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THE LATTICE OF ALL SUBTREES OF A TREE
BOHDAN ZELINKA

The present paper will be concerned with trees. A tree is a connected undirected
graph without circuits. It may be finite or infinite. In this paper the null graph K, (a
graph whose vertex set and edge set are empty) and a graph consisting of one
vertex and no edge will be considered also as trees. The null graph is a subgraph of
every graph. The convenience of using the concept of the null graph is rather
debatable, as shown in [2]. But in the present paper this concept is naturally
needed.

If T, and T, are subtrees of a tree T, we put T, =T, if and only if T, is a subtree
of T,. The relation = so defined is a partial ordering on the set of all subtrees of
a given tree T. This set with the relation = is evidently a lattice ; we denote it by
2(T). The lattice operations of join and meet will be denoted by v and A,
respectively.

If T,e(T), T,e¥(T), then T, A T, is the intersection of T; and T, i.e. the graph
whose vertex set is the intersection of vertex sets of T; and T, and whose edge set is
the intersection of edge sets of T, and T.. It is evidently a tree and each common
subtree of T; and T, is its subtree. If T\A T, # K, then T, v T, is the union of T, and
T>, i.e. the graph whose vertex set is the union of vertex sets of 7; and T, and whose
edge set is the union of edge sets of T, and T;. It is evidently a tree and is contained
in each subtree of T which contains both 7, and T, as subtrees. But if T,A T, = K,
the union of T, and T; is not a tree, because it is disconnected. To obtain the tree
T,v T, from it, it is necessary to add a path of T connecting the pair of vertices u,,
u,, where u, belongs to T, u, belongs to T, and the distance between u, and u, is
the least of the distances of all such pairs of vertices (evidently this path is uniquely
determined). '

We shall prove some theorems on the structure of 2( 7). In all theorems we shall
tacitly suppose that T has at least three vertices.

Theorem 1. The lattice ¥(T) has the greatest element and the least one and is
atomic.

Proof. Evidently the least element of £(T) is the null graph K, and the greatest
element of L(T) is the whole tree T. The atoms of {(T) are all subtrees which
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consist only of one vertex. Any non-null subtree of 7 contains at least one vertex,
therefore there exists an atom of ¥(7) which is less than or equal to it.

Theorem 2. The lattice X(T) is dually atomic, if and only if there does not exist
a proper subtree of T containing all the terminal vertices of T.

Proof. Let T be a dual atom of (7). As T is a proper subtree of T, the set S
of vertices belonging to T and not belonging to 7" is non-empty. As T is connected,
there exists at least one vertex v of S which is adjacent to some vertex w of T'. If
we add the vertex v and the edge vw to T’, we obtain a subtree 7" of 7. We have
T'<T'and, as T' is a dual atom of ¥(T), the equality 7"= T holds. But then
S ={v}. By deleting v from T we obtain a tree T", therefore v must be a terminal
vertex of T. We have proved that each dual atom of ¥(T) is obtained from T by
deleting one terminal vertex. Let there exist a proper subtree T, of T containing all
the terminal vertices of 7. Then T is not contained in a dual atom of ¥( T, because
to each dual atom of (7)) there exists a terminal vertex of 7 not contained in it. On
the other hand, if such a subtree does not exist, then to each proper subtree T, of T
there exists a terminal vertex of 7 not contained in it. By deleting this vertex from
T we obtain a dual atom of ¥(T) containing T,.

by by by b by by b

a-3 a2 a4 Qo @ az as
Fig. 1

Among the trees satisfying the condition from Theorem 2 there are all the trees
without infinite paths, in particular all the finite trees. We shall show an example of
a tree with infinite paths which satisfies it, too. The vertices of this tree are a, and b,
and the edges are a,b,, a.a,., for all the integers n. This tree is in Fig. 1. An
example of a tree which does not satisfy this condition is a tree consisting of one
(one-way or two-way) infinite path. (If a tree T has no terminal vertices, then we
consider it as a tree, any of whose subtrees contains all the terminal vertices of T'.)

Theorem 3. The lattice %(T) is non-modular.

