER – KOHOUT COMPOSITIONS OF RELATIONS

In 1980 Bandler and Kohout [1] introduced new compositions of relations. They
extended these compositions to fuzzy relations and presented a list of applications
of these compositions in medical diagnosis, generalized morphisms and information
retrieval systems. They proved some properties of compositions among others three
mixed pseudo-associativities. In [4, 5] we can find discussion about non-associative
compositions. Twelve years later, in 1993, De Baets and Kerre [2] suggested little
modifications of the original definitions, which will be used in this paper.

First, we will recall a few essential definitions. A relation between elements of
two non empty sets X and Y is a subset of the Cartesian product of X and Y , i. e.,
R ⊆ X×Y . The afterset xR of the element x ∈ X and the foreset Ry of the element
y ∈ Y are defined, respectively, as

xR = {y ∈ Y : (x, y) ∈ R} , (1)
Ry = {x ∈ X : (x, y) ∈ R} . (2)

The domain dom(R) and the range rng(R) of a relation R are given as follows

dom(R) = {x ∈ X : ∃y∈Y (x, y) ∈ R} ,
rng(R) = {y ∈ Y : ∃x∈X (x, y) ∈ R} .

Denote by RT the converse relation of a relation R ⊆ X × Y defined by

RT = {(y, x) ∈ Y ×X : (x, y) ∈ R} .
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It is easy to show, that for arbitrary relations R,S ⊆ X × Y we have

(RT )T = R, R ⊆ S ⇔ RT ⊆ ST .

One of the important relational calculus is the composition of relations. The classical
composition of relations R ⊆ X × Y and S ⊆ Y × Z is a relation R ◦ S ⊆ X × Z
given as follows

R ◦ S = {(x, z) ∈ X × Z : ∃y∈Y (x, y) ∈ R and (y, z) ∈ S} .

In [1], Bandler and Kohout have noticed, that the above definition can be written
based on (1) and (2), as

R ◦ S = {(x, z) ∈ X × Z : xR ∩ Sz 6= ∅} . (3)

Inspired by this style of the notation, authors have introduced three new composi-
tions called: the subcomposition, the supercomposition and the square composition,
which are defined, respectively, as

R / S = {(x, z) ∈ X × Z : xR ⊆ Sz} ,
R . S = {(x, z) ∈ X × Z : Sz ⊆ xR} ,
R ¦ S = {(x, z) ∈ X × Z : xR = Sz} .

In [2], De Baets and Kerre, have shown that the above definitions are not acceptable
for empty foresets and aftersets, because R / S, R . S, R ¦ S can contain a lot of
unwanted couples. Therefore they have written them in the following ways

R / S = {(x, z) ∈ X × Z : ∅ 6= xR ⊆ Sz} , (4)
R . S = {(x, z) ∈ X × Z : ∅ 6= Sz ⊆ xR} , (5)
R ¦ S = {(x, z) ∈ X × Z : ∅ 6= xR = Sz} . (6)

In this paper we will use the the above formulas. De Baets and Kerre have proved
several properties of the above compositions and some relationships between them.
Now we will recall basic properties, which will be essential for further discussions
(see [2]). Let R,R1, R2 ⊆ X × Y and S, S1, S2 ⊆ Y × Z.

• Containment:
R ¦ S ⊆ R / S ⊆ R ◦ S, (7)
R ¦ S ⊆ R . S ⊆ R ◦ S. (8)

• Convertibility:
(R ◦ S)T = ST ◦RT , (9)

(R / S)T = ST . RT , (10)

(R . S)T = ST / RT , (11)

(R ¦ S)T = ST ¦RT . (12)
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• Monotonicity: R1 ⊆ R2 ⇒ R1 ◦ S ⊆ R2 ◦ S, (13)
(dom(R1) = dom(R2) ∧R1 ⊆ R2)⇒ R2 / S ⊆ R1 / S, (14)

R1 ⊆ R2 ⇒ R1 . S ⊆ R2 . S, (15)
S1 ⊆ S2 ⇒ R ◦ S1 ⊆ R ◦ S2, (16)
S1 ⊆ S2 ⇒ R / S1 ⊆ R / S2, (17)

(rng(S1) = rng(S2) ∧ S1 ⊆ S2)⇒ R . S2 ⊆ R . S1. (18)

• Associativity: It is well-known that the classical composition of relations
is associative. In [2] authors have presented six mixed pseudo-associativity
properties between the subcomposition, the supercomposition and the classical
composition of relations. We will recall them bellow. If R ⊆ X×Y , S ⊆ Y ×Z
and Q ⊆ Z × U , then

R ◦ (S ◦Q) = (R ◦ S) ◦Q, (19)
R ◦ (S . Q) ⊆ (R ◦ S) . Q, (20)
R / (S ◦Q) ⊇ (R / S) ◦Q, (21)
R / (S / Q) ⊆ (R ◦ S) / Q, (22)
R / (S . Q) = (R / S) . Q, (23)
R . (S ◦Q) ⊇ (R . S) . Q. (24)

A relation R ⊆ X × Y can be identified with its characteristic mapping, namely

χR(x, y) =

{
1, if (x, y) ∈ R,
0, if (x, y) /∈ R.

