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ON THE EXTENSION OF MEASURES 

RASTISLAV POTOCKY 

The purpose of this paper is to extend a measure defined on an algebra A and 
having values in a vector lattice to a measure on the smallest a-algebra containing 
A. We present two classes of spaces in which the extension is possible. At the end 
of the paper we derive several results from the main theorem; some of them are 
known, the rest seem to be new. 

We recall some notions and definitions which will be used throughout the paper. 
The vector lattice X is called 

a) Dedekind o-complete if every non-empty at most countable subset ofX which 
is bounded from above has a supremum. 

b) o-separable if every non-empty subset Y cz X possessing a supremum contains 
an at most countable subset possessing the same supremum as Y. 

We shall say that the sequence xn in a Dedekind o-complete vector lattice X is 
order convergent to an element x in X, if lim sup xn = lim inf xn=x. The above 
definitions as well as many interesting results on vector lattices can be found in [1], 
[2]. 

A set function m defined on an algebra A and having values in a Dedekind 
o-complete vector lattice X is said to be a (vector) measure if 

1) m(0) = O; 
2) m(E)^0 for every E in A; 

3) m(E) = ^m(Ei) for every disjoint sequence (En) of sets in A whose union is 
i = i 

E. 
There is another definition of measure. A set function m on an algebra A with 

values in a Dedekind o-complete vector lattice X is a measure if 
1) m(0) = O; 
2) m(E)^0 for every EeA; 
3) m(E) + m(F) = m(EuF) + m(EnF) for every E, FeA; 
4) m(E) = lim m(En) (in o-sense) for every increasing sequence (En) of sets in 

A such that E = uEn e A. 
It is easy to prove that both definitions are, in fact, the same. 

359 



A linear functional on X is called 
a) positive (monotone) if Tx^O for all x = 0 ; 
b) order continuous if for each sequence (xn) in X with the order limit x, Txn 

converges to Tx; 
c) o-bounded if it maps o-bounded sets into bounded sets. 
In what follows the set of all o -bounded linear functionals and the set of all linear 

functional continuous with respect to a topology on X will be denoted by X+ and 
X*, respectively. 

Theorem 1. If mis a (vector) measure on an algebra A with values in a Dedekind 
o-complete o-separable vector lattice such that the set of all o-continuous linear 
functionals on X separates points of X, then there is a unique (vector) measure rh 
on the o-algebr a S(A) such that for E in A m(E) = m(E). 

Proof. The measure m is an operator on A with the following properties: 
1) EczF=->m(E)^m(F) for every E , FeA ; 
2) m(E) + m(F) = m(EuF) + m(EnF) for every E , Fe A ; 
3) E czF^m(F) = m(E) + m(F\E) for every E, FeA; 
4) m(E\jF)7=km(E) + m(F) for every E , FeA ; 
5) En]E,En,E eA =>m(E) = lim m (En) for every sequence (En) of sets in A. 
Let 5 denote the set of all subsets of the basic space Q. Put B = {EeS; 

3(En)e A ; E n | E } and define m,(E) = lim m(En) for every E in B. The definition 
does not depend on the choice of the sequence (En). 

Then define m2(E) = inf {m,(F); EaFeB} for every set E in S. It follows that 
m2 is a monotone operator on S with values in X such that m 2 ( £ u F ) § 
m2(E) + m2(F) for every E , FeS. Moreover m2 coincides with m on A. 

For every monotone, o-continuous linear functional T on X define now an 
operator *T from A into R (the field of real numbers) as follows: *T(E) = Tm(E) 
for every E eA. *T has the following properties. 

1) E c z F = ^ * T ( E ) S * T ( F ) ; 
2) *T(E) + *T(F) = *T(EuF) + *T(EnF); 
3) E czF^>*T(F) = *T(E) + *T(E\E); 
4) *T(EuF)^*T(E) + *T(F); 
5) En ]E, En,E eA ^*T(E) = lim *T(En) for every sequence (En) of sets in A. 
Then put *T(E) = sup*T(En) = sup Tm(En) for every EeB, EneA, E n f E . 

One can show that this is a correct definition. It follows that T*(E) = Tmx(E). 
Finally define T**(E) = M{T*(F); EczFeB} for every EeS. 
Since the field of real numbers is o-separable, we may suppose that there exists 

a decreasing sequence (Fn) of elements in B greater than E such that 

T**(E) = in f{T*(F n ) ;EczF n GB}. 