Proof. As mentioned above, we suppose that T has at least three vertices. Let v,
be a vertex of T of a degree at least two, let v,, v, be two distinct vertices adjacent
to v,. By T, (or T,) we denote the subtree of T consisting only of the vertex v, (or
v, respectively). By T; we denote the subtree of T consisting of the vertices v, and
v, and the edge joining them, by T, we denote the subtree of T consisting of the
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vertices v,, v, v, and the edges v,v,, v,v,. We have T,< T;. The modularity of
{T) would imply T\V(LAT)=(T,vT,)AT.. But T\v(LAT)=T,
(T\v T,))A T, =T, and therefore (7T) is not modular.

Theorem 4. Each proper filter of the lattice (T) is a distributive lattice.

Proof. Let & be a proper filter of §(7). Let T, e®, T>€§. As § is a filter,
T.AT,e§. As % is a proper filter, K, € and thus T,A T, 5 K,. But then T, v T; is
the union of T, and 7. This holds for any T, and T, from . As T,A T, is always
the intersection of T, and T, the filter ¥ is a sublattice of the lattice of all subsets of
the union of the vertex set and the edge set of 7. This lattice is distributive,
therefore also ¥ is distributive.

Theorem 5. The lattice ¥(T) is complete.
Proof is evident.

Theorem 6. The lattice %(T) is generated by its set of atoms.

Proof. The assertion is evident when we know that the atoms of R(T) are all
one-vertex subtrees of T.

On the other hand, £(7T) is not generated by its dual atoms, even if it is dually
atomic.

Now we shall define -an important congruence on (7).

Theorem 7. Let o be a binary relation on (T) defined so that for two elements
T\, T, of &(T) we have (T,, T,) € d if and only if the symmetric difference between
the vertex sets of T, and T, is finite. Then J is a congruence on X(T).

Proof. First we shall consider an arbitrary non-empty set M and the Boolean
algebra B(M) of all subsets of M. The finite subsets of M form an ideal Y of B(M).
As B(M) is a Boolean algebra, the ideal J is the kernel of some congruence &, on
B(M). If A eB(M), BeB(M), (A, B) € d,, then there exists CeB(M), A,
B, € § such that A = A,UC, B = B,uC. Then the symmetric difference between A
and B is contained in A,U B,, which is a finite set, thus it is also finite. On the other
hand, let D € B(M), E € B(M) and let the symmetric difference between D and E
be finite. We have D =(DnE)u(D —E), E=(DnE)U(E — D). The sets D—E
and E — D are subsets of the symmetric difference between D and E, therefore
they are finite. Thus D — E€ 3, E — D € and we have (D, E) € §,. Now let M be
the set of all vertices of T and consider the congruence d, on B(M). If T, T, are
subtrees of T, let V(T,), V(T»), V(T,vT,) be vertex sets of T3, T., T,vT,
respectively. The tree T v T, is either equal to the union of 7, and T, or is
obtained from this union by adding some finite path. In both cases the symmetric
difference of the sets V(T,v T,) and V(T,)u V(T,) is finite and thus (V(T,v T>),
V(T))u V(T>)) € 6. Thus two subtrees of T are in the relation 6 if and only if their
vertex sets are in &. Thus d is a congruence on L(7).

We shall prove some theorems concerning the factorlattice (7)/9.
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Theorem 8. The factor-lattice ¥(T)/é is distributive.

Proof. From the proof of Theorem 7 it follows that each congruence class of
consists of trees whose vertex sets are in one congruence class of d,. If T,, T, are in
2(T), then the vertex set of T,v T, (or T, A T>) lies in the same congruence class of
do as V(T,)u V(T,) (or V(T\)n V(T,), respectively). Thus ¥(7T)/0 is isomorphic to
a sublattice of B(M)/H,. The lattice B(M)/, is a Boolean algebra, therefore
2(T)/6 must be distributive.

Before proving a further theorem, we shall say something about the concept of
the end of a locally finite graph, defined by R. HALIN [1]. The rest of a one-way
infinite path is a part of this path which is aiso a one-way infinite path. Two
one-way infinite paths W,, W, of a locally finite graph G are called equivaient. if
and only if there exists a one-way infinite path W (not necessarily distinct from W,
and W,) in G such that each rest of W has common vertices with both W, and W..
This relation is an equivalence on the set of all one-way infinite paths in G and its
equivalence classes are called ends of G.

