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CONSTRUCTIONS OF LOWER
AND UPPER SOLUTIONS FOR A NONLINEAR
BOUNDARY VALUE PROBLEM OF THE THIRD
ORDER AND THEIR APPLICATIONS

JAN RUSNAK
1. Introduction

In this paper we shall study the following boundary value problem (BVP, for
short):

x" =f(t, x, x’, x"), (t, x, x’, x")el x R*, I =[a,, aj], 1)
fis continuous on I x R?,
@x’'(a) — ;x"(ay) = 4,

Bix(a) + Box’(a) — Bsx"(a) = A, 2
72x"(a3) + 73x"(a3) = 4,
a,-, ﬁi’ }’520, i= 2, 3, ﬂ] > 0, (12+ a3 >0,

vh+1>0a+7%>0,a <a,<a;,.

Denote h=a; — a;,, hy=a,—a,, ,=a;,— a,.
The associated homogeneous BVP, i.e. the problem for the equation

x n — 0 (3)

with boundary conditions obtained from (2) for 4, = 4, = A, = 0, has only the
trivial solution because

0, az, 26!2(1] - 2(13
A=|B, Ba,+ B, piaj + 2B,a, — 2B | = @)
0, Va5 2ya; + 27,

= =2B(h + @73 + a37) < 0.

Let G,(t, s) and G,(t, s) be Green‘s functions in the sense of [1] and [2],
corresponding to the BVP considered here. The functions G,, G, expressed
explicitly can be found in [7].
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Further, if ¢(7) is a solution of the BVP (3) and (2), then the solution x(¢) of
the BVP (1) and (2) is a solution of the integro-differential equation

2 U+ 1
x(1) = o) + kzl Gy (1, 5) f(s, x(5), x'(s), x"(5)) ds, (%)
=1Ja,
and vice versa.

The method based on suitably defined lower and upper solutions is used
when investigating the solutions of nonlinear bundary value problems. Lower
and upper solutions play significant roles, e.g., when searching for an approxi-
mate solution. Namely, one can construct successive approximations converg-
ing to the solution one is searching for, employing a concrete lower and upper
solution as starting data (cf. e.g. {3]—[6], [10] and [11]).

In this paper, we shall show how to construct certain lower and upper
solutions of the BVP (1) and (2) for large class of functions f, and how to apply
these to get some existence theorems.

2. An existence theorem via lower and upper solutions

Denote the boundary conditions (2) formally by B{x, =}.
A function ae C;(1) will be called a lower solution of the BVP (1) and (2) if

@2 f(t, @ a’,a"), Bia, 5}, ©)
Similarly, fe C;(I) is an upper solution, provided
PSS B BB, BB 2} ™
Let for a,
a(a) £ P(a), a’(t) < p’(f) hold on I. (8)
Put

Vs <) =)
0y, ¥, Y) =<V, NSV2S¥3, Vi, Yo V3€R.
Vi msS=yi<n

Let the function f be modified on I x R to get the following F:

F(t, x, x', x") = f(¢, 6(a(?), x, B(1)), 6(a’(®), x’, B'(1), x") +
+ x'—d(a’ (1), x’, B'()
14+ x7?

When f'is bounded on I x R3, then

M, + M, < F(t, x, x", x") < M, + M, on I x R®,
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where
MI = li:llf;}f(t’ X, xla x"), M2 = IS:IE:’f(t’ X, x’7 x”)’

S , ©)
M= min £l£0<0, 0< M, = max x—_ﬂ(z’)
x’ t<Ea’(l) 1 +x x’ ;eﬁ,’(r) 1 +x
Put m, = max a’(f), mg = min ’(f); then
I I
1 1
M, = ——5(\/m,f+ 1+ m,), M4=5(\/m,§+ — my).
Now consider the differential equation
x"=F(, x, x', x"). (10)

According to [7, Thm. 1] there exists, if fis bounded, at least one solution of the
BVP (10) and (2). In the following lemma we find a lower and an upper estimate
of the initial value x(a,) of the solution x to this BVP.

