Mathematica Slovaca

Ján Beka

On the tripartite conjecture

Mathematica Slovaca, Vol. 35 (1985), No. 3, 239--241

Persistent URL: http://dml.cz/dmlcz/136395

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON THE TRIPARTITE CONJECTURE

JÁN BEKA

A complete tripartite graph $K(A, B, C)=K_{m, n, s}$, where m, n, s are positive integers, is a graph whose vertex set is the union of pairwise disjoint sets A, B, C (called parts of this graph) of cardinality m, n and s, respectively. Two vertices u and v of $K_{m, n, s}$ are adjacent if only if they belong to different parts.

An isomorphic factorisation of a graph $G=(V, E)$ is a partition $\left\{E_{1}, \ldots, E_{t}\right\}$ of the edge set of G such that the spanning subgraphs $\left(V, E_{1}\right), \ldots,\left(V, E_{t}\right)$ are all isomorphic to each other. Let G / t denote the set of graphs which occur as factors in an isomorphic factorisation of G into exactly t factors. We say G is divisible by t, written $t \mid G$, if G / t is not empty.

Harary, Robinson and Wormald in [2] investigated for which t a complete tripartite graph $K_{m, n, s}$ is divisible by t. They proved that if $t=2$ or $t=4$, then $K_{m, n, s} / t$ is not empty, and if $t>1$ (odd), $m \geqslant t(t+1)$ and t divides $2 m+1$, then $K_{1,1, m} / t$ is empty.

The authors of [2] expressed the following conjecture.
Tripartite conjecture. Consider a complete tripartite graph $K_{m, n, s}$ and an integer $t>1$. If for all m, n and s the condition $t \mid m n+m s+n s$ implies the existence of a graph in $K_{m, n, s} / t$, then t is even, and conversely.
S. Quinn has just proved the tripartite conjecture for $t=6$. We shall prove that the conjecture holds if at least two parts have equal numbers of vertices. For the standard graph theoretic terminology we follow the book by Harary [1].

Theorem. Let t be even and $t \mid m(m+2 s)$. Then $K_{m, m, s}$ is divisible by t.
Proof. Suppose $m(m+2 s)$ is divisible by t. Since t is even, m must be even. At first we shall construct a graph in $K_{m, m, s} / 4$.

Let $A_{1}, A_{2}, B_{1}, B_{2}$ and C be pairwise disjoint vertex sets such that A_{1}, A_{2}, B_{1} and B_{2} have cardinality $m / 2$ each and C has cardinality s, and let $A=A_{1} \cup A_{2}$ and $B=B_{1} \cup B_{2}$. Define spanning subgraphs $G_{i}(i=1,2,3,4)$ of $K(A, B, C)$ in the following way: $G_{1}=K\left(B_{1}, A_{2} \cup C\right), G_{2}=K\left(B_{2}, A_{1} \cup C\right), G_{3}=K\left(A_{1}, B_{1} \cup C\right)$ and $G_{4}=K\left(A_{2}, B_{2} \cup C\right)$. The edge sets of G_{i} partition the edge set of $K(A, B, C)$. Clearly G_{i} are all isomorphic to $K_{m / 2, m / 2+s}$ and hence the latter graph is in $K_{m, m, s} / 4$. The graphs G_{i} are illustrated in the Figure. Here each letter represents a vertex set
and each edge between two sets represents the inclusion of all edges joining the two sets. We consider two cases.

Case 1. Let $t \equiv 0(\bmod 4), t=4 \cdot t_{1}$. Since by the hypothesis t divides $m(m+2 s)$, then $(m / 2)(m / 2+s)$ must be divisible by t_{1}. As G_{i} is a complete bipartite graph, according to Theorem 1 from [2] there exists a graph G in G_{i} / t_{1}. Evidently, G is also in $K_{m, m, s} / t$.

Fig. 1

Case 2. Let $t \equiv 2(\bmod 4), t=2 \cdot t_{2}, t_{2} \equiv 1(\bmod 2)$. According to the assumption t divides $m(m+2 s)$ so that t_{2} divides $2(m / 2)(m / 2+s)$. As t_{2} is odd, $(m / 2)$ ($m / 2+s$) must be divisible by t_{2}.

Let $H_{1}=G_{1} \cup G_{2}$ and $H_{2}=G_{3} \cup G_{4}$. Then H_{1} (as well as H_{2}) contains $2(m / 2)$ $(m / 2+s)$ edges and since t_{2} divides $(m / 2)(m / 2+s)$, we have $t_{2}=a \cdot b$ for some a and b such that a divides $m / 2$ and b divides $m / 2+s$.