Now suppose that G is a locally finite tree. If two paths of a tree have two
common vertices, then they have also the whoie path connecting these two vertices
in common. The path W from the definition of the end has infinitely many common
vertices with W, therefore it has a common rest with W,. Analogously it has
a common rest with W, and therefore W, and W, have a common rest. On the
other hand, if W, and W, have a common rest, we many put W to be this common
rest. Thus two one-way infinite paths W,, W, of a locally finite tree T belong to the
same end of T, if and only if they have a common rest.

In the case of trees we can extend the concept of the end to all the trees, not only
locally finite ones. Here we define the equivalence of two one-way infinite paths so
that two one-way infinite paths are equivalent, if and only if they have a common
rest. This is evidently an equivalence. The classes of this equivalence will be called
the ends of the tree. '

In the case when T is finite, the congruence ¢ is the universal relation on ¥(7T)

and thus (T)/4d is a trivial lattice consisting of one element. In the foliowing we
shall consider only infinite trees. '

Theorem 9. Let T be an infinite tree. The factor-iattice ¥(T)/ is a Booilean
~algebra, if and only if the following conditions are satisfied:
(a) T has a finite number of vertices of a degree greater than two.
(b) T has a finite number of ends.
(c) The tree obtained from T by deleting all the terminal vertices has a firite
number of the terminal vertices.
Proof. Let (a), (b), (c) hold. Let T’ be the least subtree of T containing all the
_vertices which have a degree greater than two in 7. Let M be the set of thesc
vertices. Let T, be the subtree of T consisting only of the vertex u for any u € M.
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Then T'= \/ T,; it is the join of finitely many finite subtrees of T, therefore it is

ueM

finite. The factor-lattice £(7T)/9 is distributive ; to prove that it is a Boolean algebra
it is sufficient to prove its complementarity. Let T; be a subtree cf T. The class of &
complementary to the class containing T is the class of § containing a tree Te
whose meet with T is finite (belongs to the same class of d as K,) and whose join
with T, is obtained from T by deleting finitely many vertices (belongs to the same
class of & as T). We shall construct such a tree 7;. Let F be the forest obtained
from T by deleting all vertices of T'. No connected component of F contains
a vertex of a degree greater than two and each of them contains at least one vertex
of a degree less than two (the vertex joined in T with a vertex of 7"). Therefore
each of them is either an isolated vertex, or a finite path, or a one-way infinite path.
From (b) it follows that there are only finitely many infinite connected components
of F. From (c) it follows that there are only finitely many finite connected
components of F consisting of more than one vertex. Now the tree T is the join of
T’ and all connected components of F which are not subtrees of 7;. Consider the
meet ToA T,. If C is some connected component of F which is a one-way infinite
path, then C is a subtree of Ty if and only if it is not contained in T,. In this case T,
contains only finitely many vertices of C; otherwise it would have to contain some
rest of this path and its initial vertex, i.e. the whole C. Thus T,A T, contains only
a finite number of vertices of any infinite connected component of F. It does not
contain any vertex of a connected component of F consisting of one vertex; such
a component is contained either in Ty, or in T;, but not in both of them. Thus the
vertex set of TyA T, is the union of some subset of the vertex set of 7" and of some
finite subsets of vertex sets of connected components of F containing more than
one vertex. As the number of such components is finite, also the vertex set of
ToA T, is finite. Now from the construction it is clear that T,v T,=T. We have
proved that to the class of § containing T, a complement in 2(7)/6 exists. As T,
was chosen arbitrarily, (7)/d is complementary and is a Boolean algebra.

