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Math . Slovaca 40 , 1990, No. 3, 233—244 

VARIETIES OF DIRECTED MULTILATTICES 

JUDITA LIHOVA 

ABSTRACT. In the paper there is continued the study of the varieties of directed 
multilattices. It is proved, e.g., that the varieties of modular directed multilattices 
form a proper class. 

In [3] infinitely many varieties of distributive directed multilattices covering 
the variety Q of all distributive lattices in the lattice of varieties of directed 
multilattices have been described. In this paper there are investigated the varieties 
/ „ p generated by the modular multilattices Ma p shown in Figure 1 for different 
couples of cardinal numbers a, /?, where a = card/4, p = card B. It is proved 
that for different couples or, /? of positive integers, which are greater than or 
equal to two, the varieties i \ p are different and each of them covers Q (Theo
rems 1.3 and 1.4). Further, the varieties i \p for infinite cardinal numbers p are 
studied. It is shown that for different infinite cardinal numbers (5 the varieties 
/ \_ p are different, which implies that the varieties of modular directed multilat
tices form a proper class (Corollary 2.7, Theorem 2.8). In contrast with the case 
of a finite /?, there exists no variety i' covering Q satisfying V " c: i ; p, for any 
infinite cardinal number ft (Theorem 2.11). Moreover, for every infinite cardinal 
number /3 there exists an infinite increasing sequence of cardinal numbers 
P= p0< p} < p2 < ... such that y \p -3 i\px -D y 2 ^ 3 ... =) ̂ (Theorem 2.10). 
In the last part of the paper there is described a variety containing only infinite 
multilattices, with the exception of those that are lattices, and covering Q. 

We shall use the denotation introduced in [3]. By a multilattice always a 
directed multilattice is meant. 

1. Varieties i\p 

Let a, P be arbitrary cardinal numbers different from 0. Denote by Ma p the 
multilattice shown in Figure 1, i.e. Ma p = {0, 1} u A u /?, the order is defined by 
0 < a < b < 1 for every aeA, beB, and a = card/1, P = card.fi. 

AMS Subject Classi f ication (1980): Primary 06B20. 
Key words: Varieties, Cardinal numbers. Multilattices. 
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Evidently, assuming that a, /3 ^ 2, the multilattice MaP is not a lattice, it is 
simple (i.e. card ConMaP = 2) and all its proper subalgebras are lattices (even 
chains). If a = /3 = 2, then MaP is distributive; if a > 2 or (5 > 2, then MaP is 
modular, but not distributive. 

Denote by i^a p the variety generated by Map. We shall investigate i/~a p for 
some couples of the cardinal numbers a, /?. 

First we will show that if a, /? ̂  2, then ^ p contains no variety of lattices 
but the variety Q) of all distributive lattices and the variety of all one-element 
lattices. 

Let M3 denote the five-element modular non-distributive lattice. 
1.1. Lemma. Ifa,p^ 2, then M^^p. 
P r o o f Suppose that M3eir

ap = HSP{Map] (cf. 6.1 in [3]) for some a, 
P ^ 2. Since throughout the proof a, /? will be fixed, let us denote Ma p = M. 
From M3e HSP{M) it follows that there exists a homomorphism (p of a sub-
algebra 5 of a direct product FI(M/| iel), where M, = M for every ie/, onto M3. 
Let x, y, z be elements of S such that (p(x), (p(y), (p(z) are mutually incompar
able. Let u, v e {x, y, z], u ^ v. We are going to describe a construction for finding 
w,, vxeS such that ^(wj) = (p(u), (p(vx) = <p(tO and ux(i), vx(i) are comparable 
elements of M,. Fix arbitrary different elements b, b'eB. Let us take arbitrary 
WGU v v and define r, sen(M;|le/) as follows: 

r(z') = b, s(0 = b' if i/(0, v(i)eA, u(i) # t>(0; 

r(0 = s(0 = w(0 m the opposite case. 