From (5), we get for x(a,):

@) = o@) + ¥ f " Gular, ) F(s, x(s), x'(s), x"(s)) ds.

k=1da;

1 1
G(a,, s)= — Z (4, + Apa, + AISaIZ) ((s — @) + @) — E (s — al)zs

se(al’aZ),
1
Gy(ay, s) = — Z (A + Apa, + Apad) (ay(s — a) + @) +
1 B B 1 2
+-(s—-—a)y —=6—-—a)————E—q)°, se(a,a
2( 2) I( 2) 5 2( 1) (a,, ay)

where A;’s are the minors of the determinant A from (4) (with appropriate
signs). The following holds:

Ay + Apa, + Apal = By (B — b)) + 2B sh + 2B oy + 2B, 7 + 2,7, 2 0.

The results above imply:
Lemma 1. Let f be bounded on I x R* and let x be an arbitrary solution of the
BVP (10) and (2). Then:

k) < x(a)) £ k,, (11)
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where

k, = o(a) — (M, + M) % (4n + 4pa, + Ala“f)(% h+ (13) +

1 B B 1,3
2 Nt ——=h—=2h——h
+ (M. +M)(6 5 Zﬂ,h 5 p ) (12)

and k, is of the same form as k,, but the parentheses (M, + M,) and (M, + M,)
are replaced by each other; the constants M,, M,, M,, M, are those from (9).

Lemma 2. (Lemma 6 in [7]). Let the functions a, e C;(I) satisfy (8) (a and B
need not be a lower and an upper solution, respectively) and let there exist a
positive constant L such that

lf(t’ x, xl’ x”) _f(t’ x, xl’ yll)l é lell _ylll’
(t, x, xYeo={(t, x, x": tel, a(t) £ x < B(1), (13)
‘ a'() £ x" <0}, x", y"€R.

Then there exists a positive constant R, such that for any solution x(t)e C,(I)
of the equation (1) which satisfies the conditions

a)sx() =P, a(O=x'()sp@onl, (14)
|x"(t)] £ R, holds on I.

This lemma is still true when a, fe C,(1).
In [7] it has been derived how to compute and estimate the constant R,. This
R, satisfies the equation

Ry
[ 2, (15)
2wyh Ls + m

where
R, < max (mflx la’ (DI, max 18" (DD,

m = max (LIB"(0] + 1/, x, x*, B"())]) -
The following estimate of R, can be verified:

R, <2LR, + m+ 2R /h. (16)

Using Lemma 1 and Lemma 2, one can prove the following existence theorem
for the solution of (1) and (2). Since this theorem is analogous with the theorems
[7, Thm 3], [8, Thm 2], [9, Thm 2], and the way of proving it is similar as well,
we state it without a proof.
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Theorem 1. Let f be non-increasing, in the variable x, on R. Let there exist
functions a, Be Cy(I) being, respectively, a lower and an upper solution of the BVP
(1) and (2), satisfying (8). Further, let there exist a positive constant L such that
(13) holds.

Finally, let a, B satisfy:

a(a) £k, k, = B(a)),

where k| and k, are the constants defined in (12); at the same time, let the constants
M, and M, satisfy:
M,= min f(t x, x', x"), M, = max f(t x, x’y x"),
@ x [ Ry, Ry] @ x [—Ry,Ry)
where R, is the constant of Lemma 2, with R, = |a" ()|, |B"(¢)| on I.

Then there exists at least one solution x of the BVP (1) and (2) such that (14)
is satisfied.

Remark 1. The assumption of Theorem 1, requiring that f be non-
increasing in x on R, can be omitted when the definition of lower and upper
solutions of the BVP (1) and (2) is replaced by a new, stronger definition,
obtained from the original one via replacing the first conditions in (6) and (7)
by the following ones:

am gf(t, x’ a/, 0!"), ﬂ”’ éf(t, x’ ﬂ/’ ﬂ”)
forteland x: a(t) £ x < B().
Remark 2. A similar existence theorem can be proved for the BVP (1)
and (2), with the second condition in (2) changed to:
Bix(a) — Box’(a) + Bix"(a)) = A4,.
In this case, fis assumed to be non-decreasing in x. Moreover, a and f should
satisfy: < a, @’ < f’, and for the values a(a;) and f(a;) some restrictive

conditions, implied by the estimates of the value in a; of the solution to the BVP
for the modified equation, should be found.

3. A construction of lower and upper solutions

Theorem 2. Let the function f have the following properties:
G f(t, x, x’, x")y=0o0nIx R.
(ii) fis non-decreasing in the variable x on R, the other variables being fixed.
(ii1) fis non-decreasing in the variable x’ on R, the other variables being fixed.
(iv) There exists a positive constant L such that
(@ x, x', x") = f(&, x, x’, y")| £ LIx" — p"|

holds for (t, x, x)el x R*, x", y"€eR.
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Then there exist the functions a, fe C,(I) satisfying (8) and being, respectively,
a lower and upper solution of the BVP (1) and (2) in the sense of Remark 1.

