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CONSTRUCTIONS OF LOWER 
AND UPPER SOLUTIONS FOR A NONLINEAR 

BOUNDARY VALUE PROBLEM OF THE THIRD 
ORDER AND THEIR APPLICATIONS 

JAN RUSNAK 

1. Introduction 

In this paper we shall study the following boundary value problem (BVP, for 
short): 

x'" =f(t, x, x', x"), (t, x, x', x")el x R3, I=[ax, a,], (1) 

/is continuous on I x R3, 

a2x'(ax) — a3x"(ax) = A, 
fixx(a2) + fcx'^) - p,x"(a2) = A2 (2) 

y2x'(a3) + y3x"(a3) = A3, 

a„ ft, yi =• 0, i = 2, 3, px > 0, a2 + a3 > 0, 

ft + h > 0, a2+ y2> 0, ax<a2<a3. 

Denote h = a3 — ax, hx = a2 — a,, h2 = a3 — a2. 
The associated homogeneous BVP, i.e. the problem for the equation 

x'" = 0 (3) 

with boundary conditions obtained from (2) for A, = A2 = A3 = 0, has only the 
trivial solution because 

Л = 
0, a2, 2a2ax — 2a3 

Px,Pxa2 + i\,pxal + 2p2a2-2p3 

0, ri, 2/2c73 + 2y3 

-2px(a2y2h + fl^^ + a3y2) < 0. 

(4) 

Let G,(t, s) and G2(t, s) be Green's functions in the sense of [1] and [2], 
corresponding to the BVP considered here. The functions G,, G2 expressed 
explicitly can be found in [7]. 
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Further, if cp(t) is a solution of the BVP (3) and (2), then the solution x(t) of 
the BVP (1) and (2) is a solution of the integro-differential equation 

x{t) = ę{t) + X * + ' Gk{t, s)f{s, x{s), x'{s), x"{s)) ds, (5) 
k = 1 JaL 

and vice versa. 
The method based on suitably defined lower and upper solutions is used 

when investigating the solutions of nonlinear bundary value problems. Lower 
and upper solutions play significant roles, e.g., when searching for an approxi­
mate solution. Namely, one can construct successive approximations converg­
ing to the solution one is searching for, employing a concrete lower and upper 
solution as starting data (cf. e.g. !"3]—[6], [10] and [11]). 

In this paper, we shall show how to construct certain lower and upper 
solutions of the BVP (1) and (2) for large class of functions f, and how to apply 
these to get some existence theorems. 

2. An existence theorem via lower and upper solutions 

Denote the boundary conditions (2) formally by B{x, =}. 
A function ae C3(I) will be called a lower solution of the BVP (1) and (2) if 

a""Zf{t9a9a'9a")9 B{a, g } . (6) 

Similarly, (5e C3(I) is an upper solution, provided 

P'"<f{t,p,P',P"), B{p,^}. (7) 
Let for a, (3 

a{ax) ^ 0(fl.), a'{t) S P'(t) hold on I. (8) 
Put 

(>'\, yi < yt ^ y3 

S{y\,y2,y3) = <y2, y\Sy2^y3, y{,y2,y3eR. 
b'i y\-^y3< y2 

Let the function/be modified on / x R3 to get the following E: 

F{t, x, x', x") =f{t, 8{a{t), x, P(t)), 8{a'{t), x', B'{t)), x") + 
x' - 8{a'{t), x', p'{t)) 

\+x'2 

When/is bounded on / x R3, then 

M, + M 3 ^ F{t, x, x', x") ^ M2 + M4 on I x R3, 
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where 
M] = inf f(t, x, x', x"), M2 = supf(t, x, x', x"), 

/ x / ? 3 / x / ? 3 

(9) 
. x ' - a ' ( l ) n n »>• x'-p'(t) M3 = mm — < 0, 0 < M4 = max —— • 

/ e / 1 _|_ v ' 2 / e / 1 4 . x'2 

x' < a'(t) l ^ X x> P'(t) V ^ X 

Put ma = max a'(t), mB = min B'(t); then 
/ / 

M3 = - - (VmJTT + ma), M4 = - (yjmj + 1 - m»). 
2 2 

Now consider the differential equation 

x'" = F(t,x,x',x"). (10) 

According to [7, Thm. 1] there exists, if/is bounded, at least one solution of the 
BVP (10) and (2). In the following lemma we find a lower and an upper estimate 
of the initial value x(ax) of the solution x to this BVP. 

