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LOCALLY-CYCLIC GRAPHS COVERING 

COMPLETE TRIPARTITE GRAPHS 

ROMAN NEDELA 

ABSTRACT. A new construction of the so-called locally- Cn graphs, for n even, 
based on the technique of voltage graphs is presented. 

Let G be a graph and u a vertex. Denote by G(u) the subgraph of G 
induced by the set of vertices adjacent to u . The graph G is called locally H 
if G(u) = H for each vertex it of G . Further we shall be interested only in 
the case H = Cn , where n > 3 is fixed and Cn is a cycle of length n. The 
existence of finite locally- Cn graphs for each n > 3 was established in [1] and 
also in [2]. Later R o n a n in [7] showed that there are infinitely many such 
graphs for each n > 6 . A characterization of locally- Cn graphs is geometrical 
t e rms given by V i n c e [9] shows how to obtain locally- Cn graphs from groups. 
This was done in [8]. The relationship between locally- Cn graphs and 3-valent 
polygonal graphs is studied in [6]. In this note we present a way of construct ing 
locally- C271 graphs using voltage graphs. 

An impor tan t and interesting property of locally Cn graphs is tha t each of 
t hem gives rise to a uniquely determined tr iangulation of a closed surface . In 
fact, denote for a given graph G by K(G) the simplicial complex the simplices 
of which are the cliques of G and the incidence relation is given by subgraph 
inclusion. Then we have 

T H E O R E M 1. ([5]) A graph G is locally Cn if and only if K(G) is an n-valent 
triangulation of a closed surface in which each cycle of length 3 forms a face-
boundary, 

We obta in a class of locally- C2n graphs as covering t r iangulat ions of the 
well-known t r iangular embedding of complete t r ipar t i te graphs / i n . n , n , n > 2 
even, described in [10]. 

Fur ther it is assumed tha t the reader is familiar with the terminology and 
the basic concepts of the topological graph theory, namely with the theory of 
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2-cell embeddings of graphs into closed surfaces and with the theory of voltage 
graphs (see [3, 11]). 

First we recall some definitions. For a given graph G choose1 for each edge of 
a g raph G one of the two possible orientations. Then to each edge e of G we 
associate two arcs e, e _ 1 with the chosen and the opposite orientat ion, respec
tively. Denote by D(G) the set of all arcs of G . Clearly, \D(G)\ = 2 | £ ( G , ) | . 
A voltage graph is a triple (G, ip, F), where G is a graph and <p is a map
ping (sometimes called a voltage assignment) from D(G) to a group F with a 
un ique restriction ip(e)~x = (p(e~x). For the given voltage graph (G, ip, F) the 
derived covering graph G x^ T is defined as follows: its vertex set is V(G) x F 

and each edge e = uv of G generates the edges (e, g) = (H, g)(v, gip(e)) of 
G X y, r , where g ranges over all the elements of the group F. It is easy to see 
t ha t the na tu ra l projection, mapping an edge (e, g) of G x^T to e of G, is a 
covering mapping . If the original graph G is embedded into some surface*, then 
this embedding may be lifted in a na tura l way into the derived embedding of the 
graph G x^ r . The set of cycles forming face-boundaries of faces of the derived 
embedding consists of the cycles of G x ^ T covering the boundaries of faces of 
the embedding of G in the na tura l projection sending an edge (e, g) of G X^T 

to e in G. It is not difficult to see that this new embedding forms a (branched) 
covering embedding of the original embedding. It is also known tha t the derived 
embedding is unbranched if and only if the product of voltages on a boundary 
of each face of the original embedding is the unit element of F. In the la t ter 
case a covering over a t r iangulat ion is again a t r iangulat ion. 

C o n s t r u c t i o n . We s tar t with a tr iangular embedding j of A ' n , n , n into an 

orientable surface S described in [10]. Let Vr(A"n>U)n) = A U B U C be the 

t r i -par t i t ion of Kn,n,n . Since j is the tr iangulat ion, then its restrict ion r = 

3 \(A U B) l s a n e m ° e d d i n g °f a n induced subgraph (A U B) = I\n,n of I\n)Tl)n 

into S. Clearly, the boundary of each face of r forms a Hamil tonian cycle in 

Knin . We claim tha t if n is even, then the edges of A n , n can be oriented in such 

a way tha t arcs lying on the boundary of each face of r create a directed cycle. 

This follows from the fact tha t the dual embedding r* of r is an embedding 

of a b ipar t i te graph II <—> S. In fact, the embedding r can be obta ined as the 

derived embedding of the embedding k of the n-fold K2 into the sphere (see 

[3, p . 210]). Since k* is an embedding of C n into the sphere and r* covers k* , 

then r* must be bipar t i te if n is even. Now define a voltage assignment mapping 

yj>: D(KniniTl) —• Z2 n as follows. Set ip(e) = 1 if an arc e of A'n>n = (AUB) has 

the chosen orientat ion and set ij:(e~l) = — 1 for the arc e _ 1 , Let gu be the local 

ro ta t ion of arcs emanat ing from a vertex u of C determined by the embedding 

j : A\i,n,Ti c~-̂  S. Let (en, e\,.. . , e-2n-i) be one of the rotat ions gu, g~l which 

is consistent with the orientat ion on the boundary of a face of r containing the 
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vertex u . Then put 4>(ex) = i and v(e~l) = —i for all i = Q% . . . ,2 / ; — 1 . 

T H E O R E M 2. Let t/> be the voltage assignments on the graph A',,,,,,,, , ??. > 2 
even, with values in the cyclic group TL'in defined above. Then G = Ku,n,» x v --2T> 
is a locally-C211 -graph. 

P r o o f . Since the sum of assignments of arcs on each triangle-faro of j is 
0 , then the derived embedding 1 is unbranched, and consequently, it must bo 
a 2/i-valent t r iangulat ion . To complete the proof it is sufficient to show tha t 
each cycle ((?/, .r),(?>, y)(w, 2)) of length 3 in G forms a faro-boundary. By 
the definition of G we have that (uvw) is a cycle of length 3 in Kn,u,n ai-d 
ijj(uv) -f i[>(vw) + ip(ivu) = 0 . We may suppose that u £ C , i» G A , w £ B . 

By the definition of T/) we have i/)(vw) = 1 or ?/>(mo) = — 1 , and consequently, 
ip(uv) and if>(uiv) difTer by 1. Then either pu(u) — */J o r £ ? < ( ? / ' ) — v • hi both 
cases we see tha t (uvw) forms the boundary of a triangle fare in j , henct1 

((it, x)(v, y)(w, z)) forms a face boundary. The assertion follows from Theo
rem 1. • 

C o n c l u d i n g r e m a r k . A triangulation T is called a clean t r iangulat ion if ev
ery cycle of length 3 in T forms a face-boundary. N . H a r t s f i c l d and 
G . R i n g e 1 [4] investigated the problem of determining of the minimum num
ber T(Sp) of triangles of a clean triangulation of surface1 of genus p. They 

T(S ) 
proved lim ——— — 4 . Let Tk be the triangulation obtained using our con-

j>-+oo p 

s t ruct ion for n = 2k , denote by 7(Tk) the number of triangles of Tk and by pk 

the genus of the underlying surface. Then it is easy to compute T(Tk) = 32k* , 
nr 1 rp \ 

Pk — 8k3 — 12k2 + 1, and hence, lim = 4 . Thus \\\v sequence {Tk} is 
k^™ Pk 

ext remal in sense of R i n g e 1 and H a r t s f i e 1 d [4]. 
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