In all examples we consider relations R,S ⊆ X ×X, where X = {x1, . . . , xn}, so we
use the matrix notation

rij = χR(xi, xj), 1 ≤ i, j ≤ n,
sij = χS(xi, xj), 1 ≤ i, j ≤ n.

It is easy to show that the compositions (3) – (6) of matrices are given by (see [3])

(R ◦ S)ij = max
1≤k≤n

rik ∧ skj , 1 ≤ i, j ≤ n,

(R / S)ij =
(

min
1≤k≤n

rik ⇒ skj

)
∧

(
max

1≤k≤n
rik

)
, 1 ≤ i, j ≤ n,

(R . S)ij =
(

min
1≤k≤n

skj ⇒ rik

)
∧

(
max

1≤k≤n
skj

)
, 1 ≤ i, j ≤ n,

(R ¦ S)ij =
(

min
1≤k≤n

rik ⇔ skj

)
∧

(
max

1≤k≤n
rik

)
, 1 ≤ i, j ≤ n.

2. PARTIAL PSEUDO–ASSOCIATIVITIES OF MIXED COMPOSITIONS

The aim of this part is to find another mixed pseudo-associativity properties. We
have 256 possibilities to put one of the four signs of compositions. The first series
of properties is based on the associativity of the classical composition of relations.
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Theorem 1. If R ⊆ X × Y, S ⊆ Y × Z and Q ⊆ Z × U , then

R ◦ (S ◦ Q) ⊇ (R ◦ S) ?1Q, (25)
R ?1 (S ◦ Q)⊆ (R ◦ S) ◦ Q, (26)
R ◦ (S ◦ Q) ⊇ (R ?1 S)?2Q, (27)
R ?2 (S ?1 Q)⊆ (R ◦ S) ◦ Q, (28)

where ?1 ∈ {/, ., ¦} and ?2 ∈ {◦, /, ., ¦}.

P r o o f . According to (19), (7) and (8) we have

R ◦ (S ◦Q) = (R ◦ S) ◦Q ⊇ (R ◦ S) . Q ⊇ (R ◦ S) ¦Q,
R ◦ (S ◦Q) = (R ◦ S) ◦Q ⊇ (R ◦ S) / Q,

which proves (25) for ?1 ∈ {/, ., ¦}. Now we will investigate (27) when ?1 is /. By
properties (7), (13) and (19) we obtain

(R / S) ◦Q ⊆ (R ◦ S) ◦Q = R ◦ (S ◦Q).

By the above inclusion and the containment conditions once more we can deduce
that

(R / S) ¦Q ⊆ (R / S) / Q ⊆ (R / S) ◦Q ⊆ (R ◦ S) ◦Q = R ◦ (S ◦Q)

and
(R / S) . Q ⊆ (R / S) ◦Q ⊆ (R ◦ S) ◦Q = R ◦ (S ◦Q),

so we obtain (27) for ?1 equal / and ?2 ∈ {◦, /, ., ¦}. When ?1 is equal . or ¦ the
proofs are dual. The inclusions (26) and (28) we can deduce from inclusions (25)
and (27), respectively, and the convertibility properties putting R = QT , Q = RT ,
S = ST . ¤

If in (25) we put ?1 = ◦, then we obtain the classical associativity condition (19).
So far we intensively have used the associativity of the classical composition. Now
we will apply another properties from the mixed pseudo-associativity conditions.

Theorem 2. If R ⊆ X × Y, S ⊆ Y × Z and Q ⊆ Z × U , then

R ? (S . Q) ⊆ (R ◦ S) . Q, (29)
R / (S ◦Q) ⊇ (R / S) ? Q, (30)

where ? ∈ {◦, /, ., ¦}.

P r o o f . For ? = ◦ the inclusion (29) has been proved in [2] (see also (20)). Using
this inclusion and the containment properties we obtain

R ¦ (S . Q) ⊆ R / (S . Q) ⊆ R ◦ (S . Q) ⊆ (R ◦ S) . Q,
R . (S . Q) ⊆ R ◦ (S . Q) ⊆ (R ◦ S) . Q.
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The next inclusion we can deduce from (21) or it follows immediately from (29)
using the convertibility condition for R = QT , S = ST , Q = RT . For ? = / in (29)

QT / (ST . RT ) ⊆ (QT ◦ ST ) . RT ⇔ (QT / (ST . RT ))T ⊆ ((QT ◦ ST ) . RT )T

⇔ (ST . RT )T . Q ⊆ R / (QT ◦ ST )T

⇔ (R / S) . Q ⊆ R / (S ◦Q).