Evidently r, seu v v. Further, choose r'e(r A s)u, s'e(r A S)V, ter' A S', 
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u'eu A t, v'ev A t (see Figure 2). It is easy to see that u', v'eS, (p(uf) = (p(u), 
(p(v') = (p(v) and that 

if u(i), v(i)eA, u(i) ^ v(i); 

in the opposite case. 
u'(i) = v'(i) = 0 
u'(i) = u(i),v'(i) = v(i) 

Choosing two arbitrary different elements of A and using the dual procedure to 
the elements u', v', we can find ux, ^ eSsuch that (p(ux) = (p(u'), (p(vx) = (p(v') 
and 

w,(0 = vx(i) = 1 i f "'(0* V(i)eB, u'(i) * v'(i); 

M.(0 = u'(i), vx(i) = v'(i) in the opposite case. 

For these elements ux, vxeS we have (p(ux) = cp(u), (p(vx) = (p(v) and 

w,(0 = y,(0 = 0 if M(0, KOe-4, M(0 # u(0; 

w,(0 = y,(0 = ' i f "(0, ^(Oe-5, w(0 # »(0; 

w,(0 = M(0- y,(0 = *K0 otherwise. 

Hence, if u(i), v(i) are comparable for some iel, then w,(0 = w(0, i>,(0 = v(i). 
If u(i), v(i) are incomparable, then either u{(i) = vx(i) = 0 or w,(0 = vx(i) = 1. 
For every iel the elements u,(0> vx(i) are already comparable. 

Now let us use the above construction to find w,, i?, to u, v first for the couple 
A\ y. We obtain x,, ) \ . Then use the construction for the couple xx,z; denote by 
x, r, the obtained elements. Finally, applying the construction for the couple 
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y,r,, we obtain y, z. It is easy to see that x, y, zsS, <p(x) = (p(x), cp(y) = cp(y), 
cp(z) = (p(z) and for every iel the elements x(i), y(i), z(i) form a chain, which 
will be denoted by /?,-. The subalgebra T of the multilattice 5 generated by {jc, 
f, 5} is a subalgebra of the product n (7? , | / e / ) , which is a distributive lattice, 
hence Fis also a distributive lattice. Then (p(T) = M3 is a distributive lattice too, 
a contradiction. 

1.2. Theorem. The only varieties of lattices that are contained in 1 aPfor some 
a, (i ^ 2 are the variety Q) of all distributive lattices and the variety of all 
one-element lattices. 

Proof . If i~Qmp for some a, fi ^ 2 contains a variety of lattices different 
from £? and from the least variety, then it contains also either the variety 
HSP{My} or the variety HSP{N5} (N5 is the five-element non-modular lattice) 
(cf., e.g., [2]). By the previous Lemma the first possibility cannot occur. As the 
variety i \ p contains only modular multilattices (see 5.4 of [3]), the second 
possibility is also excluded. 

1.3 Theorem. Let a, ft be arbitrary finite cardinal numbers greated than 1. Then 
the variety i \ p covers the variety Q> in the lattice of all varieties of multilattices. 

Proof . Evidently 9 cz i^a p. Let us suppose that i'\ is a variety of mul
tilattices satisfying Q cz i\ gz i^a.p- We will show that ir

ap cz y . . By Theorem 
1.2 y", contains a multilattice C that is not a lattice. By a method analogous to 
that in the proof of 6.14 in [3] we can verify that Ma pe HSP{C}. Thus 

1.4. Theorem. For different couples (a, (J) of finite cardinal numbers greater 
than 1 the varieties ir

apare different. 
The assertion is an immediate consequence of 6.12, [3]. 

2. The relations between i^2 p for various /? 

In this section we shall consider varieties i\$ for various infinite cardinal 
numbers (5. The symbol ^^(M^iel) will denote the filter product of (M(\iel) 
by a filter 3F on I (see [3]). Let A = {a, a'} (see the definition of Ma p). 

2.1. Lemma. Let Ce ir
2 p and let C be generated by a four-element subset {r, 

s, /, u}, where r, se t A U, t, uer v s. Then there exists a non-empty set I and a 
filter .¥ on I different from the system of all subsets of I such that C is isomorphic 
to Uyr(M,\ie I) and M, = M2 pfor every iel. 