Now suppose that (a) does not hold. This means that the set M of vertices of
degrees greater than two in 7 is infinite. First suppose that there exists a vertex a of
T such that there are infinitely many branches of 7 outgoing from a which contain
vertices of M. On each of these branches we choose one vertex of M ; the set of
those chosen vertices will be denoted by A,. Let T, be the least subtree of T
containing all vertices from M,. Evidently each vertex of M, is a terminal vertex of
T,. For each u € M, let v,(u), v,(u) be two distinct arbitrary vertices which are
adjacent to # in T and do not belong to T;; such vertices always exist, because «
has a degree greater than two in 7 and the degree 1 in T,. Let T, be the subtree of
T whose vertex set consists of all the vertices of 7, and of the vertices v,(«) for all
u € M,. Suppose that there exists T, with the above described properties. The join
T,v T, must be obtained from T by deleting fmxtely many vertices, thus T, must
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contain an infinite number of vertices v,(«) for « € M,. Thus it contains an infinite
subset M; of M, and the infinite subtree of T, which is the least subtree of T
containing the set M;. But then this subtree is a subtree of T,A T, which is
a contradiction with the finiteness of T,A T;. Now suppose that for each vertex a
only finitely many branches of T outgoing from a contain vertices of M. It is easy to
prove that then there exists a one-way infinite path P in T which contains an
infinite number of vertices of M. Denote these vertices by a,, @, a, ... in the
ordering according to the distance from the initial vertex of P. For each a, let b, be
a vertex adjacent to a, and not belonging to P; as a, € M for each n, the vertex b,
exists for each n. Evidently b,, # b, for m# n. Let the vertex set of T; consist of all
the vertices b, for n odd. Suppose that there exists T, with the above described
properties. As T,V T, is obtained from T by deleting a finite number of vertices, T,
must contain infinitely many (all but a finite number) vertices b, with n even,
therefore also infinitely many vertices a, with n even. This means that T, contains
a rest of P. This rest is contained in T,A T, and thus we have a contradiction with
the finiteness of ToA To.

Now suppose that (a) holds and (b) does not hold. Consider the tree 7, and the
forest F defined above. The forest F has infinitely many connected components
which are one-way infinite paths. Let the vertex set of T, consist of the vertex set of
T, and of initial vertices of all of these paths. The tree T; must contain all these
paths, otherwise there would be infinitely many vertices belonging to T and not to
T,v T,. But then all of these initial vertices are in T,A T, and T,A T, is infinite,
which is a contradiction.

Finally, suppose that (a) holds and (c) does not hold. We consider again the
forest F. It has infinitely many connected components having more than one
vertex. Consider a partition of the set of these components into two disjoint infinite
subsets C,, C,. Let T, be the least subtree of T which contains 7" as a subtree and
contains one vertex from each of these components. If there exists 7, with the
required properties, it must contain all but a finite number of these components;
otherwise T,v T, would not belong to the same class of é as T. But then T,A T,
contains a vertex from any of these components which belong to 7, and thus it is
infinite, which is a contradiction.

Now we shall prove a lemma.

Lemma. Let M be a countable set, let B(M) be the Boolean algebra of all
subsets of M, let 6, be the congruence on B(M) defined so that two elements of
B(M) are in 6, if and only if their symmetric difference is finite. Then the
cardinality of B(M)/é, is the power of the continuum.

Proof. Let € be one equivalence class of d,, let S € €. Any set R from € can be
expressed uniquely in the form R = (S — Tx)u Ui, where Tr <= S, Ur=c M — S and
Tk, Uk are finite. If we put f(R)=[Tx, Uz] for each R € €, we obtain an injection
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f of € into the family of ordered pairs of finite subsets of M. The family of all finite
subsets of M is countable, therefore also the family of the ordered pairs of these
subsets is countable. We see that each class € of is countable. As B(M) is the union
of all these classes € and is of the power of the continuum, B(M)/J, is also of the
power of the continuum.

This means that in any infinite set there exists a family of its subsets which is of
the power of the continuum and does not contain any two subsets which are in the
relation 9.

Theorem 10. Let T be an infinite tree. The lattice (T)/§ is finite, if and only if
the conditions (a), (b), (c) from Theorem 9 hold and T is locally finite. In the
opposite case the cardinality of (T)/J is at least the power of the continuum.

Proof. Let T be locally finite and let (a), (b), (c) hold. Consider again the tree
T’ and the forest F from the proof of Theorem 9. As T is locally finite, the number
of the connected components of F is finite. Let 7" be the least subtree of T which
contains 7’ and all finite connected components of F; the tree T" is evidently
finite. Let T,, T, be two subtrees of 7. Suppose that each infinite connected
component of F having an infinite intersection with 7, has an infinite intersection
with T; and vice versa. Then the symmetric difference between the vertex sets of T,
and T, can contain only the vertices of 7" and finitely many vertices from each
connected component of F. Thus this symmetric difference is finite and
(T,, T,) € 6. If T, has an infinite intersection with an infinite connected component
of F (i.e. the rest of some one-way infinite path) with which 7, has not an infinite
intersection, then the symmetric difference between the vertex sets of 7; and T,
contains infinitely many vertices of this component and (T3, T3) € 6. Analogously if
T, has an infinite intersection with an infinite connected component of F with
which 7, has not. Thus to each subfamily of the family of all infinite connected
components of F a class of § corresponds uniquely so that a subtree of T belongs to
this class if and only if it contains infinitely many vertices of each connected
component of this subfamily and of no other component. Thus £(7)/d is a finite
Boolean algebra whose number of generators is equal to the number of infinite
connected components of F, i.e. to the number of the ends of T.