The proofs of the other inclusions are dual. ¤

Theorem 3. If R ⊆ X × Y, S ⊆ Y × Z and Q ⊆ Z × U , then

R / (S ? Q) ⊇ (R ¦ S) ? Q, (31)
R ∗ (S ¦Q) ⊆ (R ∗ S) . Q, (32)

where ? ∈ {., ◦} and ∗ ∈ {/, ◦}.

P r o o f . Using properties (7), (13), (15), (21) and (23) we obtain

(R ¦ S) ◦Q ⊆ (R / S) ◦Q ⊆ R / (S ◦Q),
(R ¦ S) . Q ⊆ (R / S) . Q = R / (S . Q).

Inclusions (32) follow immediately from inclusions (31) and convertibility properties
as was shown in the previous proof. ¤

Theorem 4. If R ⊆ X × Y, S ⊆ Y × Z and Q ⊆ Z × U , then

R / (S ◦Q) ⊇ (R ¦ S) ? Q, (33)
where ? ∈ {/, ., ¦},

R ∗ (S ¦Q) ⊆ (R ◦ S) . Q, (34)
where ∗ ∈ {., /, ¦}, (R ¦ S) ?1 Q ⊆ R ?2 (S . Q), (35)

where ?1 ∈ {., ¦} and ?2 ∈ {/, ◦},
R ?1 (S ¦Q) ⊆ (R / S) ?2 Q, (36)

where ?1 ∈ {/, ¦} and ?2 ∈ {., ◦}.

P r o o f . To prove (33) we will use (31) with ? = ◦ and the containment properties,
so

(R ¦ S) ¦Q ⊆ (R ¦ S) / Q ⊆ (R ¦ S) ◦Q ⊆ R / (S ◦Q),
(R ¦ S) . Q ⊆ (R ¦ S) ◦Q ⊆ R / (S ◦Q).

Now we will consider (35). Using again (31) with ? = . and the containment
properties we obtain

(R ¦ S) ¦Q ⊆ (R ¦ S) . Q ⊆ R / (S . Q) ⊆ R ◦ (S . Q).

By comparing the first and the last, the first and the third and finally the second
and the last part in the above inclusions we obtain (35). Inclusions (34) and (36)
follow immediately from (33) and (35), respectively, and convertibilities properties
as was shown in the previous proof. ¤
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Theorem 5. If R ⊆ X × Y, S ⊆ Y × Z and Q ⊆ Z × U , then

R ¦ (S / Q) ⊆ (R ◦ S) / Q, (37)
R . (S ◦Q) ⊇ (R . S) ¦Q. (38)

P r o o f . By the containment properties and according to (22), (24) we can con-
clude that

R ¦ (S / Q) ⊆ R / (S / Q) ⊆ (R ◦ S) / Q,
R . (S ◦Q) ⊇ (R . S) . Q ⊇ (R . S) ¦Q,

so we proved (37) and (38). ¤

Next theorem is based on (23).

Theorem 6. If R ⊆ X × Y, S ⊆ Y × Z and Q ⊆ Z × U , then

R ¦ (S . Q) ⊆ (R / S) ?1 Q, (39)
R ?2 (S . Q) ⊇ (R / S) ¦Q, (40)

where ?1 ∈ {◦, .}, ?2 ∈ {◦, /}, and

R / (S . Q) ⊆ (R / S) ◦Q, (41)
R ◦ (S . Q) ⊇ (R / S) . Q. (42)

P r o o f . According to (7), (8) and (23) we obtain

R ¦ (S . Q) ⊆ R / (S . Q) = (R / S) . Q ⊆ (R / S) ◦Q,
so the proof of this theorem is complete because if we compare the first and the last
part of the above inclusions we have (39) for ?1 = ◦. By comparing the first and the
third part we obtain (39) for ?1 = .. If we take into consideration the second and
the last part we get (41). In the aftermath of (39) and (41) using the convertibility
properties we obtain (40) and (42), respectively. ¤

Theorem 7. If R ⊆ X × Y, S ⊆ Y × Z and Q ⊆ Z × U , then

R . (S ◦Q) ⊇ (R ¦ S) ∗Q, (43)
where ∗ ∈ {., ¦}, and

R ∗ (S ¦Q) ⊆ (R ◦ S) / Q, (44)
where ∗ ∈ {/, ¦}.

P r o o f . By properties (8), (15) and (24) we obtain

(R ¦ S) . Q ⊆ (R . S) . Q ⊆ R . (S ◦Q),

so we have (43) for ? = .. Using the containment conditions once more we get
(R ¦ S) ¦Q ⊆ (R ¦ S) . Q ⊆ R . (S ◦Q),

which finishes the proof of (43). If we put R = QT , S = ST and Q = RT in (43)
and we will use the convertibility properties we can conclude last inclusions. ¤

Proofs of the next theorems are based on the basic definitions.
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Theorem 8. If R ⊆ X × Y, S ⊆ Y × Z and Q ⊆ Z × U , then

(R ◦ S) ∗Q ⊆ R ◦ (S / Q), (45)

where ∗ ∈ {/, ¦}, and R ∗ (S ◦Q) ⊆ (R . S) ◦Q, (46)
where ∗ ∈ {., ¦}.

