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Math. S.ovaca 27,1977, No. 3, 277—286 

THE LATTICE OF ALL SUBTREES OF A TREE 

BOHDAN ZELINKA 

The present paper will be concerned with trees. A tree is a connected undirected 
graph without circuits. It may be finite or infinite. In this paper the null graph Ko (a 
graph whose vertex set and edge set are empty) and a graph consisting of one 
vertex and no edge will be considered also as trees. The null graph is a subgraph of 
every graph. The convenience of using the concept of the null graph is rather 
debatable, as shotfn in [2]. But in the present paper this concept is naturally 
needed. 

If r, and T2 are subtrees of a tree T, we put Tx Hk T2 if and only if Tx is a subtree 
of T2. The relation ^ so defined is a partial ordering on the set of all subtrees of 
a given tree T. This set with the relation ^ is evidently a lattice; we denote it by 
2(T). The lattice operations of join and meet will be denoted by v and A, 
respectively. 

If F, 6 S( 7}, T2 e 2( r ) , then Tx A T2 is the intersection of Tx and T29 i.e. the graph 
whose vertex set is the intersection of vertex sets of Tx and T2 and whose edge set is 
the intersection of edge sets of Tx and T2. It is evidently a tree and each common 
subtree of Tx and T2 is its subtree. If Tx A 7WKo, then Tx v T2 is the union of Tx and 
r2, i.e. the graph whose vertex set is the union of vertex sets of Tx and T2 and whose 
edge set is the union of edge sets of Tx and T2. It is evidently a tree and is contained 
in each subtree of T which contains both Tx and T2 as subtrees. But if Tx A T2 = Ko, 
the union of Tx and T2 is not a tree, because it is disconnected. To obtain the tree 
r, v T2 from it, it is necessary to add a path of T connecting the pair of vertices uu 

u2y where «, belongs to Tu ^ belongs to T2 and the distance between ux and «2 is 
the least of the distances of all such pairs of vertices (evidently this path is uniquely 
determined). 

We shall prove some theorems on the structure of S( T). In all theorems we shall 
tacitly suppose that T has at least three vertices. 

Theorem 1. The lattice 2(T) has the greatest element and the least one and is 
atomic. 

Proof. Evidently the least element of £(7*) is the null graph KQ and the greatest 
element of 8,(T) is the whole tree T. The atoms of 2(7*) are all subtrees which 
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consist only of one vertex. Any non-null subtree of F contains at least one vertex, 
therefore there exists an atom of W(F) which is less than or equal to it. 

Theorem 2. The lattice ii( F) is dually atomic, if and only if there does not exist 
a proper subtree of T containing ail the terminal vertices of T. 

Proof. Let T be a dual atom of ii(T). As T is a proper subtree of F, the set 5 
of vertices belonging to Fand not belonging to T is non-empty. As Fis connected, 
there exists at least one vertex v of S which is adjacent to some vertex w of F\ If 
we add the vertex v and the edge vw to F\ we obtain a subtree T of F. We have 
F'<T and, as T is a dual atom of i?(F), the equality T'= T holds. But then 
S = {v}. By deleting v from Fwe obtain a tree F\ therefore v must be a terminal 
vertex of T. We have proved that each dual atom of ^(T) is obtained from F by 
deleting one terminal vertex. Let there exist a proper subtree T0 of F containing all 
the terminal vertices of F. Then F0 is not contained in a dual atom of X?( F), because 
to each dual atom of £( T) there exists a terminal vertex of F not contained in it. On 
the other hand, if such a subtree does not exist, then to each proper subtree F, of F 
there exists a terminal vertex of F not contained in it. By deleting this vertex from 
F we obtain a dual atom of £(T) containing F,. 

