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BUCK'S MEASURE DENSITY 
AND SETS OF POSITIVE INTEGERS 

CONTAINING ARITHMETIC PROGRESSION 

MILAN PASTEKA — T IBOR SALAT 

ABSTRACT. The concept of measure density /i was introduced by R. C Buck 
in 1946. In this paper some further properties of /z are established. 

In [1] the concept of measure density of sets A C N = { 1 , 2 , . . . , n , . . . } is 
introduced. Denote by VQ the class of all sets A C N which are finite unions 
of arithmetic progressions, or which differ from these by finite sets (the empty 
set 0 belongs to VQ , too). 

If A = {an + b : n > 0, a, b £ N } , then we put A(.A) = £ and if 
A = A\ U A<i U • • • U Am where the sets Aj (j = 1,2,. . . , m) are mutually 
disjoint and of the previous form, then we put A(.A) = YlT=i ^(Aj) • For 0 w e 

put A(0) = O. 

The symbol AC B denotes that A C B holds if we omit a finite number of 
elements from A (i.e. AC B means that the set A \ B is finite). Then A = B 
means that the set (A \ B) U (B \ A) is finite. If A G V0 and B = A, then B 
belongs to VQ , too and we put A(B) = A(A). 

For S C N we define 

H*(S)= inf A(A). 
Aev0, SCA 

The number f**(S) is said to be the outer measure density of the set 5 . The 
function /z* : 2 N —• [0,1] has the following properties: 

a) /x*(0) = O 
b) If S C U7=1 Sj , then v*(S) < Z?=i f(Sj) -

Denote by V^ the class of all 5 C N which satisfy the following condition: 

l**(Z) = n*(Z nS) + tf{Z n S') for all Z C N (1) 

A M S S u b j e c t C l a s s i f i c a t i o n (1985): Primary 11B05 
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where S' = N \ S. Then the class V^ is an algebra of sets and the set function 
Lt = /i*/XV IS a finite-v additive measure on V^ (cf. [8], pp. 226-228). 

The number fi(S) G [0,1] is called the measure density of the set S E X^ . 

It can be shown that the condition (1) is equivalent to the following condition: 

ti'(S) + f(S') = l. (1') 

This fact is recalled (without proof) in [1] (p. 562 (i)). We shall prove it using 
the following simple observation. 

Proposit ion A. A set S C N satisfies the condition (V) if and only if 

inf A(A) = sup A(B). (A) 
ADS, Aev0 BCS, BeVo 

P r o o f . The set S satisfies the condition (1') if and only if 

inf A(A) = 1 - inf A(C). 
ADS, Aev0 CDS', cev0 

Consider that C D S' holds if and only if N \ C C 5 . P u t 2? = N \ C . Then 
B e VQ (cf. [1], (Al), p. 561), B t S and A(B) = 1 - A(C). It is obvious 
from this that the set S satisfies (1') if and only if the equality (A) holds. D 

Corollary, (a) The conditions (1), (1') are equivalent. 

P r o o f . Evidently (1) implies (1') (it suffices to put Z = N i n ( l ) ) . Assume 
that (1') holds. Then according to Proposition A we get for an arbitrary Z C N 

j i * ( Z n S ) = sup A ( F ) ; (2) 

FCZHS, Fev0 

li*(ZnS')= sup A ( £ ) ; (2') 

Eczns*, Eev0 

fi*(Z)= sup A(G) . (2") 
GCZ, Gev0 

Let e > 0. According to (2),(2') there exist FUEX G V0 such that 

^ • ( Z n 5 ) - | < A ( F i ) ; (3) 

fi*(ZnS,)-l<A(E1)- (3') 
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Fi C ZnS, Ex QZnS'. But then Fx U Ex C Z and Fx n £ j = 0 . Therefore 

A ( F 1 U £ 1 ) = A(F1) + A ( £ 1 ) . (3") 

Adding (3),(3') we get on account of (3") 

V*(Z nS) + fi*(Z nS')-e< A(F\ U Ex) < / i*(Z). 

From this by e —> 0 + we get 

,i*(z) > / / ( z n S) +/i*(z n s') • 
The opposite inequality holds too because //* is an outer measure. Thus (1) 
follows. B 

Corollary, (b) A set S C N belongs to V^ if and only if for each e > 0 

there exist two sets A,B e V0 such that B C S C A and A(A) - A(B) < e. 

For A C N we define the asymptotic densities d(A) (the lower density of 
A), d(A) (the upper density of A) as follows: Denote by A(n) the number of 
elements of A not exceeding n. Then we put 

dj,4) = liminf ^ , d(A) = lim sup ^ . 
n—>oo n n—>-cx> ^ 

If there exists limn—oo ^~-, then we denote this limit by d(A). The number 
d(A) is called the asymptotic density of the set A. 