P r o o f . We will prove the inclusion (45) for ∗ = /. First note that

(x, u) ∈R ◦ (S / Q)
⇔ ∃y [(x, y) ∈ R ∧ (y, u) ∈ S / Q]
⇔ ∃y [(x, y) ∈ R ∧ ∅ 6= yS ⊆ Qu]
⇔ ∃y {(x, y) ∈ R ∧ ∅ 6= yS ∧ ∀z [(y, z) ∈ S ⇒ (z, u) ∈ Q]}
⇔ ∃y {(x, y) ∈ R ∧ ∃z (y, z) ∈ S ∧ ∀z [(y, z) ∈ S ⇒ (z, u) ∈ Q]}
⇔ ∃y {(x, y) ∈ R ∧ ∃z (y, z) ∈ S∧

∀z (x, y) ∈ R ∧ [(y, z) ∈ S ⇒ (z, u) ∈ Q]}
⇔ ∃y {(x, y) ∈ R ∧ ∃z (y, z) ∈ S∧

∀z {(x, y) ∈ R ∧ [((x, y) ∈ R ∧ (y, z) ∈ S)⇒ (z, u) ∈ Q]}}
⇔ ∃y {(x, y) ∈ R ∧ ∃z (y, z) ∈ S∧

∀z [((x, y) ∈ R ∧ (y, z) ∈ S)⇒ (z, u) ∈ Q]}
⇔ ∃y {(x, y) ∈ R ∧ ∃z (y, z) ∈ S∧

∀z [((x, y) ∈ R ∧ (y, z) ∈ S)⇒ (z, u) ∈ Q]}
⇔ ∃y {∃z [(x, y) ∈ R ∧ (y, z) ∈ S]∧

∀z [((x, y) ∈ R ∧ (y, z) ∈ S)⇒ (z, u) ∈ Q]} . (A)

Further,
(x, u) ∈(R ◦ S) / Q

⇔ ∅ 6= x(R ◦ S) ⊆ Qu
⇔ ∅ 6= x(R ◦ S) ∧ x(R ◦ S) ⊆ Qu
⇔ ∃z [(x, z) ∈ R ◦ S] ∧ ∀z [(x, z) ∈ R ◦ S ⇒ (z, u) ∈ Q]
⇔ ∃z {∃y [(x, y) ∈ R ∧ (y, z) ∈ S]}∧

∀z {∃y [(x, y) ∈ R ∧ (y, z) ∈ S]⇒ (z, u) ∈ Q}
⇔ ∃z ∃y [(x, y) ∈ R ∧ (y, z) ∈ S]∧

∀z ∀y {[(x, y) ∈ R ∧ (y, z) ∈ S]⇒ (z, u) ∈ Q}
⇔ ∃y ∃z [(x, y) ∈ R ∧ (y, z) ∈ S]∧

∀y ∀z {[(x, y) ∈ R ∧ (y, z) ∈ S]⇒ (z, u) ∈ Q} . (B)

By comparing (A) and (B) we see that (A) can be deduced from (B). Using the
monotonicity property we have

R ¦ (S ◦Q) ⊆ R / (S ◦Q) ⊆ (R . S) ◦Q.
The inclusion (46) follows immediately from foregoing property using the convert-
ibility properties. ¤
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Theorem 9. If R ⊆ X × Y, S ⊆ Y × Z and Q ⊆ Z × U , then

R / (S ¦Q) ⊆ (R ◦ S) ¦Q, (47)
R / (S ¦Q) ⊆ (R / S) ∗Q, (48)

where ∗ = {/, ¦}, and
(R ¦ S) . Q ⊆ R ¦ (S ◦Q), (49)
(R ¦ S) . Q ⊆ R ∗ (S . Q), (50)

where ∗ ∈ {., ¦}.

P r o o f . First we will prove (47) and (48). In the both cases in the left side of
inequalities we obtain

(x, u) ∈R / (S ¦Q)
⇔ ∅ 6= xR ⊆ (S ¦Q)u
⇔ ∅ 6= xR ∧ (S ¦Q)u 6= ∅ ∧ ∀y∈xR y ∈ (S ¦Q)u
⇔ ∅ 6= xR ∧ ∀y [y ∈ xR⇒ (y, u) ∈ S ¦Q]
⇔ ∅ 6= xR ∧ ∀y [(x, y) ∈ R⇒ (yS = Qu 6= ∅)]
⇔ ∅ 6= xR ∧Qu 6= ∅ ∧ yS 6= ∅ ∧ ∀y {(x, y) ∈ R⇒ [∀z (z ∈ yS ⇔ z ∈ Qu)]}
⇔ ∅ 6= xR ∧Qu 6= ∅ ∧ yS 6= ∅∧

