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MAXIMAL ERGODIC THEOREM ON A LOGIC 

BLAHOSLAV HARMAN 

Introduction 

The aim of the present paper is to prove and formulate the maximal ergodic 
theorem (MET) on a logic analogical to the classical one. The classical MET is 
studied in a space (X, Sf, \i, T), where X is a nonempty set, Sf is a-algebra on X, \x 
is a measure on 6̂  and T: X—> X is a measure \i preserving transformation. For our 
purposes the most suitable formulation is the following: 

Let f: X—> R be an [i-integrable function. Let us denote 

En = {xeX;3k^n:f(x) + f(Tx) + ...+f(Tk-1x)^0}. 

Then ffxEnd\i^O. 
This theorem plays the most important role in proving the classical individual 

ergodic theorem. In the case of logics the variants of the individual ergodic 
theorems have been studied (see [1], [2]), but no formulations of a MET have 
appeared. 

1. Notations and preliminary results 

Let cS? be a logic, that is a o-latice with the first element 0 and the last element 1, 
with an orthocomplementation ±: i£-> !£. The following conditions on !£ must be 
fulfilled: 

i) if a e <£ then (a±)± = a 
ii) if a<b then b±<a± 

Hi) if a<b then b = av(bAa±) 
iv) ava± = l for all ae<£. 

Two elements a, bs!£ are orthogonal (a±b) iff a<bJ~, compatible ( a o f c ) iff 
there are three pairwise orthogonal elements a-., bi, c such that a = aivc and 
b = bivc. 

By the symbol ^(.R1) there is denoted the set of all Borel sets on R1. An 
observable x: ^(R1)-*^ is the map which satisfies the conditions: 

i) x(0) = O 
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ii) if E, Fe ®(Rl), EnF = 0 then JC(E)±JC(F) 

iii) if Eie®(Rl) for ieN, EinE} = 0 for i±j then JC ([JE) = \/X(EI). 
\i 1 / i - l 

Let / : Rl-±R1 be a Borel measurable function. It is easy to see that xf l: 
®(Rl)-^5£, E*->x(f~l(E)) is an observable. Two observables JC and y are 
compatible (x^y) iff x(E)++y(F) for all E, Fe m(Rl). 

If xi, JC2, ..., JC„ are pairwise compatible observables, then it is possible to define 
the sum of them in the following way (see [3], theorem 6.17): 

Let Jt,: Rn-^R\ (uu u2, ..., un)>->Ui ( / = 1 , 2, ..., n) be projections, h be the 
map h: Rn-+R\ (uu u2, ..., un) »-> ux + w2+ ... + un. 

Let x: ffi(Rn)-*% be a a-hom^morphism such that JC,= xxt
 l for / = 1, 2, ..., n. 

Then we define 
xl + x2+ .. . + xn =Xh~\ 

The state on if is the map m: if-* (0 ,1 ) which satisfied the following 
conditions: 

i) m( l ) = l 

ii) if a,eif for ieN, at±aj for /=£/, then m (V« i ) = S m ( a ' ) -
\ i = i / 1=1 

If JC is an observable associated with a logic if, then the map m*: .^(i?1)-* 
(0, 1), Ei-»m(jc(E)) is a probability measure on Sfc(Rl). A a-homomorphism T of 
a logic is the map T: 5£^>!£ which has satisfied the following conditions: 

i) T(0) = 0 

ii) T(ax) = (T(a))xforall ae<£ 

( OO \ 0O 

Vfli) = V<fl í)-
i = l / i = l 

Let JC be an observable associated with a logic if, m be a state on if. T is said to 
be an jc-measurable a-homomorphism iff T(X(^(RX))) czx(®(R1)). It is said to be 
an invariant a-homomorphism iff m(T(a)) = m(a) for all a e if. If moreover from 
T(O) = a it follows that a e {0, 1}, then T is said to be an ergodic homomorphism. 

If T is a a-homomorphism of a logic if, JC an observable associated with if, it is 
evident that TJC: ^(R1)—>if, E\-*T(X(E)) is an observable associated with if. 