ь.--1 bb 

• ö — 

a-з a-2 a-, °2 a 3 

Fig. 1 

Among the trees satisfying the condition from Theorem 2 there are all the trees 
without infinite paths, in particular all the finite trees. We shall show an example of 
a tree with infinite paths which satisfies it, too. The vertices of this tree are an and bn 

and the edges are anbn9 anan+l for all the integers n. This tree is in Fig. 1. An 
example of a tree which does not satisfy this condition is a tree consisting of one 
(one-way or two-way) infinite path. (If a tree T has no terminal vertices, then we 
consider it as a tree, any of whose subtrees contains all the terminal vertices of F.) 

Theorem 3. The lattice £( T) is non-modular. 
Proof. As mentioned above, we suppose that Fhas at least three vertices. Let v0 

be a vertex of F of a degree at least two, let vu v2 be two distinct vertices adjacent 
to i>0. By F! (or F2) we denote the subtree of F consisting only of the vertex v, (or 
v2 respectively). By F3 we denote the subtree of F consisting of the vertices v0 and 
vx and the edge joining them, by F4 we denote the subtree of F consisting of the 
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vertices v{), vx, v2 and the edges v0vx, v0v2. We have 7,< 7V The modularity of 
2(7) would imply 7, V ( 7 2 A 7 3 ) = ( 7 , V 72)A 7,. But 7, V ( 7 2 A 7 , ) = 7„ 
(7, v 72)A 7,= 7, and therefore 2(7) is not modular. 

Theorem 4. F^cA proper filter of the lattice 2(7) is a distributive lattice. 
Proof. Let ft be a proper filter of ft(7). Let 7, eft, 72eft. As ft is a filter, 

7, A 72 e ft. As ft is a proper filter, K0 ̂ ft and thus 7, A 72 =/Ko. But then 7, v 72 is 
the union of 7, and 72. This holds for any 7, and 72 from ft. As 7, A 72 is always 
the intersection of 7, and 72, the filter ft is a sublattice of the lattice of all subsets of 
the union of the vertex set and the edge set of 7. This lattice is distributive, 
therefore also ft is distributive. 

Theorem 5. The lattice ft(7) is complete. 
Proof is evident. 

Theorem 6. The lattice 2(7) is generated by its set of atoms. 
Proof. The assertion is evident when we know that the atoms of 2(7) are all 

one-vertex subtrees of 7. 
On the other hand, 2(7) is not generated by its dual atoms, even if it is dually 

atomic. 
Now we shall define an important congruence on 2(7). 

Theorem 7. Let o be a binary relation on 2( 7) defined so that for two elements 
7,, 72 o /2(7) we have (7,, T2) e d if and only if the symmetric difference between 
the vertex sets of 7, and T2 is finite. Then d is a congruence on 2(7). 

Proof. First we shall consider an arbitrary non-empty set M and the Boolean 
algebra 93(M) of all subsets of M. The finite subsets of M form an ideal $ of 93(M). 
As 93(M) is a Boolean algebra, the ideal $ is the kernel of some congruence <50 on 
93(M). If A G93(M), Be93(M), (A, B)ed0, then there exists Ce93(M), A>e& 
B0 e S such that A=A0uC,B = B0uC. Then the symmetric difference between A 
and B is contained in AoUB0, which is a finite set, thus it is also finite. On the other 
hand, let D e 93(M), E e 93(M) and let the symmetric difference between D and E 
be finite. We have D = (DnE)u(D-E), E = (DnE)u(E-D). The sets D-E 
and E — D are subsets of the symmetric difference between D and E, therefore 
they are finite. Thus D-Ee%, E-D e% and we have (D, E) e 60. Now let Mbe 
the set of all vertices of 7 and consider the congruence <50 on 93(M). If Tu T2 are 
subtrees of 7, let V(TX), V(72), V(7jv72) be vertex sets of 7„ 72, 7 tv7 2 

respectively. The tree 7 t v7 2 is either equal to the union of Tt and 72, or is 
obtained from this union by adding some finite path. In both cases the symmetric 
difference of the sets V(TX v 72) and V(Tx)v V(T2) is finite and thus (V(Txv T2), 
V( 7,)u V( T2)) e d0. Thus two subtrees of 7 are in the relation 8 if and only if their 
vertex sets are in <50. Thus 8 is a congruence on 2(7). 