Proof . If Cei\p= HSP{M2 p}, then there exists a homomorphism (p of 
a subalgebra A of a direct product IT (MJ /e / , ) with A/, = M2 p for every / £ / , , 
onto C. In view of 6.5 of [3] there exist elements r', s', t', u'eA such that r', 
s'et' A u', t', u'er' v s' and (p(r') = r, cp(s') = s, cp(t') = /, (p(u') = u. We can 
suppose that A is generated by {r', s', t', u'}. Now just as in the proof of 6.6 in 
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[3] we can show that A is isomorphic to I\(M\ieI) with / = {/e/,: r'(/), s'(/), 
/ ' ( / ) , u'(i) are mutually different}. Using 4.5 of [3] we obtain that C is isomorphic 
to I\(M\ieI)/0 for a congruence relation 0 on IT(A/, | /e /) . By 6.10 of [3], 
0 = 0 ( e ^ ) for a filter 3F on /. Thus C is isomorphic to I\j(M\ieI). 

2.2. Lemma. Under the same assumptions and denotations as in the preceding 
Lemma C has only trivial congruence relations if and only if the filter 3F is an 
ultrafilter. 

Proof . First consider an arbitrary filter 3FX =2 3F. Then 0(-¥x) ^ 0(-F) 
and the congruence relation 0(ZFx)/0(2/') on I\(M\ie I)/0(:F) defined by 

[f]0(F) 0(^)/0(^)[g] 0(3?) of0(^)g 

(see 4.6 of [3]) is the least if and only if 0(J^,) = 0(J?), which is equivalent to 
:#, ^ J*\ and the greatest in the case that 0(3?x) is the greatest, i.e. when &x 

contains all subsets of the set /. 
Now do not let J* be an ultrafilter. Then there exists an ultrafilter J// ID 3F. 

The congruence relation 0(J?/)/0(3?) on I\^(M\ieI) is neither the least, nor 
the greatest, hence also C has a non-trivial congruence relation. 

Let there exist a non-trivial congruence relation on C. Then there exists a 
non-trivial congruence relation on I\?(M\ieI) = I\ (A/ , | / e / ) /0 ( J^ ) , too . Take 
(Pto be such a one. The multilattice n ^ ( M , | / e / ) / 0 i s a homomorphic image of 
n ( A / , | / e / ) , so there exists a filter 3FX on / such that I\/?(M\ieI) & ^ 
^ I\(M\ieI)/0(^x) (cf 6.10 of [3]). Evidently, 0(&x) 3 Q(&) and 0(.?x) 
0(2F) = 0. Since CP is a non-trivial congruence relation, by the above there is 
3*x ^ 3F and 3FX is different from the system of all subsets of /. Hence 3* is not 
an ultrafilter. 

Now let us investigate an ultraproduct n y / (Af , | /e / ) , where M, = M2mp for 
every ie L 

2.3. Theorem. Let I be any nonempty set, Jl/ an ultrafilter on I and let 
M, = M2mpfor every ie I. Then the ultraproduct I\//(M\ie I) is isomorphic to A/: . 
for some y ^ (5. 

P r o o f For any ceM1($ the symbol c will denote such an element of 
I\(M\ieI) that c(i) = c for every iel. Throughout this proof we shall use the 
denotation [ / ] , [g], ... for the elements of the factor multilattice IT ff(M,\ie I) = 
= I\(M\ieI)/0(Jf/), instead of [/] © ( # ) , [g]&(#) 

Let us fix the elements b, b' of 5 , b ^ b\ and introduce the denotation 
U{0) = {a, a\ b, / / } , U{]) = u { x v v: v, r e ( / ( 0 ) } , U{2) = u {.v A r: .v. yeU[l)). 
Evidently, U{2) = M, p and hence I\(M\ieI) = I\ (lT\ieI) u n (U)u\ie I) u 
un(L/, ( 2 ) | /GI) , where L/,(0) and U{]) and U{2) means L/,0) and U[U and U{2). 
respectively, for every iel. 