∀z ∀y {(x, y) ∈ R⇒ [(y, z) ∈ S ⇔ (z, u) ∈ Q]} , (C)

while for the right side of (48), for ∗ = ¦, we get

(x, u) ∈(R / S) ¦Q
⇔ x(R / S) = Qu 6= ∅
⇔ Qu 6= ∅ ∧ x(R / S) 6= ∅ ∧ ∀z [z ∈ x(R / S)⇔ z ∈ Qu]
⇔ Qu 6= ∅ ∧ x(R / S) 6= ∅ ∧ ∀z [(x, z) ∈ R / S ⇔ (z, u) ∈ Q]
⇔ Qu 6= ∅ ∧ x(R / S) 6= ∅ ∧ ∀z [∅ 6= xR ⊆ Sz ⇔ (z, u) ∈ Q]
⇔ Qu 6= ∅ ∧ xR 6= ∅ ∧ Sz 6= ∅∧

∀z [∀y ((x, y) ∈ R⇒ (y, z) ∈ S)⇔ (z, u) ∈ Q] (D)

Comparing these formulas we see that (D) follows from (C), because

{∃y ϕ(y) ∧ ∀y [ϕ(y)⇒ (ψ(y)⇔ λ)]} ⇒ {∀y [ϕ(y)⇒ ψ(y)]⇔ λ} .
Now we consider the right side of (47).

(x, u) ∈(R ◦ S) ¦Q
⇔ x(R ◦ S) = Qu 6= ∅
⇔ Qu 6= ∅ ∧ x(R ◦ S) 6= ∅ ∧ ∀z [z ∈ x(R ◦ S)⇔ z ∈ Qu]
⇔ Qu 6= ∅ ∧ xR 6= ∅ ∧ Sz 6= ∅ ∧ ∀z [(x, z) ∈ R ◦ S ⇔ (z, u) ∈ Q]
⇔ Qu 6= ∅ ∧ xR 6= ∅ ∧ yS 6= ∅∧

∀z [∃y ((x, y) ∈ R ∧ (y, z) ∈ S)⇔ (z, u) ∈ Q] (E)
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By the following property

[∃y ϕ(y) ∧ ∀y (ϕ(y)⇒ ψ(y))]⇒ ∃y (ϕ(y) ∧ ψ(y)) (∗)

we see, that (E) follows from (D), so (E) can be deduced from (C). The inequality
(48) for ∗ = / we obtain using the monotonicity property

R / (S ¦Q) ⊆ (R / S) ¦Q ⊆ (R / S) / Q.

Inequalities (49), (50) can be deduced from the above and the convertibility property.
¤

Theorem 10. If R ⊆ X × Y, S ⊆ Y × Z and Q ⊆ Z × U , then

(R ¦ S) ¦Q ⊆ R ¦ (S ◦Q), (51)
(R ¦ S) ¦Q ⊆ R ∗ (S . Q), (52)

where ∗ ∈ {., ¦}, and

R ¦ (S ¦Q) ⊆ (R ◦ S) ¦Q, (53)
R ¦ (S ¦Q) ⊆ (R / S) ∗Q, (54)

where ∗ ∈ {/, ¦}.

P r o o f . We will prove (51) and (52). First we will consider left side of the above
inequalities.

(x, u) ∈(R ¦ S) ¦Q
⇔ x(R ¦ S) = Qu 6= ∅
⇔ Qu 6= ∅ ∧ x(R ¦ S) 6= ∅ ∧ ∀z [(x, z) ∈ R ¦ S ⇔ (z, u) ∈ Q]
⇔ Qu 6= ∅ ∧ xR 6= ∅ ∧ Sz 6= ∅ ∧ ∀z [xR = Sz 6= ∅ ⇔ (z, u) ∈ Q]
⇔ Qu 6= ∅ ∧ xR 6= ∅ ∧ Sz 6= ∅∧

∀z [∀y ((x, y) ∈ R⇔ (y, z) ∈ S)⇔ (z, u) ∈ Q] . (F)

The right side of inequality (52) for ∗ = ¦ has the form

(x, u) ∈R ¦ (S . Q)
⇔ xR = (S . Q)u 6= ∅
⇔ xR 6= ∅ ∧ (S . Q)u 6= ∅ ∧ ∀y [(x, y) ∈ R⇔ (y, u) ∈ S . Q]
⇔ xR 6= ∅ ∧ yS 6= ∅ ∧Qu 6= ∅∧

∀y {(x, y) ∈ R⇔ ∀z [(z, u) ∈ Q⇒ (y, z) ∈ S]} (G)

The expression (G) follows from (F) because

{∃z λ(z) ∧ ∀z {∀y [ϕ(y)⇔ ψ(y, z)]⇔ λ(z)}} ⇒ ∀y {ϕ(y)⇔ ∀z [λ(z)⇒ ψ(y, z)]} .
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For the right side of the inequality (51) we can write