On the other hand, since X is supposed to be o-separable, we have m2(E) = 
inf {m,(Gn); E cz Gn eB } and, consequently, T**(E) = M{T*(Fn); E czFn eB } = 
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inf{Tmx(Fn); EczFneB}=T mi{mx(Fn), EaFneB}^Tm2(E) for every E in 
S. The reverse inequality is immediate. 

Denote by L the set of all E e S such that 

sup{m2(C) ;E^CeD} = inf {m2(F); F c z F e B }, 

where D is the set of all E e S for which there exists a decreassing sequence (An) of 
elements of A such that An[E. 

We define, similarly, 

L* = { F e S ; s u p { T * * ( C ) ; F 3 C e D } = i n f { T * * ( F ) ; F c z F 6 B } } . 

Since sup{m2(C r t); F Z D C „ e D } = inf {m2(Frt); E c z F r t e E } with an increasing 
sequence (Crt) and a decreasing sequence (Frt) implies that sup{T**(C r t); FZD 
C r t e D } = inf{T**(Fr t); F c z F r t e H } , we have LczL*. 

The next problem is to prove that if (Frt) is a monotone sequence in L which 
converges to a set E in S, then E belongs to L. Since L czL*, we obtain from the 
extension theorem for real valued measures that EeL*, i.e. sup{T**(C r t); 
E => Cn e D} = inf {T**(Fn); E czFn e B }. It follows, since the set of all o-continuo
us linear functional separates points of X, that sup{m2(C r t); F Z D C „ ' G D } = 

inf{m2(Frt'); FczF r t ' e £} , i.e. that EeL. 
Since L contains A, we may suppose the existence of the smallest set N 

containing A with the following property: Frt e N , Fn]FeS(Fn[FeS)^>FeN. 
Since N = S(A), we define m(E) = m2(E) for EeN. 
It is evident that m(0) = 0 and m ( F ) ^ 0 for every E eS(A). In order to prove 

the continuity from below, consider arbitrary EneS(A), En]E. We have im
mediately that m(F)i_Uim m(En) since m is monotone. The desired result follows 
then from the fact that T**(E) = lim T**(En), i.e. Tm2(E) = lim Tm2(En) for every 
linear functional under consideration and from the fact that the set of all 
o -continuous linear functional separates points of X. 

The equality m(E) + m(F) = m(EuF) + m(EnF) and the uniqueness of m 
follow without difficulty. 

Corollary 1. (cf. [3], th. 11) If X is a regular Dedekind o-complete vector lattice 
such that X + separates points of X, then the extension theorem holds. 

Proof. Every regular Dedekind a-complete vector lattice is o-separable and 
every o -bounded linear functional on such a space is o -continuous. 

Theorem 2. Let X be a Dedekind o-complete, o-separable locally convex space 
with an ordering given by a closed cone. Let xn-^-+x imply T(xn)-> T(x) for every 
TeX*. Then for every measure on an algebra A with values in X there exists 
a unique extension to S(A). 

Proof. Analoguous to that of Theorem 1. 
So far we have been concerned with a set function which was a measure in the 

o-sense. We can, however, extend our results to the case when we are primarily 
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interested in the topology of X. Substituting in the above definition of measure 

a topological convergence for the o -convergence, we shall speak about a (vector) 

measure in the topological sense. The following results should be compared with 

[4], [5], [6]. 
Theorem 3. Let X be a Dedekind o-complete, o-separable locally convex space 

oredered by normal cone and let every continuous linear functional be o-continuo-
us. Then every measure (in the topological sense) on an algebra A with values in 
X can be uniquely extended to 5 (A) . 

Proof. Since the cone is closed, the set function under consideration is 
a measure in the o-sense as well. If m means the extension to 5 ( A ) mentioned in 

Theorem 2, we have that m(En)—^->m(E) whenever En}E, En, E eS(A). Since 
the cone is normal, the result follows. 

Theorem 4. Let X be a Dedekind o-complete, o-separable complete metrizable 
locally convex space ordered by a closed cone and let every continuous linear 
functional be o-continuous. Then for every measure on an algebra A with values in 
X there is a unique extension to 5 (A) . 

Proof. The above assumptions imply normality of the cone. 
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О ПРОДОЛЖЕНИИ МЕР 

Растисл ав П о т о ц к и 

Резюме 

Пусть т - векторная мера определена на алгебре А с значениями в о - полной о — 
сепарабельной векторной решетке X такой, что семейство всех о - непрерывных линейных форм 
разделяет ее точки. Тогда существует векторная мера т на а-алгебре 5(А) порожденной 
алгеброй А, являющаяся продолжением т. Мера т определена однозначно. 
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