I f / en (L/ , ( 0 ) | / e I ) , then / ( / ) is one of tu a\ b, b' for every iel. Thus I = 
= I(f a) u I(.f b) u I( f a') u I(.f 6 ') and using 4/ as an ultrafilter we get that 
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just one of the sets / ( / , a), I(f b\ / ( / ; a^ /(y; b ) b e l o n g s t o ^ s i n c e a n y t w o 

of these sets are disjoint. If e.g. / ( / , a ) G ^ then f0(W)a. We have proved that 
{[f]:feY\(Ul0)\ieI)} = {[a], [b], [a'], [b']}. Evidently, the classes [a], [b], [a'], 
[b'] are different and there holds [6], [b']e[a] v [a'], [a], [a']e[b] A [b']. 

Now letfe n (Ujl)\iel). Then for every ie I we have f(0 G JC,- V y, for some JC,, 
yte Uj0). Let us define g, h ell (Uj0)\ie I) by g(i) = x,-, h(i) = v, for every iel. 
Then fGg v //, so [f]e[g] v [A]. By the above [f]e{[3], [3'], [7]} or [f] = [/.] 
for a mapping f: / -* B. 

Finally, i f fen ( t / / 2 , | /e / ) , thenfGg A h for someg, / i e n (Uj])\iel). If g, //.are 
mappings from / to B, then 

f(0 = g(i) = A (Oe.fi whenever g(/) = //(/), 

f(i)e{a, a'} in the opposite case. 

Hence / = I(f, a) u I(f, a') u / ' , where / ' = {iel: f(i)eB}. Now if [g] # [h], 
then / (g , h) = / ' e^7/and hence e i the r / ( f a)e^ll ox I(f,a')e^lt. In the first case 
[f] = [a], in the second [f] = [3'] . Evidently [a] A [3'] = [0]. 

We have proved that n y / (M / | /G / ) is isomorphic to M2y for some cardinal 
number y. As different constant mappings from / to B determine different 
classes, there is y^ /?. 

2.4. Corollary. If Ce i\p and C is a multilattice generated by a four-element 
subset {r, s, t, u} such that r,set A U, t,uer v s and C has only trivial congruence 
relations, then C is isomorphic to M2yfor some y^ (5. 

The assertion is an immediate consequence of 2.1, 2.2 and 2.3. 
2.5. Corollary. If M2 se i\pfor some cardinal number 8^2, then 8^ /?. 
P r o o f H M2 sei\p, then using the fact that M26 is generated by a four-

element set {i\ 5, /, u} such that r, set A U, t, uer v s and that M2S has only 
trivial congruence relations, by 2.4 we obtain that M2 s is isomorphic to M2 for 
some y ^ /?. But then the equality 8 = y holds true. Thus 8 ^ (5. 

2.6. Theorem. If i^ is a variety such that i \ p => V ZD Q), then there exists a 
cardinal number y > /3 such that i\p=> i~ ^ f 2 7

D ^-
P r o o f If y~:/,=> y"=>£?, then by 1.2 there exists a multilattice Cxeir 

that is not a lattice. Then C, contains a four-element subset {r, s, t, u} such that 
r. set A u. t. uer v s. Let C be the subalgebra of C, generated by {r, s, /, u}. 
Then Cei~ and also Cei\p. By 2.1 C is isomorphic to Y\JF(Mi\ieI) for a 
non-empty set / and a filter 3F on / different from the system of all subsets of 
/. where M, = M2 p for every iel. Let -?/ be any ultrafilter on /containing J*\ 
Using 4.6 of [3] we obtain n y / (M / | /G / )G/ /{C} . By 2.3 there is M2yeH{C} for 
some y^ /?. Then ^ cz i \ , c HSP{C} <= y c= iT2>/-. The relation TT2>yc: TT2</, 

eliminates the equality / = /?. 
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2.7. Corollary. For different infinite cardinal numbers P the varieties r2p are 
different. 