We shall prove some theorems concerning the factorlattice 2(T)/6. 
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Theorem 8. The factor-lattice %(T)/d is distributive. 
Proof. From the proof of Theorem 7 it follows that each congruence class of d 

consists of trees whose vertex sets are in one congruence class of <5„. If F,, T2 are in 
ii( 7), then the vertex set of F, v T2 (or F, A T2) lies in the same congruence class of 
d0 as V(Tx)u V(T2) (or V(Tx)n V(T2), respectively). Thus %(T)/6 is isomorphic to 
a sublattice of 93(M)/<5„. The lattice 23(M)/<5„ is a Boolean algebra, therefore 
£(7)/<5 must be distributive. 

Before proving a further theorem, we shall say something about the concept of 
the end of a locally finite graph, defined by R. HALIN [1]. The rest of a one-way 
infinite path is a part of this path which is also a one-way infinite path. Two 
one-way infinite paths Wu W2 of a locally finite graph G are called equivalent, if 
and only if there exists a one-way infinite path W (not necessarily distinct from Wx 

and W2) in G such that each rest of W has common vertices with both Wx and W2. 
This relation is an equivalence on the set of ail one-way infinite paths in G and its 
equivalence classes are called ends of G. 

Now suppose that G is a locally finite tree. If two paths of a tree have two 
common vertices, then they have also the whole path connecting these two vertices 
in common. The path W from the definition of the end has infinitely many common 
vertices with Wu therefore it has a common rest with Wx. Analogously it has 
a common rest with W2 and therefore Wx and W2 have a common rest. On the 
other hand, if Wx and W2 have a common rest, we many put W to be this common 
rest. Thus two one-way infinite paths Wu W2 of a locally finite tree T belong to the 
same end of T, if and only if they have a common rest. 

In the case of trees we can extend the concept of the end to all the trees, not only 
locally finite ones. Here we define the equivalence of two one-way infinite paths so 
that two one-way infinite paths are equivalent, if and only if they have a common 
rest. This is evidently an equivalence. The classes of this equivalence will be called 
the ends of the tree. 

In the case when Tis finite, the congruence 6 is the universal relation on £(T) 
and thus &(T)/d is a trivial lattice consisting of one element. In the following we 
shall consider only infinite trees. 

Theorem 9. Let T be an infinite tree. The factor-lattice %,(T)/d is a Boolean 
algebra, if and only if the following conditions are satisfied: 

(a) T has a finite number of vertices of a degree greater than two. 
(b) T has a finite number of ends. 
(c) The tree obtained from T by deleting all the terminal vertices has a finite 

number of the terminal vertices. 
Proof. Let (a), (b), (c) hold. Let V be the least subtree of T containing all the 

vertices which have a degree greater than two in T. Let M be the set of these 
vertices. Let Tu be the subtree of T consisting only of the vertex u for any u e M. 
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Then T = V 7L ; it is the join of finitely many finite subtrees of F, therefore it is 
u e M 

finite. The factor-lattice %(T)ld is distributive; to prove that it is a Boolean algebra 
it is sufficient to prove its complementarity. Let T0 be a subtree of T. The class of 6 
complementary to the class containing T0 is the class of d containing a tree T0 

whose meet with T0 is finite (belongs to the same class of 6 as i Q and whose join 
with 7o is obtained from T by deleting finitely many vertices (belongs to the same 
class of d as T). We shall construct such a tree T0. Let F be the forest obtained 
from T by deleting all vertices of T. No connected component of F contains 
a vertex of a degree greater than two and each of them contains at least one vertex 
of a degree less than two (the vertex joined in T with a vertex of T). Therefore 
each of them is either an isolated vertex, or a finite path, or a one-way infinite path. 
From (b) it follows that there are only finitely many infinite connected components 
of F. From (c) it follows that there are only finitely many finite connected 
components of F consisting of more than one vertex. Now the tree T0 is the join of 
T and all connected components of F which are not subtrees of T0. Consider the 
meet T0 A T0. If C is some connected component of F which is a one-way infinite 
path, then C is a subtree of T0 if and only if it is not contained in T0. In this case T0 