(x, u) ∈R ¦ (S ◦Q)
⇔ xR = (S ◦Q)u 6= ∅
⇔ xR 6= ∅ ∧ (S ◦Q)u 6= ∅ ∧ ∀y [(x, y) ∈ R⇔ (y, u) ∈ S ◦Q]
⇔ xR 6= ∅ ∧ yS 6= ∅ ∧Qu 6= ∅∧

∀y {(x, y) ∈ R⇔ ∃z [(y, z) ∈ S ∧ (z, u) ∈ Q]} , (H)

so (H) follows from (G) by (∗) and we see that (H) is the consequence of (F). The
inequality (52) for ∗ = . we can obtain from following, using monotonicity,

(R ¦ S) ¦Q ⊆ R ¦ (S . Q) ⊆ R . (S . Q).

Inequalities (53) and (54) can be deduced from the above and the convertibility
properties. ¤

Now we will present examples, which show that the equalities do not hold in
general. The matrix R will be the same for all examples. Matrices S and Q will be
taken from the following

A1 =




0 0 0
1 0 0
0 0 0


 , A2 =




0 0 0
0 0 0
1 0 0


 , A3 =




1 0 0
0 0 0
1 0 0


 , A4 =




1 0 0
1 0 0
0 0 0


 ,

A5 =




0 0 0
1 0 0
1 0 0


 , A6 =




1 0 0
1 0 0
1 0 0


 , A7 =




0 0 1
0 0 1
1 0 0


 , A8 =




1 0 1
0 0 1
1 0 0


 ,

A9 =




0 1 1
0 0 1
1 0 0


 , A10 =




0 0 0
0 1 0
1 0 0


 , A11 =




1 0 0
1 0 1
1 0 0


 , A12 =




0 1 0
1 0 1
1 0 0


 ,

A13 =




1 1 0
0 1 0
1 0 0


 , A14 =




0 0 1
0 1 0
1 0 0


 , A15 =




0 1 0
0 1 0
0 1 0


 , A16 =




1 0 0
0 0 0
0 0 0


 ,

A17 =




1 0 1
1 0 1
1 0 0


 , R =




1 1 0
0 0 0
0 0 0


 .

Example 1. We will show that all inclusions in (25) – (54) cannot be replaced by
the equality. If S = A8, Q = A16, then

R ◦ (S ◦Q) =




1 0 0
0 0 0
0 0 0


 >




0 0 0
0 0 0
0 0 0


 =





(R ◦ S) / Q,
(R ◦ S) ¦Q,

(R ?1 S) ?2 Q,
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where ?1 ∈ {., /, ¦}, ?2 ∈ {◦, ., /, ¦}. We have shown strong inequalities in (25) for
? ∈ {/, ¦} and in (27). Putting S = A7 and Q = A3 we obtain

R ◦ (S ◦Q) =




1 0 0
0 0 0
0 0 0


 >




0 0 0
0 0 0
0 0 0


 = (R ◦ S) . Q,

R ¦ (S / Q)
R / (S . Q)

}
=




0 0 0
0 0 0
0 0 0


 <




1 0 0
0 0 0
0 0 0


 =

{
(R ◦ S) / Q
(R . S) ◦Q ,

which show strong inequalities in (25) for ? = ., (37) and (41). Moreover

(R ¦ S) ? Q =




0 0 0
0 0 0
0 0 0


 <




1 0 0
0 0 0
0 0 0


 = R / (S ? Q),

for ? ∈ {., ◦} so we have the strong inequalities from (31). Taking S = A12 and
Q = A18 we calculate that

(R ◦ S) . Q =




1 0 0
0 0 0
0 0 0


 >




0 0 0
0 0 0
0 0 0


 = R ? (S . Q),

where ? ∈ {◦, ., /, ¦, }, which is from (29). For S = A11, Q = R we have

(R / S) ? Q =




1 1 0
0 0 0
0 0 0


 >




0 0 0
0 0 0
0 0 0


 = R ¦ (S . Q),

where ? ∈ {., ◦}. We have shown the strong inequalities for (39). The same results
we have for (33) and (35).

Taking S = A7 and Q = A5 we show strong inequalities in (43):

R . (S ◦Q) =




1 0 0
0 0 0
0 0 0


 >




0 0 0
0 0 0
0 0 0


 = (R ¦ S) ? Q,

where ? ∈ {., ¦}. Putting S = A8 and Q = A2 we obtain

R ◦ (S / Q) =




1 0 0
0 0 0
0 0 0


 >




0 0 0
0 0 0
0 0 0


 =

{
(R ◦ S) / Q
(R ◦ S) ¦Q ,

which show strong inequality in (45). For R, S as above and Q = A3 we get

R/(S¦Q) =




0 0 0
0 0 0
0 0 0


 <




1 0 0
0 0 0
0 0 0


 =

{
(R ◦ S) ¦Q %116(R / S) / Q %118(R / S) ¦Q ,
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so we obtain strong inequality in (47) and (48). Using the same matrices we examine
(52). Taking S = A7, Q = A5 we obtain

R ¦ (S ◦Q) =




1 0 0
0 0 0
0 0 0


 >




0 0 0
0 0 0
0 0 0


 = (R ¦ S) ¦Q,

i. e., we have the strong inequality in (51). The rest strong inequalities we obtain
from the above using convertibility properties.