Proof. If / ? / 7, then either p < y or (5 > y. By 2.5 in the first case 
M2p<£r2y and in the second case M2^r2p. 
As an immediate consequence we obtain: 

2.8. Theorem. The varieties of modular multilattices form a proper class. 
Now we will prove that for any infinite cardinal number /? there exists an 

infinite decreasing sequence of varieties ro = r2mP =-> rx => i\ =-> ... =>Q. 
If / is any nonempty set and °U is an ultrafilter on /, then WJU{M\ieI) = 

= n(M / | / e / ) /0(«r) , where M, = Mzp for every i e / , belongs to TT2^. By 2.3 
n^(M / | / e / ) is isomorphic to M2%Y for some y^ p. What values of y can be 
obtained for a given /?, choosing index sets of various cardinalities and choosing 
various ultrafilters on the same index set? It is easy to see that 

7 = card{[f] 0(«r):fis a mapping /-> B} = cardn,( .#,-|/e/), 

where Bf = B for every iel. 
We will use the following assertion, which is a consequence of 6.1.14 and 

6.3.21 of [1]. 
2.9. Theorem. Let I be any infinite set of the cardinality A, B a set of the 

cardinality (3 and let B{ = B for every iel. Then there exists an ultrafilter % on I 
such that card Yl^B^iel) = f3x. 

Using 2.9 we obtain: 
2.10. Theorem. For every infinite cardinal number (5 there exists an increasing 

infinite sequence of cardinal numbers po< /?, < P2< ... such that p0 = P and 
^ P = r P o -̂  r2A => r2mP2 D . . . 3 @ . 

P r o o f Define P0 = (5 and supposing that there is defined /?, for a non-
negative integer j, define Pj + , = /?/. Now letj be any fixed nonnegative integer. 
Take any set / of the cardinality Pj. In view of 2.9 there exists an ultrafilter it 
on /such that the ultraproduct ny /(M,| /e/) , where M, = M2p, for every iel, is 
isomorphic to M *. = M2>/? . Since I l^(M ; | /G/)e^ 2 ^, we have Mzp.^e 

e^2.pr
 W e h a v e proved that irM / + | <= ^ , As # + I = ^ ^ 2^ > /?,, by 2.5 

M2mPjtrp.+ r Hence TT2>/I /+ , c Y ^ . 
2.11. Theorem. Let P be any infinite cardinal number. Then there exists no 

variety r of multilattices covering Q in the lattice of all varieties of multilattices 
and satisfying r2p ^ r . 

P r o o f Suppose that for an infinite cardinal number P there exists a va
riety r covering Q and satisfying i\p ^ i . By 2.6 there is i = i 2 for some 
cardinal number y ^ /?, but in view of 2.10 the variety i \ does not cover Q. 
We have a contradiction. 
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3. Another variety covering Q 

In the last part of the paper we will show that it can happen that a variety 
1" covering Q contains only infinite multilattices, with the exception of those 
that are lattices. The method applied in this section is analogous to that used in 
[3], Section 6. 

Fie. з 

Throughout this section we denote by M the multilattice shown in Figure 3 
and by 1' we denote the variety generated by M. Evidently i ~ => £>r. 

3.1. Lemma. The only varieties of lattices that are contained in i~ are the 
variety Q and the variety of all one-element lattices. 

Proof. If 1" contained a variety of lattices different from the above men
tioned, it would be M}e lorN.el \ But since y ~ contains only distributive 
multilattices. both these possibilities are excluded. 

Having any subset U of a multilattice M' let us define the sets U[k) for 
nonnesative integers k as follows: Ul()) = U: if UU) is defined for some non-
neeative inteser /. set I - . / - i i 

u x v r A\ yeU{,)) for / even and f/(/ 

= u [x A r: .w ve U ) for / odd. 
3.2. Lemma. Let I be any non-empty set. Further, let A be a subalgebra of 