Denote by V the class of all sets S C N for which d(S) exists. In [1] (p. 
571) the inclusion V^ C V is proved and if S G V^ , then fJ>(S) =- d ( 5 ) . 

In this paper we introduce some considerations about a possible extension 
of the class V, further we prove that the measure density fi has the Darboux-
property and introduce some simple results concerning the relation between the 
positivity of fi(S) and the fact that S contains an infinite arithmetic progres­
sion. 

1. On an extens ion of the class V 

Put for S C N 
LJ(S) = inf d(A) V ' ADS, Aev v 7 

Denote by 2 \ , the class of all sets S C N for which 

u(S) + u(S') = l 

holds. 

It is proved in [1] (Theorem 8 in [1], p. 572) that V„ = V. We now give 
a new proof of the quoted result from [1] which shows that the class V is not 
extendable in the described way. 
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Theorem 1 .1 . We have V^ = V. 

P r o o f . Since evidently V C Vw , it suffices to prove that 

VWCV (4) 

Let S € Vu . Then u(S) + w(S') = 1 ( S' = N \ S ) . Hence 

inf d(B) = 1 - inf d(C). (5) 
BDS, B6X> CDS' , C6I> 

From r j D 5 ' we get A = N \ c C S and 1 - d(C) = d(N \ C) = d(.4). From 
this we get 

sup d(A) = l - inf• d (C) . (5') 
ACS, Aev CDS', cev 

The equalities (5),(5') yield 

flr,inf
B«>d(i?)= SUP d(^} ( = t , ) ' (6) 

BDS, B<EP ^ c 5 ) ^Gx> 
Let e > 0. According to (6) there exist two sets A0,B0 EV such that 

AoCSCBo (7) 

d(2?0)<t; + | l d ( A 0 ) > ^ - J . (7') 

From (7),(7') we get 

v- ^ < d(.40) < Km inf - ^ - < l i m s u p - - - ^ < d(B0) < v + ^ . 
2 n-+oo n n—>oo ft 2 

This is true for each e > 0. Therefore there exists d(5) and d(S) = v. Hence 
(4) holds. B 

Finally we mention the cardinalities of the investigated classes. Denote by 
\M\ the cardinal number of the set M. Already in [1], p. 580, the equalities 

|ľo|=No, 1^1 = 1̂ 1 C 

are proved (c is the cardinal number of the continuum). 
Further, we have seen that V0 C V^ C V. Therefore the question arises how 

large the cardinalities of the classes V^ \ V0 , V \ V0 , V\VfX are. We have 

|p„\:Do| = |x>\Do| = c 

on the basis of the well-known result of the set theory according to which, if P 
is an uncountable set and M is a countable set, then the set P \ M and P 
have the same cardinality. 

The cardinality of V \ V^ is also equal to c. This follows from the fact that 
each set of the form A = {[an + /?] : n G N} ([t] denotes the integer part of 
£), where a > 1, /3 > 0, (3 is real and a irrational, belongs to V (the density 
of A being ^ ), but does not belong to V^ (cf. [1], Theorem 7, p. 570). 
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2. Darboux property of the measure density 

In this part of the paper we shall give a proof of the fact that fi has the 
Darboux property. This proof is quite different from that given in [6]. 

We use the concept of the Darboux property in agreement with the termi­
nology contained in [2] pp. 25-32. Let S be a class of sets and v : S —> [0, -foo] 
a set function on S. The set E G S is said to have the Darboux property with 
respect to v provided that for each a G [0, v(E)] there exists a set A C E, 
A G S such that v(A) = a. The set function v is said to have the Darboux 
property provided that each set E G S has the Darboux property with respect 
to v. 

Instead of "the Darboux property of v" also the terminology "v is full-
valued" can be used (cf. [5]). 

The proof of the following theorem is based on a modification of a procedure 
used in [5]. This method enables us to prove a more general result (see Theorem 
2.2). 

Theorem 2 . 1 . The measure density /i has the Darboux property. 

The proof is based on the following auxiliary result. 

Lemma 2 . 1 . Let MCE, M,E G V^ and e > 0. Then there exist mutually 
disjoint sets Dj G V^ (j = 1,2, . . . , s) such that 

s 

M= \jDj, KDj)<e (i = l ,2 , . . . , .5 ) . 

j = 1 

P r o o f . Choose an s G N such that ^ < e. Put 

Dj = Rjf)M (j = l , 2 , . . . , * ) , 

where Rj (j = 1,2,. . . ,s ) denotes the set of positive elements of the residue 
class j ( mod s). Then evidently Dj G V^ since V^ is an algebra of sets. It 
is easy to check that the sets Dj have the desired properties. D 

P r o o f o f T h e o r e m 2.1. Let E G V^ and 0 < a < fi(E). Suppose that 
there is no M G X^ , MCE such that fi(M) = a. 