contains only finitely many vertices of C; otherwise it would have to contain some 
rest of this path and its initial vertex, i.e. the whole C. Thus F0A T0 contains only 
a finite number of vertices of any infinite connected component of F. It does not 
contain any vertex of a connected component of F consisting of one vertex; such 
a component is contained either in T0, or in T0, but not in both of them. Thus the 
vertex set of F0A T0 is the union of some subset of the vertex set of T and of some 
finite subsets of vertex sets of connected components of F containing more than 
one vertex. As the number of such components is finite, also the vertex set of 
7̂ }A T0 is finite. Now from the construction it is clear that T0vT0= T. We have 
proved that to the class of 5 containing T0 a complement in %(T)I5 exists. As T0 

was chosen arbitrarily, %,(T)/d is complementary and is a Boolean algebra. 

Now suppose that (a) does not hold. This means that the set M of vertices of 
degrees greater than two in T is infinite. First suppose that there exists a vertex a of 
T such that there are infinitely many branches of T outgoing from a which contain 
vertices of M. On each of these branches we choose one vertex of M; the set of 
those chosen vertices will be denoted by MQ. Let Tx be the least subtree of T 
containing all vertices from Mo. Evidently each vertex of M0 is a terminal vertex of 
F,. For each ueMo let vY(u)> v2(u) be two distinct arbitrary vertices which are 
adjacent to u in T and do not belong to Tx; such vertices always exist, because u 
has a degree greater than two in T and the degree 1 in 71. Let T0 be the subtree of 
T whose vertex set consists of all the vertices of 71 and of the vertices vx(u) for all 
u e M0. Suppose that there exists T0 with the above described properties. The join 
r0v T0 must be obtained from T by deleting finitely many vertices, thus T0 must 
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contain an infinite number of vertices v2(u) for u e M0. Thus it contains an infinite 
subset Mo of M0 and the infinite subtree of F, which is the least subtree of T 
containing the set M0. But then this subtree is a subtree of T0AT0, which is 
a contradiction with the finiteness of T0 A T0. NOW suppose that for each vertex a 
only finitely many branches of T outgoing from a contain vertices of M. It is easy to 
prove that then there exists a one-way infinite path P in T which contains an 
infinite number of vertices of M. Denote these vertices by a,, a2, a3, ... in the 
ordering according to the distance from the initial vertex of P. For each an let bn be 
a vertex adjacent to an and not belonging to P; as an eM for each AZ, the vertex bn 

exists for each n. Evidently bm + bn for m + n. Let the vertex set of T0 consist of all 
the vertices bn for n odd. Suppose that there exists T0 with the above described 
properties. As P0v T0 is obtained from Pby deleting a finite number of vertices, T0 

must contain infinitely many (all but a finite number) vertices bn with n even, 
therefore also infinitely many vertices an with n even. This means that T0 contains 
a rest of P. This rest is contained in T0/\ T0 and thus we have a contradiction with 
the finiteness of T0AT0. 

Now suppose that (a) holds and (b) does not hold. Consider the tree P, and the 
forest F defined above. The forest F has infinitely many connected components 
which are one-way infinite paths. Let the vertex set of T0 consist of the vertex set of 
F, and of initial vertices of all of these paths. The tree T0 must contain all these 
paths, otherwise there would be infinitely many vertices belonging to T and not to 
T0v T0. But then all of these initial vertices are in T0A T0 and T0A T0 is infinite, 
which is a contradiction. 