Proof. 1. Let ¢ solve the BVP (3) and (2), and let ¢ be an arbitrary
non-negative constant. Then the assumption (i) implies that the function

B.(t) = o(t) + ¢

is an upper solution of the BVP (1) and (2) in the sense of Remark 1 under
assumption that there exists some lower solution @ and (8) holds.
Now let us fix the constant ¢, and consider the differential equation

x" — Lix"| — K. =0, (17)
where K, = max (Ll@" (Ol + f(2, (1) + ¢, 9'(0), 0).

As the general solution x of this equation we obtain

c,+<c2—2£fto>z+£zz——ﬁe“'° ", 1< 1,
L) 2. D .
x(t) = : (18)
2Kc I(( 2 Kc 2 Kc L(t - 1o)
C]“' ——’t0+02t*' t+"—'e 9 tzto,
L’ L 2L L

where t,, ¢|, ¢, are real constants.
From (18) one infers that there exists at least one solution @,.(¢) of this
equation, satisfying the following conditions:

a,®.(a) — a;@"(a) <0...(1)
Bi®.(a)) + B ®L(ay) — fiPL(a) < 0... (1)

»Pay) + 7P (a) < 0, ... (1)

D.(N=0, D()=0, tel.

(19)

Let us form the function
a(t) =@ + D.(0) onl.

The functions a, and . satisfy the condition (8).
Let tel and x £ B.(¢). Then the assumptions (i), (iii) and (iv) imply

S x, a0, a)=f(t, 0+c, ¢, 0" + @) =
S LI®) + Lo + (1, 9+ ¢, 9°,0) =
SLIP)+ K. = ?=al.

Therefore the functions a, and S, are, respectively, a lower and an upper solution
of the BVP (1) and (2) in the sense of Remark 1.
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4. Applications

In order to state briefly and prove the following theorems, we introduce some
additional notation:

w. ={(t, x, x"): tel, a.(1) = x < B.(1), a:(0) = x" = Bi(n)},
where a. and S, are the functions constructed in the proof of Theorem 2,

R,. = the constant of Lemma 2, corresponding to the functions a, and g, and
such that Ry, = |a{(9)l, |B:(1)] on 1

M,.,= min f{¢, x, x’, x") M, = max f(¢, x, x’, x"),
o, X (- RZ(" RZ('] @, % [~ RZ(" R2/,']

¢

/

¢ = -2 (4, + 40, + Ananz)(gz h + a3),
A 2

C =im-Lop by Ly

1
6 2p, B
m

axle’()l,  m, =max|p"(D),

’n] =

m; = m?xf(t, (0([), (p”(t)a 0)’ my = mlaxf(t, (D(I)s (p/(t)’ (oﬂ(t)) .

Theorem 3. Let the function f satisfy the assumptions (i)—(iv) of Theorem 2,
and let, moreover,
(V) there exist a constant ¢, 0 < ¢ < 00, such that

c>C/M,.

Then there exists at least one solution x of the BVP (1) and (2).

Proof. When using Theorem 1, keeping Remark 1 in mind, it suffices to
find a pair of functions ¢, and f,, mentioned in the proof of Theorem 2, such
that:

a.(a) < ¢o(a) + C\(M,. + M;) + C,(My. + M,),

o(a) + C\(My, + M) + C(M, + M) < B.(a).

Analogously with [7, Remark 1], the nonstrict inequaities can be replaced by
the strict ones and the values M; and M, can be left out, under the conditions
above. Moreover, (i) implies that the value M,, may be replaced by zero. Then
these conditions read as follows:

a.(a) < o(a) + C,M,,, o(a) + C\M,, < B.(a)). (20)

By (v), it is immediate that there exists a pair of functions, @, and f3,, such that
the second inequality in (20) holds true.
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Acording to (ii), (iii), for M,. we have:
M2c = max f(t’ (0([) + c, (p’(t)'! x") . (21)

I'x{=Ry.,Ry]

Further, the same assumptions, Lemma 2 and the formula, (15), for calculat-
ing the constant R,, imply that this constant does not depend on the values of
the function ., but is, in fact, dependent on its first and second derivatives.
Hence using (21), the same result is obtained for the constant A, as well. This
means that the function @, may be considered with a suitably small constant c,
(cf. (18)), which can always be chosen in such a way that the first inequality in
(20) is satisfied.