We shall construct two sequences {Bn}n
<L1 , {Cn}^! of sets from V^ such 

that 

BlCB2C...; d D C2 2 • •. (8) 

BnQCn (n = l , 2 , . . . ) (9) 

a - - < fi(Bn) <a< fi(Cn) < a + - (n = 1, 2 , . . . ) (10) 
n n 
BnQE, CnCE (n = l , 2 , . . . ) . (11) 
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In the first step we put B\ = 0 , C\ = E. Let us suppose that the construction 

of the sets £?*, Ck is already finished in such a way that the conditions (8)—(11) 

(for n = k ) are satisfied. We shall construct the sets Bk+I, Ck+i • 

According to the assumption of induction we have 

BkQCk, Bk,CkeV^, Bk,CkCE 

Put M = Ck\ Bk and 

e = mm{a- fi(Bk), — - } 

in Lemma 2.1. On account of Lemma 2.1 there exist mutually disjoint sets Dj G 
Vp (j = 1,2,... , s) such that Dj C E (j = 1,2,... ,s) and 

8 

Ck\Bk=[JDj (12) 
i= i 

and for each j = 1,2,... ,s we have fJ>(Dj) < e. 

Consider that 

fi(Bk U D i ) < fi(Bk) + fi(Di) < fi(Bk) + (a - fi(Bk)) = a 

and simultaneously according to (12) 

fi(BkU \jDj) = n{Ck)>a. 
i=i 

Therefore there exists a positive integer t such that 1 < t < s and 

fi(Bku[JDJ)<a', (13) 
i= i 
t+i 

fi(BkU\jDj)>a. (13') 

>=i 

Since the set M = Bk U U,-=1 Dj belongs to V^ and M C E we cannot have 

fi(M) -= a. Therefore in (13') the strict inequality > holds. 
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Put 

t 

Bk+i = Bk U U Dj (14) 

i=i 
t+i 

C*+i = B f c + i U U l + i = B fc U U .©> . (14') 

i=i 

It follows from (14),(14') that .B*+i,Cjfc+i G XV > -B*+i>C*+i C E. Further, 
from (13),(13') we get //(.B*+i) < /i(C f c + i ) . 

Consider that 

/i(C*+ i) < Ai(^*+i) + M A + i ) < a + ^ T j 

and according to (13),(13') we have 

1 
a < џ(Cк+i) < џ(Bк+ì) + џ(Dt+i) < џ(Bк+i) + 

Jfc+1 

From this we get 

M B l + l ) > a " R T -
Hence we have 

a - p-j-j- < /i(Bjb+i) < a < /i(C*+ i) < a + ^----y • 

Further, from (14),(14') we get -Bjt+i C C* + i and evidently Bk Q Bk+i . It 
follows from the definition of C^+i that 

t 3 

C* + i = Bk U U Dj U 2?«+i C B^ U U Dj = Ck , 
i=i i=i 

hence C*+i C C*. 

This ends construction (by induction) of the sequences {Bn}n

<L1, {Cn}n

<L1. 

Put A = U£Li -3j - Then according to (11) we have ACE. 

For each n G N we have A = U?=i -B> U Uj ln+i B i • S i n c e B i ^ Bn C Cn 

for j < n and Bj C C, C C n for j > n , we see that A C C n . 
Obviously we have Bn C A and therefore 

- 9 n C A C C n (n = l , 2 , . . . ) . (15) 
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We prove that the set A belongs to V^. Let e > 0. Choose an n E N such 
that ^ < f • Since the sets Bn, Cn belong to D^ , we can choose by Proposition 

A the sets B*,C* E V0 such that B* C Bn, C„ C C* and 

A(2T) > ^ (B n ) - i , A(C*) < /i(Cn) + i 

According to (10) and (15) we get B* C A C C* and 

A(C*) - A(B*) < /z(C„) - /.(Bn) + | < - + ^ < e. 

z n z 
On the basis of Proposition A the set A belongs to T)^ . 

We obtain a contradiction showing that fi(A) = a. 

Let n be an arbitrary positive integer. According to (10) and (15) we have 
|/i(.A) — a\ < — . From this by n —> co we get fJ>(A) = a. This ends the proof. 
19 

The detailed analysis of the foregoing proof shows that by an analogous pro­
cedure the following more general result can be proved. 