If T, is a a-homomorphism of a logic if for / = 1, 2, ..., n and JC is an observable, 
then if T.JC are pairwise compatible observables, we shall write the sum of them in 
the shortened form as follows: Tix + T2x + ... + T„JC = (TI + T 2 + ... + T„)x. By the 
symbol 1 we shaJJ denote an identical a-homomorphism on if. 

2. Maximal ergodic theorem on a logic 

The two first assertions of this part are proved in [1]. The Theorem 8 and 
Theorem 9 are the main assertions. 
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Lemma 1. Let x be an observable. A homomorphism x: £—.> 5£ is x-measurable 
iff there is a Borel measurable transformation T: R1—>RX such that xx = xT~l. 

Lemma 2. Let x be an observable. If a homomorphism x: !£—• 5£ is x-measura
ble, then for the above transformation T we have xnx^xT~n, neN. If x is an 
ergodic homomorphism in a state m, then T is an mx-measure preserving 
transformation from R1 into itself. 

From the proof of Lemma 2 it follows that if x is an invariant homomorphism, 
then T is a measure mx-preserving transformation. 

In order to prove certain assertions we need in addition a part of Lemma 6.7, 
from [3]. Let us present it as Lemma 3 . 

Lemma 3. Let a,be!£, 5£ being any logic. The following statement are 
equivalent: 

a) a<r+b 
b) fhere exisr an observable x and two Borel sets A and B of the real line such 

that x(A) = a and x(B) = b. 

Lemma 4. Let x be an observable associated with a logic S£9 let mbea state on 5£9 

feLx(mx). LetE, Fe^R1) such that x(E) = x(F). Then 

SfXEdmx = SfxFdmx. 

Proof: Let E,Fe ^(R1). Since x(F)±x(Fc) and x(F)vx(Fc) = 1 it follows that 
x(E~F) = x(EnFc) = x(E)Ax(Fc) = x(E)Ax(F)± = x(E)Ax(E)± = 0 and then 
mx(E-F) = 0. Analogically m x ( F - E ) = 0, which implies mx(EAF) = 0. Func
tions /XE and /XF are equal almost evrywhere, which proves the lemma. 

Lemma 5. Let X be a nonempty set, Sfbe a o-algebra of subsets of the set X. Let 
ft: X-> .R\ i = l , 2, ..., n be Sf-measurable functions. Let F: X->Rn, u*-*(f\(u), 
fi(u),..., fn(u)). Leth: Rn^>R\ (uu u2, ..., u„)->(wi + u2+... + un). Then 

O F " 1 : »(.R")-*SP, &-»{weX; (U(u), f2(u), ...,fn(u))e%} is 
a o-homomorphism 

ii) /r1 = F^KT1 for i = 1, 2, ..., n 
iii) F-1fc-1 = ( / 1 + / 2 + . . . + / „ ) - 1 . 
Proof: Straightforward 

q.e.d. 

Let Sf be a o-algebra of subsets of a set X. Let Eey,EiSSf for i e N. If we put 
00 00 

E x = Ec, V S = U E> then 5f is a logic with the first element 0 and the last element 
i - l i=-l 

X. If / : X—> R1 is a 5^-measurable function, then f'1: $fo(Rx)—• Sf is an observable 
associated with a logic Sf. For the sum of observables of this type the following 
assertion is valid. 
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Lemma 6. Lef ^ be a o-algebra of subsets of a set X. Let /,: X—>R\ 
i = l , 2 , ..., n be ^-measurable functions. Then 

ri+ri+...+ri=(n+f2+...+fn)-\ 

Proof : The assertion of Lemma 6 is a straightforward consequence of the 
preceding lemma and of the definition of the sum of the compatible observables. 

q.e.d. 

Lemma 7. Lef JC be an observable associated with a logic if. Let f: R1^>R1, 
i = 1, 2, ..., n be Borel measurable functions. Then 

xri+xri+...+xf-i=x(ri+ri+...+ri). 
Proof : Because of xfr1(E)ex(m(R1)) for i = l , 2 , ..., n and for any 

Ee^R1), the observables jc/r\ JC/J\ ..., xf„l are mutually compatible (see 
Lemma 3). Let us denote x = F " \ where F, F" 1 are the maps from Lemma 5. Due 
to Lemma 5, fT1 = iazT1 for i = l, 2, ..., n and then / r 1 + /2~

1 + ... + fn1 = nh~1. 
Let us denote x* = xx. Evidently x*: 38(Rn)-->if is a a-homomorphism. 