U(M,\ieI). where M, = M for every ieL generated by a four-element subset 
[r. s. t. u) such that r. set A //. /. iter v s. Put U, = [/•(/), .s(/), /(/), u(i))for every 

ieL Then A is isomorphic to the subalgebra B = (J TI (£/,,A,|/e/,) ofU (A/J/e/,), 
A ^ 0 

where /, = \iel\ card U = 4). 
Proof. Consider the mapping assigning to every feA its restriction to /,, 

denoted by / ] / , . Let U = \r. s. t. it). Since A = \^J Ulk\ the relation/e/1 implies 
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fe U{k) for some nonnegative integer k. Then /(/) e £/(A> for every ie I and we have 
feU(U{k)\ieI) and/]/ , e Y\(U{k)\ie/,). Hence the mapping/WUi is a mapping 
from A to B and evidently it is order-preserving in both directions. It remains to 
show that this mapping is onto. It is easy to see, by induction on k, that every 
element of n (Ujk)\iel]) has a pre-image in A (see the proof of 6.6 in [3]). 

In 3.3—3.5 we shall assume that / is a non-empty set, M, = M for every 
iel,r, s, t, u are mutually different elements from Y\(M\ieI) such that r, 
set A u, t, uer v .v. Further, we shall suppose that for every iel the set 
Ui = WO* s(0> t(i), u(i)} has the cardinality 4. The aim is to prove that every 

congruence relation on B = [J IT (U{k)\iel) corresponds to a filter on /. 
A ^ 0 

3.3. Lemma. Let f ge B, f^ g and let 0(f g) he the corresponding principal 
congruence relation on B. Then the relation p0(f g)q (p, qe B) holds if and only 
ifl(fg)^l(p,q). 

P r o o f Let p0(f g)q hold for some/7, qe B. By 3.4 of [3] there is p(i) 6>(/(/), 
g(0)q(0 f° r every iel. Since M has only trivial congruence relations, we have 
/ ( / , * ) £ / ( A ? ) -

Conversely let / ( / ; g) c /(/?, q). If iel(f g), then iel(p, q) and hence 
evidently p(i)0(f(i), g(i))^(i). If / £ / ( / , g), then ©(/(/), #(/)) is the greatest 
congruence relation on M and hence again p(i) 0(f(i), g(i))^(i). Now we shall 
prove that p0( f g) ̂ . Sincef g,p^e B, there exists a nonnegative integer k such 
t h a t / g, p, ^e^(U{k)\ieI). For every iel take an arbitrary maximal chain 
f\ >f\ > ... > / ; such that /;,e/i(/) v ^(i), f\ep(i) A <?(/). If p(i), q(i) are 
comparable, then n{ is not greater than the length of U{k), which is k + 1. If p(i), 
c/(i) are incomparable, then /7, = 2. Hence there exists a positive integer n and for 
every / e / a chain e'() ^ t'[ ^ ... ^ e/, such that e^spii) v q(/), e'nep(i) A q(/') and 
for everyJe{0, ..., n ~ 1} either e/ = e/4 , or the quotient e//e/+ , is prime (i.e. e\ 
covers e\+ ,). At that {e(j, ..., e/J ^ U{k + 2), too. Let us define e(), ^,, ..., e„e/?in 
such a way that ef(i) = e/ for every / e / , je (0, ..., /7}. Then e0 ^ e, ^ ... ^ en, 
e()ep v ^, enep A q. It remains to show that for every /e{0, ..., n — 1} the 
quotient efe/+ , is weakly projective intof/g. In M every two prime quotients are 
projective and for any / ^ 0 there exists a positive integer /// such that any two 
prime quotients in c7,(/)are projective in no more than ///Steps. Now, if i<£I(f g), 
i.e./(/) >£(/) , then since {e('„ ..., e/?! <= U{k + 2 ,and/(/),#(/)e U{k) c t/,(A + 2), every 
prime quotient e//e/+ , is projective with any prime subquestient of the quotient 
./(0/<?(0 in no more than hk + 2 = // steps. Hence for every i<£I(f g) every prime 
quotient e\/e'n , is weakly projective into f(i)/g(i) in no more than // steps. The 
one-element quotient e//e/4 i is obviously also weakly projective into f(i)/g(i) in 
no more than h steps. If iel(f g), then iel(p, q), which implies eo = ef = 
= ... = e/. Hence again e//e/+ , is weakly projective into f(i)/g(i) in no more 
than // steps, for every fe [0, ..., n — 1). Now it is easy to see that for every ye {0, 
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...,//— 1} the quotient e,/e/ + , is weakly projective into fi/g (see the proof of 6.7 
in [3]). By 3.4 in [3] it means that P0(f g)q. 