From (5), we get for x(ax): 

x(ax) = (p(ax) + X Gk(ax,s)F(s,x(s),x'(s),x"(s))ds, 
k=\Jak 

Gx(ax, s)= (Axx + Ax2ax + Anax
2)(a2(s - ax) + a3) - - (s - ax)

2, 
A . 2 

se(ax, a2), 

G2(ax, s)= - - (Axx + Ax2ax + Auax
2)(a2(s - ax) + a3) + 

A 

+ - (s - a2)
2 -^r(s-a2)-^---(s- ax)

2, se(a2, a3) 
2 px px 2 

where AyS are the minors of the determinant A from (4) (with appropriate 
signs). The following holds: 

Axx + AX2ax + AXia
2 = A y2(h

2 - h2) + 20, y3h + 2p2y2h2 + 2fi2y3 + 2p2y2 = 0. 

The results above imply: 
Lemma 1. Let f be bounded on I x R3 and let x be an arbitrary solution of the 

BVP (10) and (2). Then: 

kx = x(ax) = k2, (11) 
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where 

*, = <p(ax) - (Mx + M3) ~ (Axx + AX2ax + ^a\)(^ h + a3) + 

+ (M2 + M4)(lhl-^hl-^h2-];h
;) (12) 

\6 2ft A 6 / 

and k2 is of the same form as k,, but the parentheses (Mx + M3) and (Af2 + M4) 
are replaced by each other; the constants Mx, M2, M3, M4 are those from (9). 

Lemma 2. (Lemma 6 in [7]). Let the functions a, 0e C3(I) satisfy (8) (a and (3 
need not be a lower and an upper solution, respectively) and let there exist a 
positive constant L such that 

[f(t, x, x', x") -f(t, x, x', y")\ ^ L\x" - y"\, 

(t, x, x')eco = {(t, x, x'\ tel, a(t) Sx^ P(t), (13) 

a'(t)^x' ^P'(t)},x",y"eR. 

Then there exists a positive constant R2 such that for any solution x(t)eC3(I) 
of the equation (1) which satisfies the conditions 

a(t) S x(t) ^ /?(t), a'(t) ^ x'(t) ^ P'(t) on I, (14) 

\x"(t)\ ^ R2 holds on I. 

This lemma is still true when a, pe C2(I). 
In [7] it has been derived how to compute and estimate the constant R2. This 

R2 satisfies the equation 

( 
J2Ì 

SàS = 2 R , , (15) 
)iRxih Ls + m 

where 
Rx ^ max(max|a'(t)|, max|j8'(t)|), 

m ^ mzx(L\P"(t)\ + \f(t, x, x', P"(t))\). 
0) 

The following estimate of R2 can be verified: 

R2 < 2LRX +m + 2Rx/h. (16) 

Using Lemma 1 and Lemma 2, one can prove the following existence theorem 
for the solution of (1) and (2). Since this theorem is analogous with the theorems 
[7, Thm 3], [8, Thm 2], [9, Thm 2], and the way of proving it is similar as well, 
we state it without a proof. 
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Theorem 1. Let f be non-increasing9 in the variable x9 on R. Let there exist 
functions a, fie C3(I) being, respectively, a lower and an upper solution of the BVP 
(1) and (2), satisfying (8). Further, let there exist a positive constant L such that 
(13) holds. 

Finally, let a, (5 satisfy: 

a(ax)^kx, k2SP(ax)9 

where Ac, andk2 are the constants defined in (12); at the same time9 let the constants 
M, and M2 satisfy: 

Mx = min /( t , x, x', x"), M2 = max / ( t , x, x', x"), 
Q)x[-R2,R2) o)x[-R2,R2) 

where R2 is the constant of Lemma 2, with R2 2> |a"(t)|, \P"(t)\ on I. 
Then there exists at least one solution x of the BVP (1) and (2) such that (14) 

is satisfied. 
R e m a r k 1. The assumption of Theorem 1, requiring that / be non-

increasing in x on R, can be omitted when the definition of lower and upper 
solutions of the BVP (1) and (2) is replaced by a new, stronger definition, 
obtained from the original one via replacing the first conditions in (6) and (7) 
by the following ones: 

a"'^f(t,x9a',a"), P"f ^f(t9 x9 /?', /?") 

for te/and x: a(t) ^ x^ P(t). 

R e m a r k 2. A similar existence theorem can be proved for the BVP (1) 
and (2), with the second condition in (2) changed to: 

Ax(a2) - P2x'(a2) + P3x"(a2) = A2. " 

In this case,/is assumed to be non-decreasing in x. Moreover, a and p should 
satisfy: p^a, a' ^ p'9 and for the values a(a3) and P(a2) some restrictive 
conditions, implied by the estimates of the value in a3 of the solution to the BVP 
for the modified equation, should be found. 