3. VERIFICATION OF NON–ASSOCIATIVITY

Other mixed pseudo-associativity properties are not possible to obtain. This results
we put into the table. The first column contains examined properties, while in the
last column there are dual properties to these presented in the first column. They
are obtained by putting R = QT , S = ST , Q = RT . The second column contains,
respectively, matrices S and Q for which we have R ?1 (S ?2 Q) < (R ?3 S) ?4 Q
where ?i ∈ {◦, ., /, ¦} for i = 1, . . . , 4. In the third column there are, respectively,
matrices S and Q fulfilling the opposite inequalities.

Properties Matrices Matrices Dual properties

R ◦ (S / Q) ∦ (R ◦ S) . Q S = A13 S = A10 R / (S ◦Q) ∦ (R . S) ◦Q
R ◦ (S / Q) ∦ (R / S) ? Q Q = R Q = A3 R ? (S . Q) ∦ (R . S) ◦Q

? ∈ {◦, /, ., ¦} ? ∈ {., /, ¦}
R ◦ (S / Q) ∦ (R . S) ? Q S = A10 S = A11 R ? (S / Q) ∦ (R . S) ◦Q

? ∈ {◦, /, ., ¦} Q = A2 Q = R ? ∈ {◦, ., /, ¦}
R . (S ◦Q) ∦ (R ◦ S) ? Q S = A17 S = A10 R ¦ (S ◦Q) ∦ (R ◦ S) / Q

? ∈ {/, ¦} Q = A3 Q = A3

R ◦ (S . Q) ∦ (R ◦ S) ? Q S = A12 S = A8 R ? (S ◦Q) ∦ (R / S) ◦Q
? ∈ {/, ¦} Q = A17 Q = R ? ∈ {., ¦}

R ◦ (S / Q) ∦ (R ¦ S) ? Q S = A17 S = A12 R ? (S ¦Q) ∦ (R . S) ◦Q
R ◦ (S ¦Q) ∦ (R ¦ S) ? Q Q = A2 Q = A1 R ? (S ¦Q) ∦ (R ¦ S) ◦Q

? ∈ {◦, /, ., ¦} ? ∈ {◦, ., /, ¦}
R . (S ¦Q) ∦ (R ¦ S) ? Q R ? (S ¦Q) ∦ (R ¦ S) / Q
R . (S / Q) ∦ (R ¦ S) ? Q R ? (S ¦Q) ∦ (R . S) / Q

? ∈ {/, ¦} ? ∈ {., ¦}
R ◦ (S . Q) ∦ (R / S) ? Q S = A7 S = A8 R . (S . Q) ∦ (R / S) ◦Q

? ∈ {◦, /, } Q = A3 Q = R

R ◦ (S . Q) ∦ (R . S) ? Q S = A12 S = A8 R ? (S / Q) ∦ (R / S) ◦Q
? ∈ {., /, ¦} Q = A14 Q = R ? ∈ {/, ., ¦}

R ◦ (S . Q) ∦ (R ¦ S) ? Q S = A7 S = A8 R ? (S ¦Q) ∦ (R / S) ◦Q
? ∈ {◦, /} Q = A3 Q = R ? ∈ {◦, ., }

R ◦ (S ¦Q) ∦ (R ◦ S) ? Q S = A12 S = A8 R ? (S ◦Q) ∦ (R ¦ S) ◦Q
? ∈ {/, ¦} Q = A6 Q = A2 ? ∈ {., ¦}

R . (S ¦Q) ∦ (R ◦ S) ¦Q R ¦ (S ◦Q) ∦ (R ¦ S) / Q

R ◦ (S ¦Q) ∦ (R / S) ? Q S = A13 S = A10 R ? (S . Q) ∦ (R ¦ S) ◦Q
? ∈ {/, ., ¦} Q = R Q = A3 ? ∈ {., /, ¦}
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R ◦ (S ¦Q) ∦ (R . S) ? Q S = A10 S = A11 R ? (S / Q) ∦ (R ¦ S) ◦Q
R / (S ◦Q) ∦ (R . S) ? Q Q = A2 Q = R R ? (S / Q) ∦ (R ◦ S) . Q

? ∈ {/, ., ¦} ? ∈ {., /, ¦}
R / (S ◦Q) ∦ (R ◦ S) ? Q S = A10 S = A8 R ? (S ◦Q) ∦ (R ◦ S) . Q

? ∈ {/, ., ¦} Q = A3 Q = A5 ? ∈ {., ¦}
R / (S / Q) ∦ (R ◦ S) ¦Q S = A10 S = A7 R ¦ (S ◦Q) ∦ (R . S) . Q

Q = A3 Q = A3

R / (S / Q) ∦ (R / S) ? Q S = A8 S = A12 R ? (S . Q) ∦ (R . S) . Q
R / (S / Q) ∦ (R ¦ S) ? Q Q = A2 Q = A6 R ? (S ¦Q) ∦ (R . S) . Q