3.4. Lemma. Let OeConB. Then 0= &(&)fior some filter & on I. 
Proof. There holds 0-= sup{0(f, gA): Ae4}, where {(f, gx): XeA} = 

= {(f g)e B x _9:f> g.J'Og}. Let & be the filter on /generated by the set {/(f, 
gx)\ XeA}. To prove that 0= 0(/jF), it is sufficient to show that forf g e 5 , 
f> g the relation f0e/ holds if and only i f / ( f g)e J*", Hence let f g e . 9 , / > g. 
Iff0g, then (f g) = (fi^gx) for some Xe A and then /(.fg) = I(fix,gx)e<¥. Now 
let / ( f g)E J*7. Then / ( f g) ^ / ( f , gA) n ... n / ( f , gx) for a positive integer 
r. Define f, f f as follows: 

i f /є/(Д,g Я | ) ; 

i f l ^ / ( Д ^ ? д ) n / ( A , g Л : ) , 

i f i є / ( / l д J n /(./,„ gя,); 

./,'(') = 
/(/) i f / < £ / ( . / v g , | ) n . . . n / ( / v g A L 

./;_,(/) if/e / ( . / , , g , ) n . . . n / ( / , , ř , ) . 

Evidently j 0 fe£, because /•(/) is either g(i) or f(0 a n d s i n c e f 
gelT (L7,-A)|/G/) for some nonnegative integer k, also felT (Ujk)\iel) for the 
same k. Further, by 3.3 we have g = fio0(fiXr gAl)f,0(f2, gj.f'2 --fir- 1 ®(/v 
g ; )f = f Thus g&U\r SA) v ... v 0(f1, g^ffand we have proved #0/ . 

3.5. Lemma. Lel 7// be c/nr ultrqfilter on I. Then the factor multilattice B\ 
Q(J1/) is isomorphic to M. 

Proof. Given any iel andje{0, 1, 2, ...} let us define elements r/, 8/, //, 
ujeM; in the way depicted in Figure 4. Further, define r7, 8;, tr u}eY\ (M\iel) 
forje {0, 1, 2, ...} by /;(/) = r/, 8/ = 8/, /,(/') = /', //,(/') = u] for every iel. Obvious
ly r0 = r, 80 = 8, t0 = t, u0 = u and r,, 8;, /,, uteB for everyje{0, 1, 2, . . .}. 

Let forfe B the symbol [f] denote the class [f] 0 ( # ) . The classes [rj, [8J, [/,], 
[w,-] forje{0, 1, 2, ...} form a partially ordered set isomorphic to M (since /̂/ is 
an ultrafilter, there holds 0<£ /̂/, which implies that these classes are mutually 
different). Now we are going to show that for any fie /?, [f] is one of the above 
mentioned classes. If fieU(Uj0)\ie I), thenf(/)e{r(/), 8(/), l(/), //(/')} = {r0\ 8(j, tj>n 

u0} for every iel. Hence / = / ( f r) u / ( f 8) u / ( f t) u (I(f\ //) and using the 
properties of an ultrafilter we obtain that just one of the sets / ( f r), I(f\ s), 
I(fi /), I(fi u) belongs to 4/. If, e.g., I(fi r)e#, then [f] = [r] = [r0]. We have 
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proved that i f fen (/7<0)|/e/), then [f]e{[r0], [.?„], [/„], [wn]}. Suppose that for 
some non-negative integer /, [f]e{[r,]: je{0, ..., /}} u {[s,]: je{0, ..., /}}u 
u {[/,]:./e{0, ..., /}} u {[uj]:je{0 /}} wheneverfe n (U)n\iel). We are going 
to prove that then for every fen (U)'+ u\iel), [f]e{[r,]: /e{0 / + 1}}U 
u{[.v,]:je{0,...,/+ l}}u{[/,]:je{0,...,/+ 1}} u {[M/]:ye{0 / + I}}. Without 

t ( i ) = ł 0 

r ( i ) = r ' 

u 0 = u ( . ) 

s 0 = s ( i ) 