Finally, suppose that (a) holds and (c) does not hold. We consider again the 
forest F. It has infinitely many connected components having more than one 
vertex. Consider a partition of the set of these components into two disjoint infinite 
subsets G, C2. Let F0 be the least subtree of T which contains T as a subtree and 
contains one vertex from each of these components. If there exists % with the 
required properties, it must contain all but a finite number of these components; 
otherwise F0v T0 would not belong to the same class of 6 as T. But then T0AT0 

contains a vertex from any of these components which belong to T0 and thus it is 
infinite, which is a contradiction. 

Now we shall prove a lemma. 

Lemma. Let M be a countable set, let 93(M) be the Boolean algebra of all 
subsets of M, let d0 be the congruence on 93(M) defined so that two elements of 
93 (M) are in 60 if and only if their symmetric difference is finite. Then the 
cardinality of 93(M)/<50 is the power of the continuum. 

Proof. Let ^ be one equivalence class of 60, let Se c€. Any set R from ^ can be 
expressed uniquely in the form R = (S-TR)uUR, where TR c 5, UR^M-S and 
TR, UR are finite. If we put f(R) = [TR, UR] for each R e <£, we obtain an injection 
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/ of <€ into the family of ordered pairs of finite subsets of M. The family of all finite 
subsets of M is countable, therefore also the family of the ordered pairs of these 
subsets is countable. We see that each class <€ of is countable. As 23(M) is the union 
of all these classes <€ and is of the power of the continuum, 93(M)/(50 is also of the 
power of the continuum. 

This means that in any infinite set there exists a family of its subsets which is of 
the power of the continuum and does not contain any two subsets which are in the 
relation 6. 

Theorem 10. Let Tbe an infinite tree. The lattice ii(T)/d is finite, if and only if 
the conditions (a), (b), (c) from Theorem 9 hold and T is locally finite. In the 
opposite case the cardinality of 2(T)/6 is at least the power of the continuum. 

Proof. Let T be locally finite and let (a), (b), (c) hold. Consider again the tree 
T and the forest F from the proof of Theorem 9. As Fis locally finite, the number 
of the connected components of F is finite. Let T' be the least subtree of T which 
contains T and all finite connected components of F ; the tree T' is evidently 
finite. Let Tu T2 be'two subtrees of T. Suppose that each infinite connected 
component of F having an infinite intersection with Tx has an infinite intersection 
with T2 and vice versa. Then the symmetric difference between the vertex sets of Tx 

and T2 can contain only the vertices of T' and finitely many vertices from each 
connected component of F. Thus this symmetric difference is finite and 
(T,, T2) e d. If r, has an infinite intersection with an infinite connected component 
of F (i.e. the rest of some one-way infinite path) with which T2 has not an infinite 
intersection, then the symmetric difference between the vertex sets of Tx and T2 

contains infinitely many vertices of this component and (71, T2) 4 6. Analogously if 
T2 has an infinite intersection with an infinite connected component of F with 
which F, has not. Thus to each subfamily of the family of all infinite connected 
components of F a class of 6 corresponds uniquely so that a subtree of Tbelongs to 
this class if and only if it contains infinitely many vertices of each connected 
component of this subfamily and of no other component. Thus 2(T)/d is a finite 
Boolean algebra whose number of generators is equal to the number of infinite 
connected components of F, i.e. to the number of the ends of T. 

Suppose that T is not locally finite. Let v be a vertex of T of an infinite degree, 
let M be the set of vertices of T adjacent to v. We choose a family of subsets of M 
of the power of the continuum with the property that no two elements of this family 
have a finite symmetric difference. To any of these sets we assign the least subtree 
of T which contains all the elements of this set. We obtain a family of subtrees of T 
of the power of the continuum with the property that no two of its elements are in 
6. 

Suppose that Tis locally finite and (a) does not hold. Then there exists an infinite 
path P in T containing infinitely many vertices of a degree greater than two. We 
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consider the vertices ax, a2, a3, ... and the vertices bx, b2, b3, ... as in the proof of 
Theorem 9. With the set {bx, b2, b3, ...} we do the same consideration as with M 
above. 