Moreover the following is valid 

x*jr,rl = jcxjtr1 = x/r1 / = 1, 2, ..., «. 

From the definition of the sum of compatible observables we have 

jc/r1 + Jc/2-1 + ... + Jc/;1 = x*/i-1 = jc(/r1+/2-1 + ...+/;1). 
q.e.d. 

Theorem 8. (Maximal ergodic theorem.) 
Ler if be a logic, x an observable associated with a logic ££. Let mbea state on if, 

T an x-measurable o-homomorphism on if which is invariant in a state m. Let 
feLi(mx). Let us denote 

Q=\f(l + T+...+Tk-1)xf-1{0,+oo). 
k = l 

Then there is Ee&iR1) such that x(E) = Q, and jf%Edmx^0. 
Proof : Firstly we proof that JC/"\ TJC/"\ ..., xk~1xf~1 ^ r^ pairwise compatible 

observables associated with a logic if. Due to the jc-measurability of the T we get 
consequently T ' O C ^ R 1 ) ) ) ^ - 1 ^ ^ 

Hence Tk is an JC-measurable a-homomorphism on if. 
Evidently x V " ^ ^ 1 ) ) c xkx(9b(R1)) and then due to the jc-measurability of Tk 

Tkxf-1(E)ex(m(R1)) 
and 

T,jcr1(-F)€Jc(3B(.R1)) 

for O^i^k^n and for all E, Fe ^ ( R 1 ) . From Lemma 3 we have T&JC/-1(E)<-^ 
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x'xf 1(F), which implies xkxf 1+*xixf *. Let T: R1—*R1 be a transformation from 
Lemma 1. Let us denote 

Ek = {xeR1;f(x) + f(Tx) + ... + f(Tk-1x)^0}. 

By application of Lemmas 1, 6 and 7 it follows consequently 

x(Ek) = x(f + fT+... + fTk-1)-1(0, +oo) = 
= *(/"' + (/T)-1 + ... + (/T*-1)-1) < 0, + oo) = 
= x(f-1+T~1f-1 + ... + T~k+1f-1)(0, +oo) = 
= (x/-1 + xT"1/"1 + . . . + x7M*-1)r1)<0, +00) = 
= (x/"1 + TXT1 + . . . + T*-1X/-1)(0, +oo) = 
= (1 + T + . . . + T*-1)X/-1(0 ) +oo). 

Let E = {xeR1; 3k£n: f(x) + f(Tx) + ... + f(Tk~1x)^0}. It is easy to see that 
n 

E=[jEk and then 
fc=i 

x(E) = x(\jEl) = \/x(Ek)=\/(l + x+... + xk-1)xf-1(0, +oo), 
\fc = l / fc = l fc = l 

that is x(E) = Q. 
Due to Lemma 2 the transformation T is measure mx-preserving. By application 

of the classical maximal ergodic theorem we have 

ifXEdmx^0. 
q.e.d. 

The direct consequence of Theorem 8 is the following assertion: 

Theorem 9. Let % x9 m, T be as in the preceding theorem. Let aeR1. Let us 
denote 

Q ^ = V ( l + T+... + Tk->/-1<a,+oo). 
fc=i 

Let Ee ^(R1) be such that x(E) = Q<°\ Then J / XEdmx^am(Qia)). 
Proof: It is easy to see that /_ 1(a, +o°) = ( / -a) - 1 (0 , °°). Hence 

Q<->=Vr(l + T+... + Tk-1)*(f-fl)"1<0,+«>)-
/ t= i 

Due to theorem 8 it follows J (/ — a) fjE.dmx =0. After a short arrangement we have 

if%Edmx^ajxEdmx = am(jc(E)) = am (Q(a)). 
q.e.d. 
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В работе рассматриваются вопросы, связанные с доказательством максимальной эргодичес-
кой теоремы на логиках и её формулировкой. 
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