3. A construction of lower and upper solutions 

Theorem 2. Let the function f have the following properties: 
(i) f(t, x, x'9 x") ^Oonlx R\ 

(ii) fis non-decreasing in the variable x on R9 the other variables being fixed. 
(iii) fis non-decreasing in the variable x' on R9 the other variables being fixed. 
(iv) There exists a positive constant L such that 

\f(t9 x, x'9 x") -f(t9 x, x'9 y")\ ^ L\x" - y"\ 

holds for (t, x, x')elx R2,x"9y"eR. 
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Then there exist the functions a9 fie C3(7) satisfying (8) and being, respectively, 
a lower and upper solution of the BVP (1) and (2) in the sense of Remark 1. 

Proof. 1. Let q> solve the BVP (3) and (2), and let c be an arbitrary 
non-negative constant. Then the assumption (i) implies that the function 

PdO = q>(t) + c 

is an upper solution of the BVP (1) and (2) in the sense of Remark 1 under 
assumption that there exists some lower solution a and (8) holds. 

Now let us fix the constant c, and consider the differential equation 

x'"-L\x"\-Kc = Q9 (17) 

where Kc = max(L|<p"(t)| + f(t9 <p(t) + c9 <p'(t)9 0). 

As the general solution x of this equation we obtain 

cl+(c2-2^t0)t + ^-t>-^e^-'\ t = t0 
\ L J 2L L3 

x(t) = < " (18) 
lLKr Kr 9 Kr 9 Kr Lit — /n) ^ 

-u-t'l+^-i'+vc - '-*• 
where t0, c,, c2 are real constants. 

From (18) one infers that there exists at least one solution <Pc(t) of this 
equation, satisfying the following conditions: 

a20c(al)-a30"M) = O...Q) 

fix <t>Mi) + PiQ'Mi) ~ / W ( « 2 ) = 0. . . (II) 

y2^(a3)+y3<Pc
w(fl3)-iO,...(III) 

^ c ( t ) ^ 0 , <P'c(t) = 0, tel. 

Let us form the function 

ac(t) = <p(t) + 0c(t) on I. 

The functions ac and Pc satisfy the condition (8). 

Let t€I and x = f5c(t). Then the assumptions (ii), (iii) and (iv) imply 

f(t, x, a'c, a'c) =f(t, <p+c, <p', <p" + 0'c) = 

= L\<P'c} + L\<p"\+f(t,<p + c,<p',0) = 

= L\<P'C} + Kc = 0'c"= a';'. 
Therefore the functions ac and fic are, respectively, a lower and an upper solution 
of the BVP (1) and (2) in the sense of Remark 1. 
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4. Applications 

In order to state briefly and prove the following theorems, we introduce some 
additional notation: 

coc = {(t, x, x'y tel, ac(t) = * = &(t), ac(t) = x' = #(*)} , 

where ac and pc are the functions constructed in the proof of Theorem 2, 

R2c = the constant of Lemma 2, corresponding to the functions ac and (5C and 
such that R2c = |<( t) | , \p»c(t)\ on / 

MXc = min fit, x, x', x") M2c = max f(t, x, x', x"), 
a>, x[-R 2 , ,R 2 J «t.x[-l?2cl/?2J* 

h , A A A ^ (a2 C, = - - (.4,, + A 2 a, + Ana})\ -r A + o,) , 

6 2Д Ä 6 
h\ 

= max|ç»'(/)|, 
/ 

m2 = max \<p'\t)\ 

= max/(t, ę(t), ç)"(t),0), m4 = 

mx 

m3 = maxf(t, cp(t), (p"(t), 0), m4 = maxf(t, ^(r), q>'(t)9 (p"(t)), 

Theorem 3. Let the function f satisfy the assumptions (i)—(iv) of Theorem 2, 
and let, moreover, 
(v) there exist a constant c, 0 < c < oo, swch that 

c> CxM2c. 

Then there exists at least one solution x of the BVP (1) and (2). 
Proof. When using Theorem 1, keeping Remark 1 in mind, it suffices to 

find a pair of functions ac and /?c, mentioned in the proof of Theorem 2, such 
that: 

ac(ax) = <p(ax) + Cx(MXc + M3) + C2(M2c + M4), 

cp(ax) + Cx(M2c + M4) + C2(MXc + M3) = fie(ax). 

Analogously with [7, Remark 1], the nonstrict inequaities can be replaced by 
the strict ones and the values M3 and M4 can be left out, under the conditions 
above. Moreover, (i) implies that the value MXc may be replaced by zero. Then 
these conditions read as follows: 

ac(ax) < (p(ax) + C2M2c, q>(ax) + CxM2c < Pc(ax). (20) 

By (v), it is immediate that there exists a pair of functions, ac and pc, such that 
the second inequality in (20) holds true. 
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Acording to (ii), (iii), for M2c we have: 

M2c = max f(t9 cp{t) + c, <p'(t), x"). (21) 
Ix[-R2c,R2(] 

Further, the same assumptions, Lemma 2 and the formula, (15), for calculat­
ing the constant R2c imply that this constant does not depend on the values of 
the function ac, but is, in fact, dependent on its first and second derivatives. 
Hence using (21), the same result is obtained for the constant M2c as well. This 
means that the function &c may be considered with a suitably small constant c, 
(cf. (18)), which can always be chosen in such a way that the first inequality in 
(20) is satisfied. 