Let $X_{r}, Y_{r}(r=1,2, \ldots, b)$ and $U_{j}, B_{j}(j=1,2, \ldots, a)$ be vertex sets such that each X_{r} or Y_{r} has cardinality $(m / 2+s) / b$ and each U_{j} or V_{j} has $m /(2 a)$; let

$$
A_{2} \cup C=\bigcup_{r=1}^{b} X_{r}, \quad A_{1} \cup C=\bigcup_{r=1}^{b} Y_{r}, \quad B_{1}=\bigcup_{i=1}^{a} U_{1}, \quad B_{2}=\bigcup_{i=1}^{a} V_{1}
$$

and

$$
Y_{1}=X_{b}, \quad Y_{2}=X_{b-1}, \ldots, Y_{k}=X_{b-k+1},
$$

where k is the greatest integer such that $k(m / 2+s) / b \leqslant s$. In the case of $k(m / 2+s) / b<s$, let Y_{k+1} and X_{b-k} be such that $Y_{k+1} \cap X_{b-k}=\emptyset, \bigcup_{i=1}^{k+1} Y_{i} \supseteq C$ and $\bigcup_{i=b-k}^{b} X_{i} \supseteq C$.

We want for $b>1$ to construct from sets X_{r}, Y_{r} set sequences $\left\{M_{i}\right\}_{i=1}^{b}$ and $\left\{N_{i}\right\}_{i=1}^{b}$ such that members of different sequences with equal indices will be disjoint. If $X_{n} \cap Y_{n}=\emptyset$, where $n=[(b+1) / 2]$, put $M_{i}=X_{i}$ and $N_{i}=Y_{1}$ for every $i=$ $1,2, \ldots, b$, and if $X_{n} \cap Y_{n} \neq \emptyset$, put $M_{i}=X_{i}(i=1,2, \ldots, b)$ and
$N_{1}=Y_{1}, \quad N_{2}=Y_{2}, \ldots, N_{n-1}=Y_{n-1}, \quad N_{n}=Y_{n+1}, \quad N_{n+1}=Y_{n}, \quad N_{n+2}=Y_{n+2}, \ldots, N_{b}$ $=Y_{b}$.

In the case of $b=1$ put $M_{1}=A_{2} \cup C$ and $N_{1}=A_{1} \cup C$.

Define spanning subgraphs $G_{i j}$ of H_{1} / t_{2} as follows: for every ordered couple $(i, j) \in\{1,2, \ldots, b\} \times\{1,2, \ldots, a\}$ the graph $G_{i j}=K\left(M_{i}, U_{j}\right) \cup K\left(N_{i}, V_{j}\right)$. Graphs $K\left(M_{i}, U_{j}\right)$ or $\left.K\left(N_{i}, V_{i}\right)\right]$ are complete bipartite graphs with parts M_{i} and U_{j} [or N_{i} and V_{i}, respectively]. It is clear that graphs $G_{i j}$ are edge-disjoint and form a factorisation of H_{1}. Furthermore, each M_{i} or N_{i} has cardinality $(m / 2+s) / b$ and U_{j} or V_{j} has cardinality $m /(2 a)$. Clearly, $G_{i j}$ are all isomorphic to $2 K_{m /(2 a),(m / 2+s) / b}$. Hence the latter graph is in H_{1} / t_{2}. As H_{1} is isomorphic to H_{2} and $H_{1} \cup H_{2}=$ $K(A, B, C)$, we have $t \mid K_{m, m, s}$.

REFERENCES

[1] HARARY, F.: Graph Theory, Addison-Wesley, Reading, Mass. 1969.
[2] HARARY, F.-ROBINSON, R. W.-WORMALD, N. C.: Isomorphic factorisations III. Complete multipartite graphs. In: Combinatorial Mathematics, Proceedings of the International Conference on Combinatorial Theory (Camberra 1977). Lecture Notes 686, Springer-Verlag, Berlin, 1978, 47-54.

Received February 18, 1983
Katedra matematiky
Pedagogická fakulta Saratovská 19 94974 Nitra

О З-ДОЛЬНОЙ ГИПОТЕЗЕ

Ján Beka

Резюме

В статье доказывается З-дольная гипотеза при условии, если по крайней мере, две доли полного З-дольного графа имеют одинаковое число вершин.