Theorem 4. Let the function f satisfy the assumptions (i)—(iv) of theorem 2 and
let, moreover, the following assumptions be satisfied:

(vi) There exists a positive constant Ly such that

V(ta X, x,’ x”) _.f(t’ Vs x,a x" | _S. Lle _yls
for (t, x’s; x")el x R?, x, yeR.

(vii) For the constants Ly and L the condition

B, 9t ch' (€™ — 1)@L%hy, + 3Lh + 2Ly, + 2) — Lh(Lh— 1)) < 1 (22)

is fulfilled.

Let v, = 1, in the boundary conditions (2).

Then there exists at least one solution x of the BVP (1) and (2).

Proof. We show that when (vi) and (vii) are satisfied, then the same is
true for the assumption (v) of Theorem 3, and this will make the proof complete.

Let ¢ be a constant with the property 0 < ¢ < o0. Let us search, to ,, for a
solution @, of the equation (17) such that the conditions (19) are satisfied. Of
course, this @, is of the form (18), with ¢, = q,:
2K, K 2+c2t——£t +K[ L(t—ay)

L’ L 2L L}

Then @/(a;) = 0 and @/(f) > 0 on (q,, a,), which implies that @/ is increasing
on [.

Now choose the constant ¢, so that @.(a;) + 7;P%(a;) = 0. This means:

D)= ¢, -

(23)

K, 1
Q= @—Cetty—pel).

When c, is so chosen, then @(@3) < 0 and therefore @’ (a,) < 0. This yields that
@', @” satisfy the conditions (19)—(1), (I11), and @’(f) <0 on I.
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(23) implies that there exists a sufficiently small constant ¢,, such that the
conditions (19)—(II) are also fulfilled, @,(f) < 0 on /, and the first inequality of
(20) is satisfied as well.

Let us choose the constant R,,:

Ry = max|p’()] + max|@(1)].

Then
R, =m — (D/(a ) =m < ((C h 1)(“1‘ f Y ) - h)
le 1 c\*1 1 3 s

Ry 2 la; (0], 1B:(1)] on I.

Since
m, = max (L|p" ()| + f(¢, x, x’, ¢"(1))) £ Lyc + Lm, + m,,

max|@(0)] = @a) = 7= = 1),

the constant R,, can be chosen, thanks to the estimate (16), in the following
form: :

R, =2LR, + h(Ly+ Lm, + m,) + 2?" + m, + % (e —1).
)

Then
Ry = |a;(0)], B on /.

For the constant K, one gets, according to its definition in (1.7), the estimate:

K.< Lyc + Lm, + m,, (24)
and, using (21), for the constant M, one gets
M, = Lyc+ LR, + m;. (29)

Using the results above, after inserting R,. into (25), R,, into R, and after
using the inequality (24), we obtain:
C\M,, < B, + Bic,

where B, is a constant depending on the values a;, B, ¥;, h, m;, L, and L, and
B, is the constant defined in (22).

By the assumption (vii), B, < 1, therefore there exists a constant ¢ such that
0 < ¢ < oo and such that

¢>By+ Bic 2 C\M,,

which implies that the assumption (v) of Theorem 3 is satisfied indeed.
Remark 3. Results similar to those obtained when f= 0, can be derived
when < 0.
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[MOCTPOEHUS HWXHUX U BEPXHWUX PEMIEHUN
JUIS HEJIMHEMHOM KPAEBOW 3AJIAUM TPETBEIO TOPSKA
U MX MPUMEHEHUS

Jan Rusnak
Pesome
B pabGoTte paccMaTpuBaeTcst TpexToyeuyHas HEJIMHeHHas kpaeBas 3/a4a U1t OObIKHOBEHHOrO
nuddepennmansHoro ypeuenns x” = f(t, x, x’, x") ¢ TMHEHHBIMU KpaeBbIMU ycnoBramu. K 310l

3aJaye MOCTPOEHbI HEKOTODbIC HMXHUE W BEPXHUE PELICHUS [UIS LUMPOKOro kyacca QyHKUMH f,
KOTOpbIE NMPUMEHSIOTCS [T COCTABJICHUSI TECOPEM CYLIECTBOBAHHS U PELUCHUS KpaeBOi 3a/a4H.
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