Theorem 4. Let the function f satisfy the assumptions (i)—(iv) of theorem 2 and 
let, moreover, the following assumptions be satisfied: 

(vi) There exists a positive constant L0 such that 

[f(t, x9 x\ x") - f ( t , y, x'9 x")\ = L0\x - y|, 

for (t, x'+ x")el x R2, x, yeR. 

(vii) For the constants L0 and L the condition 

def. LoC| ( ( e / J , _ 1 } ( 2 L 2 ^ / 3 + 3 L h + 2 L h + 2) _ Lh(Lh - 1)) < 1 (22) 
Bг= LҺ 

is fulfilled. 
Let y2 -= 1, in the boundary conditions (2). 
Then there exists at least one solution x of the BVP (1) and (2). 
P r o o f We show that when (vi) and (vii) are satisfied, then the same is 

true for the assumption (v) of Theorem 3, and this will make the proof complete. 
Let c be a constant with the property 0 < c < oo. Let us search, to pc9 for a 

solution 0C of the equation (17) such that the conditions (19) are satisfied. Of 
course, this <PC is of the form (18), with t0 = ax\ 

0c(t) = c, - ^ - £ a\ + c2t - *L t2 + ^ e * - * (23) 
V L 2L L3 

Then <P"(«i) = 0 and $>"c(t) > 0 on (au a3), which implies that 0'c is increasing 
on I. 

Now choose the constant c2 so that <P'c(a3) + r3<Z>"(a3) = 0. This means: 

C2 = ^ ( a 3 - I e " + r 3 _ r 3 e " ' ) . 
L L 

When c2 is so chosen, then <Z>;(a3) g o and therefore &'c(ax) < 0. This yields that 
0', <?>" satisfy the conditions (19)—(I), (ni), and 4>'c(t) | 0 o n / . 
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(23) implies that there exists a sufficiently small constant c]9 such that the 
conditions (19)—(II) are also fulfilled, <Pc(t) ^ 0 on /, and the first inequality of 
(20) is satisfied as well. 

Let us choose the constant RXc: 

Then 

Rlf = max \ç'(t)\ + max |Ф;(/)| 

Rlc = m 1 - Ф ; ( a , ) = m 1 + ^ ( ( e " - l ) ( - + Г з ) - Л ) , (H 
Since 

L 

Ru^\a'c(t)\, \P'M on I. 

mc = max(L\q>"(t)\ +f(t, x, x', (p"(t))) ^ L0c + Lm2 + m 4, 

max |<Pf*(/)| = 0'M) =- --£ (e" - 1), 
X-/ 

the constant R2c can be chosen, thanks to the estimate (16), in the following 
form: 

1R K 
R2c = 2LRXc + h(L0 + Lm2 + m4) + —^ + m2 + ^ (eLh - 1). 

h L 
Then 

R2,^|<(0l, \P"M o n / . 

For the constant Kc one gets, according to its definition in (17), the estimate: 

Kc^L0c + Lm2 + m39 (24) 

and, using (21), for the constant M2c one gets 

M2c^L0c + LR2c + m,. (25) 
Using the results above, after inserting R2c into (25), RXc into R2c and after 

using the inequality (24), we obtain: 

CxM2c^B0 + Bxc9 

where B0 is a constant depending on the values ai9 /?,, ft, h9 mi9 L0 and L, and 
Bx is the constant defined in (22). 

By the assumption (vii), Bx < 1, therefore there exists a constant c such that 
0 < c < oo and such that 

c> B0 + Bxc^CxM2c9 

which implies that the assumption (v) of Theorem 3 is satisfied indeed. 
R e m a r k 3. Results similar to those obtained whenf^ 0, can be derived 

whenf^ 0. 
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ПОСТРОЕНИЯ НИЖНИХ И ВЕРХНИХ РЕШЕНИИ 
ДЛЯ НЕЛИНЕЙНОЙ КРАЕВОЙ ЗАДАЧИ ТРЕТЬЕГО ПОРЯДКА 

И ИХ ПРИМЕНЕНИЯ 

^ап К изпак 

Р е з ю м е 

В работе рассматривается трехточечная нелинейная краевая здача для обыкновенного 
дифференциального урвнения х'" =/((, х, х\ х") с линейными краевыми условиями. К этой 
задаче построены некоторые нижние и верхние решения для широкого класса функций /, 
которые применяются для составления теорем существования и решения краевой задачи. 
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