Suppose that T is not locally finite. Let v be a vertex of T of an infinite degree,
let M be the set of vertices of T adjacent to v. We choose a family of subsets of M
of the power of the continuum with the property that no two elements of this family
have a finite symmetric difference. To any of these sets we assign the least subtree
of T which contains all the elements of this set. We obtain a family of subtrees of T
of the power of the continuum with the property that no two of its elements are in .
. ‘

Suppose that T is locally finite and (a) does not hold. Then there exists an infinite
path P in T containing infinitely many vertices of a degree greater than two. We
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consider the vertices a,, a,, a,, ... and the vertices b,, b., bs, ... as in the proof of
Theorem 9. With the set {b,, b,, bs, ...} we do the same consideration as with M
above.

Finally, suppose that T is locally finite, (a) holds and either (b) or (c) does not
hold. In both these cases F has an infinite number of connected components. From
each of them take a vertex which is adjacent to a vertex of 7'. The set of these
vertices is approached in the same way as M in the first case.

Theorem 11. If the lattice %(T) is given, then the tree T is determined uniquely
up to isomorphism. ,

Proof. The atoms of %(7) are all one-vertex subtrees of 7. Thus there is
a one-to-one correspondence between the atoms of £(7") and the vertices of 7 and
the vertex set of T is determined by ¥(T). Two vertices of a tree are adjacent, if
and only if there exists a subtree of this tree which contains these two vertices and
no others. Let u, v be two vertices of T corresponding to the atoms T,, T, of (7).
Then « and v are adjacent in T, if and only if the join 7, v T, is incomparable with
each atom of ¢(7) distinct from T, and T,.

Now we shall give a characterization of lattices which are isomorphic to
a maximal filter of the lattice of all subtrees of a tree. Any maximal filter of 2(T)
consists of all subtrees of T which contain a given vertexof T.1f T'is a tree and « is
a vertex of T, by §(T, u) we denote the filter of &(T) consisting of all subtrees of T
which contain u. As any two of these subtrees have a non-empty intersection,
®(T, u) is isomorphic to a sublattice of the Boolean algebra of all the subsets of
V—{u}, where V is the vertex set of T.

Now let M be a finite or countable set, let B(M) be the Boolean algebra of all
the subsets of M. By «/(M) we denote the family of all the complete sublattices £
of B(M) with the following properties:

(a) If x is an element of a finite height in B(M) and x € £, then there exists an
element y € £ such that x covers y in B(M). -

(B) If an element x € L of a finite height covers only one element y €  in B(M),
then y covers only one element of £ in B(M) or is the least element of L.

(v) Each element of 2 of an infinite height in B(M) is the join of some elements
of R of finite heights in B(M).

(8) & contains the greatest and the least element of B(M).

If x e B(M), then x is a subset of M and its height in B(M) is evidently equal to
the number of its elements. A complete sublattice is a sublattice closed under
forming infinite joins and infinite meets.

Let £, be the subset of £ consisting of all the elements x of ¥ with the property
that x has a finite height in B8(M) and covers only one element of ¥ in B(M)
(where e A(M)). By induction we can prove that the principal ideal of L
determined by an element of £, is a chain.
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Theorem 12. Let & be a lattice. Then the following two assertions are
equivalent:

(i) X is isomorphic to a lattice from s{(M) for some finite or countable set M.

(ii) ¥ is isomorphic to §(T, u) for some tree T and a vertex u of T.