? ∈ {/, ., ¦} ? ∈ {., /, ¦}
R / (S / Q) ∦ (R . S) ? Q S = A8 S = A15 R ? (S / Q) ∦ (R . S) . Q
R / (S ¦Q) ∦ (R ¦ S) ? Q Q = A2 Q = A1 R ? (S ¦Q) ∦ (R ¦ S) . Q

? ∈ {/, ., ¦} ? ∈ {., ¦}
R / (S ¦Q) ∦ (R . S) ? Q R ? (S / Q) ∦ (R ¦ S) . Q

? ∈ {/, ¦} ? ∈ {., ¦}
R / (S . Q) ∦ (R ◦ S) ? Q S = A7 S = A17 R ? (S ◦Q) ∦ (R / S) . Q

? ∈ {/, ¦} Q = A3 Q = R ? ∈ {., ¦}
R / (S . Q) ∦ (R / S) / Q R . (S . Q) ∦ (R / S) . Q

R / (S . Q) ∦ (R . S) ? Q S = A9 S = A11 R ? (S / Q) ∦ (R / S) . Q
? ∈ {/, ¦} Q = A5 Q = R ? ∈ {., ¦}

R / (S . Q) ∦ (R ¦ S) / Q R . (S ¦Q) ∦ (R / S) . Q

R . (S ◦Q) ∦ (R / S) ? Q S = A11 S = A12 R ? (S . Q) ∦ (R ◦ S) / Q
R . (S / Q) ∦ (R / S) ? Q Q = R Q = A1 R ? (S . Q) ∦ (R . S) / Q

? ∈ {/, ¦} ? ∈ {., ¦}
R . (S ¦Q) ∦ (R / S) ¦Q R ¦ (S . Q) ∦ (R ¦ S) / Q

R . (S ◦Q) ∦ (R . S) / Q S = A8 S = A12 R . (S / Q) ∦ (R ◦ S) / Q
R . (S ◦Q) ∦ (R ¦ S) / Q Q = A3 Q = A1 R . (S ¦Q) ∦ (R ◦ S) / Q
R . (S / Q) ∦ (R ◦ S) ¦Q R ¦ (S ◦Q) ∦ (R . S) / Q

R . (S / Q) ∦ (R . S) ? Q S = A10 S = A9 R ¦ (S / Q) ∦ (R . S) / Q
? ∈ {/, ¦} Q = A2 Q = A2

R . (S . Q) ∦ (R ◦ S) ¦Q S = A12, S = A8 R ¦ (S ◦Q) ∦ (R / S) / Q
Q = A6 Q = A2

R . (S . Q) ∦ (R / S) / Q S = A11 S = A9 R ¦ (S . Q) ∦ (R / S) / Q
Q = R Q = A1

R . (S . Q) ∦ (R . S) ¦Q S = A12 S = A8 R ¦ (S / Q) ∦ (R / S) / Q
Q = A5 Q = A3

R . (S . Q) ∦ (R ¦ S) / Q S = A7 S = A14 R . (S ¦Q) ∦ (R / S) / Q
Q = A3 Q = A1

R . (S ¦Q) ∦ (R . S) ¦Q S = A12 S = A8 R ¦ (S / Q) ∦ (R ¦ S) / Q
Q = A5 Q = A3

R ¦ (S ◦Q) ∦ (R ◦ S) ¦Q S = A8 S = A7

Q = A3 Q = A5
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R ¦ (S ◦Q) ∦ (R / S) ¦Q S = A11 S = A7 R ¦ (S . Q) ∦ (R ◦ S) ¦Q
Q = R Q = A5

R ¦ (S ◦Q) ∦ (R . S) ¦Q S = A10 S = A7 R ¦ (S / Q) ∦ (R ◦ S) ¦Q
Q = A2 Q = A5

R ¦ (S / Q) ∦ (R ? S) ¦Q S = A8 S = A7 R ¦ (S ? Q) ∦ (R . S) ¦Q
? ∈ {/, ., ¦} Q = A2 Q = A5 ? ∈ {., ¦}

R ¦ (S . Q) ∦ (R / S) ¦Q S = A11 S = A17

Q = R Q = A2

R ¦ (S ¦Q) ∦ (R ¦ S) ¦Q S = A8 S = A17

Q = A2 Q = A4

4. CONCLUSION

In this paper we proved mixed pseudo-associativity properties of modified Bandler –
Kohout composition of relations. We shows also examples showing, that presented
inclusions are the best possible results. The obtained facts could not be valid for
the original definition of Bandler – Kohout compositions of relations.

(Received May 5, 2006.)
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