Finally, suppose that 7 is locally finite, (a) holds and either (b) or (c) does not 
hold. In both these cases Fhas an infinite number of connected components. From 
each of them take a vertex which is adjacent to a vertex of T. The set of these 
vertices is approached in the same way as M in the first case. 

Theorem 11. If the lattice 2(7^ is given, then the tree Tis determined uniquely 
up to isomorphism. 

Proof. The atoms of 2(7) are all one-vertex subtrees of 7. Thus there is 
a one-to-one correspondence between the atoms of 2(7) and the vertices of Fand 
the vertex set of T is determined by 2(7). Two vertices of a tree are adjacent, if 
and only if there exists a subtree of this tree which contains these two vertices and 
no others. Let u, v be two vertices of Tcorresponding to the atoms Tu, Tv of 2(F). 
Then u and v are adjacent in T, if and only if the join Tv v Tv is incomparable with 
each atom of 2(7) distinct from Tu and Tv. 

Now we shall give a characterization of lattices which are isomorphic to 
a maximal filter of the lattice of all subtrees of a tree. Any maximal filter of 2(7) 
consists of all subtrees of 7 which contain a given vertex of T. If T is a tree and u is 
a vertex of T, by %(T, u) we denote the filter of 2( 7) consisting of all subtrees of T 
which contain u. As any two of these subtrees have a non-empty intersection, 
Jv(F, u) is isomorphic to a sublattice of the Boolean algebra of all the subsets of 
V— {u}, where V is the vertex set of T. 

Now let M be a finite or countable set, let 23(M) be the Boolean algebra of all 
the subsets of M. By s£(M) we denote the family of all the complete sublattices 2 
of 83(M) with the following properties : 

(a) If x is an element of a finite height in 23(M) and x e 2, then there exists an 
element y e 2 such that x covers y in 93(M). 

(j3) If an element x e 2 of a finite height covers only one element y e 2 in 23(M), 
then y covers only one element of 2 in 23 (M) or is the least element of 2. 

(y) Each element of 2 of an infinite height in 23(M) is the join of some elements 
of 2 of finite heights in 23(M). 

(6) 2 contains the greatest and the least element of 83(M). 
If x e 23(M), then x is a subset of M and its height in 23(M) is evidently equal to 

the number of its elements. A complete sublattice is a sublattice closed under 
forming infinite joins and infinite meets. 

Let 20 be the subset of 2 consisting of all the elements x of 2 with the property 
that x has a finite height in 23(M) and covers only one element of 2 in S3(M) 
(where 2es£(M)). By induction we can prove that the principal ideal of 2 
determined by an element of 20 is a chain. 
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Theorem 12. Let 2 be a lattice. Then the following two assertions are 
equivalent: 

(i) 2 is isomorphic to a lattice from sd(M) for some finite or countable setM. 
(ii) 2 is isomorphic to JKF, u) f°r some tree T and a vertex u of T 
Proof. (i):->(ii). Let (i) hold; we may consider 2 directly as a lattice from 

s$(M). Let 20 be the above defined subset of 2. Let Foe a graph with the vertex 
set 20u{o}, where o is the least element of 2, such that each element of 20 is 
joined by an edge with the element y e20u{o} which is covered by it. The graph T 
is evidently a tree. Now let T be a subtree of T containing o. Each vertex of T 
different from o is some element of 2 0 ; let a(T) be the join of all of them; if T 
consists only of o, then a(T) = o. Thus each subtree of Tcontaining o is mapped 
by a onto some element of 2. Now let Tl9 T2 be two different subtrees of T, both 
containing o. As they are different, at least one of them contains a vertex which is 
not contained in the other. Thus, without loss of generality, let T2 contain some 
vertex v which is not in Tx. Suppose a(Tx) = a(T2). Then vva(Tx) = a(Tx) and 
v^a(T) in 2. If V(TX) is the vertex set of F„ then a(Tx)= V z and thus 

z e V(T,) 

v S V z. As 2 is a complete sublattice of 23(M), it is infinitely distributive, 
z e V(T.) 