Theorem 2.2. Let S C 2 N be an algebra of sets and let v be a finitely 
additive measure on S. Let v satisfy the following two conditions: 

(i) If A C N and 

mt v(C)= sup v(B) ( = u ) , 
CDA, ces BCA, Bes 

then A belongs to S and v(A) = v. 
(ii) For each M G S and e > 0 there exist mutually disjoint sets Dj E S 

such that M = (J*=1 Dj and v(Dj) < e (j = 1 ,2, . . . , s). 

Then the measure v has the Darboux property. 

3. The measure density /x and the sets A C N 
containing arithmetic progressions 

The set A C N is said to contain an arithmetic progression of the length 
k > 3 (k E N) if there is an arithmetic progression a\ < a2 < • • • < ajt with k 
terms such that {a\, a2,..., ajk} C A. Analogously we say that 

B = {b\ <b2 < - . . < b n < . . . } C N 
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contains an infinite arithmetic progression if there exists a sequence k\ < ^2 < 
• • • < kn < . . . of indices such that 

bkl<bk3<~'<bkn<... 

forms an arithmetic progression. 

It is well known (cf. [9]) that a set A C N contains arithmetic progressions 
of the length k for each k > 3 provided that d(A) > 0. The following sim­
ple theorem gives a sufficient condition for a set A C N contains an infinite 
arithmetic progression. 

T h e o r e m 3 . 1 . If S E T>^ and fi(S) > 0, then S contains an infinite 
arithmetic progression. 

P r o o f . According to Proposition A and Corollary (a) after it we have 

0 < fi(S) = sup A(A) 
Acs, Aev0 

Put e = "-y-- > 0. Then on the basis of the definition of the least upper bound 

there exists a set AQ E VQ such that AQ C S and 

A U o ) > / . ( 5 ) - | > 0 . 

It is clear from this that Ao ^ 0 and therefore .Ao contains an infinite arithmetic 
progression. But then by AQ C S the set S contains such a progression, too. 

• 
We shall show that in Theorem 3.1 the measure density cannot be replaced 

by the outer measure \i* . 

T h e o r e m 3.2. There exists a set SQ C N such that /i*(So) = 1 and So 
does not contain any arithmetic progression of the length 3 . 

P r o o f . Put 
50 = {l + l!,2 + 2!,. . . ,n + n ! , . . . } . 

Let {aj + b}(jl1 , a, 6 £ N , be an arbitrary arithmetic progression. Denote 
by A the set of all its terms. Put nk = ak + b (A; = 1 ,2 , . . . ) . Then it is easy to 
see that the elements nk + nk\ (k = 1,2,. . . ) of SQ belong to A. Thus the set 
A fl SQ is infinite and so SQ cuts each arithmetic progression in infinitely many 
terms. From this we get obviously that /x*(So) = 1 • 

We shall show that SQ does not contain any arithmetic progression of length 
3. 
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We shall proceed indirectly. Suppose that 

1 < ai < a2 < 03 (16) 

is an arithmetic progression such that {01,02,03} C So. Then by definition of 
the set So there exist positive integers 1 < ni < n2 < n3 such that a* = nk+nk\ 
(k = 1,2,3) . The difference of the sequence (16) is equal to d = n2 + n2! — (n\ + 
n\\). The following simple estimation yields 

«3 = ai +2d = n\ +n\\ + 2 [ ( n 2 + n2!) - (n\ + n\\)] = 

= 2n2 + 2n2! - ni - nx! < 2n2 + 2n2! < 

< (n2 + 1) + (n2 + 1)! < n3 + n3! = o3 . 

Hence we have a contradiction. D 

Finally let us remark that even the positivity of the asymptotic density of a set 
A C N does not guarantee that A contains an infinite arithmetic progression. 
According to Theorem 3.1 such a sufficient condition is the following: d(A) > 0 
and simultaneously A G V^ . An example of a set .4CN with a positive d(A) 
which does not contain any infinite arithmetic progression is given in [3], pp . 
159-160. Here we give another example of this kind. 

E x a m p l e 3.1. Denote by Q the set of all a £ N such that there is no 
prime number p with p2 dividing the number a (quadratfreie Zahlen). It is 
well known that d(Q) = ^ > 0 (cf. [4], p. 269). Suppose that Q contains 
an infinite arithmetic progression {ak}fL\. Then according to Exercise 1, pp. 
243-244 from [7] there exists a geometric progression {aqn}^=1 (q > 2) as a 
subsequence of { o ^ } ] ^ . But then Q contains the numbers aqn (n > 2), which 
contradicts the definition of Q. 

R e m a r k 3.1. It follows from Example 3.1 and Theorem 3.1 that the set Q 
does not belong to X>̂  . More generally, if A C N , d( A) > 0 and A does not 
contain any infinite arithmetic progression, then A does not belong to the class 

-v 
The authors are indebted to the Reviewer for his valuable comments improv­

ing the original version of the paper. 
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