Proof. (i)=>(ii). Let (i) hold; we may consider & directly as a [attice from
sI(M). Let ¥, be the above defined subset of £. Let T be a graph with the vertex
set L,u{o}, where o is the least element of &, such that each element of &, is
joined by an edge with the element y € ,U{0} which is covered by it. The graph T
is evidently a tree. Now let 7" be a subtree of T containing o. Each vertex of T"
different from o is some element of £,; let a(7") be the join of all of them; if 7"
consists only of o, then a(T') = 0. Thus each subtree of T containing o is mapped
by a onto some element of £. Now let T;, T, be two different subtrees of T, both
containing o. As they are different, at least one of them contains a vertex which is
not contained in the other. Thus, without loss of generality, let 7, contain some
vertex v which is not in 7,. Suppose a(T,)=a(T,). Then vva(T,)=a(T,) and
v=a(T) in & If V(T)) is the vertex set of T;, then a(T;)= V z and thus

z € V(Ty)

v= \V z. As &is a complete sublattice of B(M), it is infinitely distributive,

z € V(T

therefore v=vAa(T))=va V z= V (vaz). Suppose vAz#wv for all -

z € V(T,) z € V(Ty)
z€ V(T,). Then vaz<wv for each ze€ V(T;). The element v covers only one
element of ; let this element be w. This means v Az =w for each ze€ V(T;). But
then v= \/ (vAz)=w, which is a contradiction. Thus vAz=v for some
z € V(Ty)

z€e V(T,); this means z=v. But then v belongs to the principal ideal of R
determined by z; this ideal is a chain and all of its elements are in 7;. Thus v is in
T,, which is a contradiction. Thus for arbitrary two subtrees T;, T, of T containg o
the inequality 7, # T implies a(T,) # a(T3). The mapping «a is an injection. Now

we shall prove that each a € € is equal to a(T") for some subtree 7" of T containing
o. For elements of a finite height we prove this by induction. Let a be such an
element. If the height of a is 0, the element a =0 and a = a(T;), where T is the
subtree of T consisting only of the element 0. Now let the height of @ be #>0 and
suppose that the assertion is true for all the elements of a height less than 4. If
a € R,, then a = a(T,), where T, is the subtree of T whose vertex set is the principal
ideal determined by a (this ideal is a chain). If a ¢ £,, then it covers at least two
elements y,, y, of & whose heights in B(M) are equal to # — 1. By the induction
assumption the assertion holds for these elements y,, y,. Thus y,=a(T)),

y.=a(T,) where T,, T, are subtrees of 7T containing o. Then

a=yvy,=a(T)va(T;) and this is evidently equal to a(7"), where T" is the join

of T, and T,. Thus we have proved the assertion for all the elements of & which
have finite heights. Each element of £ having an infinite height is the join of some
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elements of finite heights. If a=\/a,, where I is some subscript set, then

el

a=a(T'),where T'=\/ T, the trees T, being such subtrees of T containing o for

cel
which a(T,) =a,. We have proved that a is a surjection. As it is also an injection, it
is a bijection. Evidently a(T,vT:)=a(T))va(T,), a(T\AT)=a(T)Ara(T).
Therefore a is an isomorphic mapping of F(T, o) onto £.

(ii)=>(i). Consider the lattice F(T, u). If T,e F(T, u) and is finite, then it
contains at least one terminal vertex distinct from «. By deleting such a vertex we
obtain a tree T, from T, ;in F(T, u) evidently T, covers T, and (a) is satisfied. If 7,
covers T, and no other element of F(T, u), then evidently 7, has only one terminal
vertex distinct from «. Then T, (described above) can have at most one terminal
vertex distinct from u and thus it covers only one tree T;; this tree is obtained from
T, by deleting this vertex; (B) holds. If some subtree T' € F(T, u) is infinite, then it
is evidently the join of some finite trees from F(T, u), therefore () holds. The
validity of (8) is evident.
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PEHMIETKA BCEX INONOEPEBLEB NEPEBA
Borpan 3enunka
Pe3omMme
B crarbe u3y4aercs cTpykTypa pewetku 2(7) Bcex moaaepeBbeB aepeBa 1. Ocob6oe BHUMaHHE
ynensietcs axrop-pemerke &(T)/6 pewerkn L(T) N0 KOHIrpyaHIUMH & ONPENENECHHOM TaK, YTO NS
aByx nouaepesbeB T,, T, nepea T mbl uMeeM (T,, T,) € 6 TOrna U TONLKO TOrAA, KOTa CAMMETPHYHAs

Pa3HOCTb MHOXECTB BepluMH AepeBbeB T, U T, koHe4yHa. Jloka3aHO, YTO AEPEBO OAHO3HAYHO OfM-
PENENEHO CBOEH PELETKOM MOAAEPEBLEB. XapakTepu30BaHbl MaKCHMaNbHble GwibTpbl pemieTkn (7).
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