Fig. 4 

loss of generality we can suppose that / is even. If/e Y\(U)'+ " | /e/) , then for 
every iel there exist *,-, y,e U)h such that f(i)ex,v yt. Let us define g, 
heY\(U)"\ieI) by g(i) = .Y,, //(/) = _y, for every ieI. Then feg v h, which gives 
[/]e[g] v [!']• Using the induction hypothesis we obtain [g], [/.]e{[r;]: je{0, 
...,/}}u{[.v /]:je{0,...,/}}u{[/ /]:j€{0, ..., /}}u{[M/]:je{0, ...,/}}. U[g],[h] are 
comparable, then [f]e{[g], [//]} £ {[r^jeJO, ..., /}} u {[*,]: je{0, ..., /}}u{[/,]: 
je{0, ..., /}}u{[W/]:je{0, ..., /}} ~ {[rj: je{0 / + 1}} u {[.v,.]: je{0, ..., 
1+ 1}}U {[/,-]: je{0, . . . , / + l}}u{[W/]:je{0, . . . , / + 1}}. If [g], [h] are incompa
rable, then either{[g], [//]} = {[/,.], [„,.]} or {[g], [//]} = {[r;], [.y,.]} for someje{0, ..., 
/}. Let e.g., the first possibility occur. Then [/] e [/J v [«,-] and hence there exists 
f'e/; v M, with [/'] = [/]. It follows that for every iel, . / (Oe/ / v M/'= 
= {/;+ „ u'i + ,}. Again / = / ( / ' , /, ( ,) u / ( / ' , u, + ,)e JU, so either /"(/',',+ i)e # or 
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/ ( / ' , uj+l)e
J//. In the first case [/] = [/'] = [!,+1], in the second 

[/] = [./'] = [", + ,]• If {_?], [/»]} = {[0], [->]}, then [/]£{[/-,_,], [_,._,]} whenever 
/ > 0 and [/]e{[/0], [„„]} forj = 0. In all cases [f]e{[r,]: je{0, ..., / + 1}}U 
u{[s,]:./e{0 / + l}}u{[.,]:je{0, . . . , / + 1}} u'{[«,] : /e{0 / + 1}}. 

3.6. Theorem. The variety i generated by the multilattice M in Figure 3 
covers the variety & in the lattice of varieties of multiiattices and does not contain 
any finite multilattice that is not a lattice. 

P r o o f Let / , be a variety of multiiattices such that i" _2 i\ => S>. By 3.1 
/ \ contains a multilattice C that is not a lattice. Then C contains mutually 
different elements r\ s\ t\ u' such that t\ u'er' v s\ r\ s'et' A U\ Let C be 
the subalgebra of C generated by the set {r\ s\ t\ u'}. There holds Cei] __= 
_= / = HSP{M}, hence there exists a homomorphism cp of a subalgebra A of 
n(M / | /GI), where A/,- = M for every /GI, onto C. By 6.5 of [3] there exist r, 8, 
/, ueA with r, 8el A W, t^uer v 5, <p(r) = r\ <p(s) = s\ <p(l) = l\ cp(u) = w\ We 
can suppose that A is generated by {r, 8, /, u}. Using 3.2 and 3.4 we obtain that 

C is isomorphic to B/0(3?), where B = (J n ([//A)|/eI,), £/, = {r(/), 8(/), /(/), 
A ^ 0 

w (/')}, Ii = {/GI: card (7, = 4} and J27 is a filter on I,. Since card C > 1, there exists 
an ultrafilter J// on I, with «*F _= # . Then <9(#) _2 0(J^) and by 4.6 of [3] we 
have B/&(J/)eH{C}. Using 3.5 we obtain MeH{C} <= r „ so Y" c r , . We 
have proved that / ' = i ]. 

If the variety 1" contained a finite multilattice which is not a lattice, then by 
the previous consideration, M would be the homomorphic image of a finite 
multilattice, which is a contradiction. 
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