therefore v = vAa(Tx) = vA V z = V (VAZ). Suppose VAZ^V for all 
z e V(T,) r e V(T,) 

ze V(TX). Then VAZ<V for each ze V(TX). The element v covers only one 
element of 2 ; let this element be w. This means v AZ = w for each z e V(TX). But 

then v = V (VAZ)^W, which is a contradiction. Thus VAZ = V for some 
z e V(T,) 

zeV(Tx); this means z = v. But then v belongs to the principal ideal of 2 
determined by z; this ideal is a chain and all of its elements are in Tx. Thus v is in 
F„ which is a contradiction. Thus for arbitrary two subtrees Tu T2 of Tcontaing o 
the inequality Tx =£ T2 implies a(Tx)4 a(T2). The mapping a is an injection. Now 
we shall prove that each a e 2 is equal to a(T) for some subtree T of Tcontaining 
o. For elements of a finite height we prove this by induction. Let a be such an 
element. If the height of a is 0, the element a = o and a = a(T0)> where T0 is the 
subtree of T consisting only of the element o. Now let the height of a be h > 0 and 
suppose that the assertion is true for all the elements of a height less than h. If 
a e 20, then a = a(Ta), where Ta is the subtree of Twhose vertex set is the principal 
ideal determined by a (this ideal is a chain). If a £20, then it covers at least two 
elements y„ y2 of 2 whose heights in 93(M) are equal to h — 1. By the induction 
assumption the assertion holds for these elements yu y2. Thus yx = a(Tx), 
y2 = a(T2) where Tu T2 are subtrees of T containing o. Then 
a = yx vy2 = a(Tx)va(T2) and this is evidently equal to a(T), where T is the join 
of Tx and T2. Thus we have proved the assertion for all the elements of 2 which 
have finite heights. Each element of 2 having an infinite height is the join of some 
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elements of finite heights. If a = \f at, where 7 is some subscript set, then 

a = a(T), where T =\f Tt, the trees Tt being such subtrees of Tcontaining o for 

which a(Tt) = aL. We have proved that a is a surjection. As it is also an injection, it 
is a bijection. Evidently a(Tx v T2) = a(Tx)va(T2), a(TxAT2) = a(Tx)Aa(T2). 
Therefore a is an isomorphic mapping of F(T, o) onto i*. 

(ii)-->(i). Consider the lattice F(T, u). If TxeF(T,u) and is finite, then it 
contains at least one terminal vertex distinct from u. By deleting such a vertex we 
obtain a tree F2 from Tx; in F(T, u) evidently F, covers F2 and (a) is satisfied. If Tx 

covers T2 and no other element of F(T, u), then evidently 71 has only one terminal 
vertex distinct from u. Then T2 (described above) can have at most one terminal 
vertex distinct from u and thus it covers only one tree T3; this tree is obtained from 
T2 by deleting this vertex; ((3) holds. If some subtree T eF(T, u) is infinite, then it 
is evidently the join of some finite trees from F(T, u), therefore (y) holds. The 
validity of (6) is evident. 
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РЕШЕТКА ВСЕХ ПОДДЕРЕВЬЕВ ДЕРЕВА 

Богдан Зел инка 

Резюме 

В статье изучается структура решетки 2(Т) всех поддеревьев дерева Т. Особое внимание 
уделяется фактор-решетке 2(Т)/д решетки 2(Т) по конгруэнции д определенной так, что для 
двух поддеревьев Т,, Т2 дерева Тмы имеем (Т,, Т2)ед тогда и только тогда, когда симметричная 
разность множеств вершин деревьев Т, и Т2 конечна. Доказано, что дерево однозначно оп­
ределено своей решеткой поддеревьев. Характеризованы максимальные фильтры решетки 2(Т). 
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